首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Protein engineering by inserting stretches of random DNA sequences into target genes in combination with adequate screening or selection methods is a versatile technique to elucidate and improve protein functions. Established compounds for generating semi-random DNA sequences are spiked oligonucleotides which are synthesised by interspersing wild type (wt) nucleotides of the target sequence with certain amounts of other nucleotides. Directed spiking strategies reduce the complexity of a library to a manageable format compared with completely random libraries. Computational algorithms render feasible the calculation of appropriate nucleotide mixtures to encode specified amino acid subpopulations. The crucial element in the ranking of spiked codons generated during an iterative algorithm is the scoring function. In this report three scoring functions are analysed: the sum-of-square-differences function s, a modified cubic function c, and a scoring function m derived from maximum likelihood considerations. The impact of these scoring functions on calculated amino acid distributions is demonstrated by an example of mutagenising a domain surrounding the active site serine of subtilisin-like proteases. At default weight settings of one for each amino acid, the new scoring function m is superior to functions s and c in finding matches to a given amino acid population.  相似文献   

2.
SUMMARY: Sequence-structure alignments are a common means for protein structure prediction in the fields of fold recognition and homology modeling, and there is a broad variety of programs that provide such alignments based on sequence similarity, secondary structure or contact potentials. Nevertheless, finding the best sequence-structure alignment in a pool of alignments remains a difficult problem. QUASAR (quality of sequence-structure alignments ranking) provides a unifying framework for scoring sequence-structure alignments that aids finding well-performing combinations of well-known and custom-made scoring schemes. Those scoring functions can be benchmarked against widely accepted quality scores like MaxSub, TMScore, Touch and APDB, thus enabling users to test their own alignment scores against 'standard-of-truth' structure-based scores. Furthermore, individual score combinations can be optimized with respect to benchmark sets based on known structural relationships using QUASAR's in-built optimization routines.  相似文献   

3.
Taylor WR  Jonassen I 《Proteins》2004,56(2):222-234
A method (SPREK) was developed to evaluate the register of a sequence on a structure based on the matching of structural patterns against a library derived from the protein structure databank. The scores obtained were normalized against random background distributions derived from sequence shuffling and permutation methods. 'Random' structures were also used to evaluate the effectiveness of the method. These were generated by a simple random-walk and a more sophisticated structure prediction method that produced protein-like folds. For comparison with other methods, the performance of the method was assessed using collections of models including decoys and models from the CASP-5 exercise. The performance of SPREK on the decoy models was equivalent to (and sometimes better than) those obtained with more complex approaches. An exception was the two smallest proteins, for which SPREK did not perform well due to a lack of patterns. Using the best parameter combination from trials on decoy models, the CASP models of intermediate difficulty were evaluated by SPREK and the quality of the top scoring model was evaluated by its CASP ranking. Of the 14 targets in this class, half lie in the top 10% (out of around 140 models for each target). The two worst rankings resulted from the selection by our method of a well-packed model that was based on the wrong fold. Of the other poor rankings, one was the smallest protein and the others were the four largest (all over 250 residues).  相似文献   

4.
Multiple sequence alignment plays an important role in molecular sequence analysis. An alignment is the arrangement of two (pairwise alignment) or more (multiple alignment) sequences of 'residues' (nucleotides or amino acids) that maximizes the similarities between them. Algorithmically, the problem consists of opening and extending gaps in the sequences to maximize an objective function (measurement of similarity). A simple genetic algorithm was developed and implemented in the software MSA-GA. Genetic algorithms, a class of evolutionary algorithms, are well suited for problems of this nature since residues and gaps are discrete units. An evolutionary algorithm cannot compete in terms of speed with progressive alignment methods but it has the advantage of being able to correct for initially misaligned sequences; which is not possible with the progressive method. This was shown using the BaliBase benchmark, where Clustal-W alignments were used to seed the initial population in MSA-GA, improving outcome. Alignment scoring functions still constitute an open field of research, and it is important to develop methods that simplify the testing of new functions. A general evolutionary framework for testing and implementing different scoring functions was developed. The results show that a simple genetic algorithm is capable of optimizing an alignment without the need of the excessively complex operators used in prior study. The clear distinction between objective function and genetic algorithms used in MSA-GA makes extending and/or replacing objective functions a trivial task.  相似文献   

5.
BCL::Align is a multiple sequence alignment tool that utilizes the dynamic programming method in combination with a customizable scoring function for sequence alignment and fold recognition. The scoring function is a weighted sum of the traditional PAM and BLOSUM scoring matrices, position-specific scoring matrices output by PSI-BLAST, secondary structure predicted by a variety of methods, chemical properties, and gap penalties. By adjusting the weights, the method can be tailored for fold recognition or sequence alignment tasks at different levels of sequence identity. A Monte Carlo algorithm was used to determine optimized weight sets for sequence alignment and fold recognition that most accurately reproduced the SABmark reference alignment test set. In an evaluation of sequence alignment performance, BCL::Align ranked best in alignment accuracy (Cline score of 22.90 for sequences in the Twilight Zone) when compared with Align-m, ClustalW, T-Coffee, and MUSCLE. ROC curve analysis indicates BCL::Align's ability to correctly recognize protein folds with over 80% accuracy. The flexibility of the program allows it to be optimized for specific classes of proteins (e.g. membrane proteins) or fold families (e.g. TIM-barrel proteins). BCL::Align is free for academic use and available online at http://www.meilerlab.org/.  相似文献   

6.
Dong E  Smith J  Heinze S  Alexander N  Meiler J 《Gene》2008,422(1-2):41-46
BCL::Align is a multiple sequence alignment tool that utilizes the dynamic programming method in combination with a customizable scoring function for sequence alignment and fold recognition. The scoring function is a weighted sum of the traditional PAM and BLOSUM scoring matrices, position-specific scoring matrices output by PSI-BLAST, secondary structure predicted by a variety of methods, chemical properties, and gap penalties. By adjusting the weights, the method can be tailored for fold recognition or sequence alignment tasks at different levels of sequence identity. A Monte Carlo algorithm was used to determine optimized weight sets for sequence alignment and fold recognition that most accurately reproduced the SABmark reference alignment test set. In an evaluation of sequence alignment performance, BCL::Align ranked best in alignment accuracy (Cline score of 22.90 for sequences in the Twilight Zone) when compared with Align-m, ClustalW, T-Coffee, and MUSCLE. ROC curve analysis indicates BCL::Align's ability to correctly recognize protein folds with over 80% accuracy. The flexibility of the program allows it to be optimized for specific classes of proteins (e.g. membrane proteins) or fold families (e.g. TIM-barrel proteins). BCL::Align is free for academic use and available online at http://www.meilerlab.org/.  相似文献   

7.
Pearlman DA  Rao BG  Charifson P 《Proteins》2008,71(3):1519-1538
We demonstrate a new approach to the development of scoring functions through the formulation and parameterization of a new function, which can be used both for rapidly ranking the binding of ligands to proteins and for estimating relative aqueous molecular solubilities. The intent of this work is to introduce a new paradigm for creation of scoring functions, wherein we impose the following criteria upon the function: (1) simple; (2) intuitive; (3) requires no postparameterization tweaking; (4) can be applied (without reparameterization) to multiple target systems; and (5) can be rapidly evaluated for any potential ligand. Following these criteria, a new function, FURSMASA (function for rapid scoring using an MD-averaged grid and the accessible surface area) has been developed. Three novel features of the function include: (1) use of an MD-averaged potential energy grid for ligand-protein interactions, rather than a simple static grid; (2) inclusion of a term that depends on the change in the solvent-accessible surface area changes on an atomic (not molecular) basis; and (3) use of the recently derived predictive index (PI) target when optimizing the function, which focuses the function on its intended purpose of relative ranking. A genetic algorithm is used to optimize the function against test data sets that include ligands for the following proteins: IMPDH, p38, gyrase B, HIV-1, and TACE, as well as the Syracuse Research solubility database. We find that the function is predictive, and can simultaneously fit all the test data sets with cross-validated predictive indices ranging from 0.68 to 0.82. As a test of the ability of this function to predict binding for systems not in the training set, the resulting fitted FURSAMA function is then applied to 23 ligands of the COX-2 enzyme. Comparing the results for COX-2 against those obtained using a variety of well-known rapid scoring functions demonstrates that FURSMASA outperforms all of them in terms of the PI and correlation coefficient. We also find that the FURSAMA function is able to reliably predict the water solubility for 1032 compounds from the Syracuse Research solubility database with a cross-correlated PI of 0.84 and a correlation coefficient R(2) of 0.69. This prediction, which is based solely on a term derived from the atom-based solvent-accessible surface areas, compares favorably with the best prediction methods in the literature, most of which are more complex and/or require experimental data. Finally, as a rigorous test of the applicability to database screening, we apply FURSMASA to large active/decoy ligand databases for IMPDH (400 actives vs. 10,000 decoys), p38 (502 actives vs. 10,000 decoys), and HIV (787 actives vs. 10,000 decoys) used in earlier work to critically evaluate many popular scoring functions, and find that FURSMASA performs surprisingly well for IMPDH and HIV.  相似文献   

8.
Comparison of methods for searching protein sequence databases.   总被引:12,自引:2,他引:10       下载免费PDF全文
We have compared commonly used sequence comparison algorithms, scoring matrices, and gap penalties using a method that identifies statistically significant differences in performance. Search sensitivity with either the Smith-Waterman algorithm or FASTA is significantly improved by using modern scoring matrices, such as BLOSUM45-55, and optimized gap penalties instead of the conventional PAM250 matrix. More dramatic improvement can be obtained by scaling similarity scores by the logarithm of the length of the library sequence (In()-scaling). With the best modern scoring matrix (BLOSUM55 or JO93) and optimal gap penalties (-12 for the first residue in the gap and -2 for additional residues), Smith-Waterman and FASTA performed significantly better than BLASTP. With In()-scaling and optimal scoring matrices (BLOSUM45 or Gonnet92) and gap penalties (-12, -1), the rigorous Smith-Waterman algorithm performs better than either BLASTP and FASTA, although with the Gonnet92 matrix the difference with FASTA was not significant. Ln()-scaling performed better than normalization based on other simple functions of library sequence length. Ln()-scaling also performed better than scores based on normalized variance, but the differences were not statistically significant for the BLOSUM50 and Gonnet92 matrices. Optimal scoring matrices and gap penalties are reported for Smith-Waterman and FASTA, using conventional or In()-scaled similarity scores. Searches with no penalty for gap extension, or no penalty for gap opening, or an infinite penalty for gaps performed significantly worse than the best methods. Differences in performance between FASTA and Smith-Waterman were not significant when partial query sequences were used. However, the best performance with complete query sequences was obtained with the Smith-Waterman algorithm and In()-scaling.  相似文献   

9.

Background

A profile-comparison method with position-specific scoring matrix (PSSM) is among the most accurate alignment methods. Currently, cosine similarity and correlation coefficients are used as scoring functions of dynamic programming to calculate similarity between PSSMs. However, it is unclear whether these functions are optimal for profile alignment methods. By definition, these functions cannot capture nonlinear relationships between profiles. Therefore, we attempted to discover a novel scoring function, which was more suitable for the profile-comparison method than existing functions, using neural networks.

Results

Although neural networks required derivative-of-cost functions, the problem being addressed in this study lacked them. Therefore, we implemented a novel derivative-free neural network by combining a conventional neural network with an evolutionary strategy optimization method used as a solver. Using this novel neural network system, we optimized the scoring function to align remote sequence pairs. Our results showed that the pairwise-profile aligner using the novel scoring function significantly improved both alignment sensitivity and precision relative to aligners using existing functions.

Conclusions

We developed and implemented a novel derivative-free neural network and aligner (Nepal) for optimizing sequence alignments. Nepal improved alignment quality by adapting to remote sequence alignments and increasing the expressiveness of similarity scores. Additionally, this novel scoring function can be realized using a simple matrix operation and easily incorporated into other aligners. Moreover our scoring function could potentially improve the performance of homology detection and/or multiple-sequence alignment of remote homologous sequences. The goal of the study was to provide a novel scoring function for profile alignment method and develop a novel learning system capable of addressing derivative-free problems. Our system is capable of optimizing the performance of other sophisticated methods and solving problems without derivative-of-cost functions, which do not always exist in practical problems. Our results demonstrated the usefulness of this optimization method for derivative-free problems.
  相似文献   

10.

Background

Detection and quantification of cyclic alternating patterns (CAP) components has the potential to serve as a disease bio-marker. Few methods exist to discriminate all the different CAP components, they do not present appropriate sensitivities, and often they are evaluated based on accuracy (AC) that is not an appropriate measure for imbalanced datasets.

Methods

We describe a knowledge discovery methodology in data (KDD) aiming the development of automatic CAP scoring approaches. Automatic CAP scoring was faced from two perspectives: the binary distinction between A-phases and B-phases, and also for multi-class classification of the different CAP components. The most important KDD stages are: extraction of 55 features, feature ranking/transformation, and classification. Classification is performed by (i) support vector machine (SVM), (ii) k-nearest neighbors (k-NN), and (iii) discriminant analysis. We report the weighted accuracy (WAC) that accounts for class imbalance.

Results

The study includes 30 subjects from the CAP Sleep Database of Physionet. The best alternative for the discrimination of the different A-phase subtypes involved feature ranking by the minimum redundancy maximum relevance algorithm (mRMR) and classification by SVM, with a WAC of 51%. Concerning the binary discrimination between A-phases and B-phases, k-NN with mRMR ranking achieved the best WAC of 80%.

Conclusions

We describe a KDD that, to the best of our knowledge, was for the first time applied to CAP scoring. In particular, the fully discrimination of the three different A-phases subtypes is a new perspective, since past works tried multi-class approaches but based on grouping of different sub-types. We also considered the weighted accuracy, in addition to simple accuracy, resulting in a more trustworthy performance assessment. Globally, better subtype sensitivities than other published approaches were achieved.
  相似文献   

11.
MOTIVATION: Tandem mass spectrometry (MS/MS) identifies protein sequences using database search engines, at the core of which is a score that measures the similarity between peptide MS/MS spectra and a protein sequence database. The TANDEM application was developed as a freely available database search engine for the proteomics research community. To extend TANDEM as a platform for further research on developing improved database scoring methods, we modified the software to allow users to redefine the scoring function and replace the native TANDEM scoring function while leaving the remaining core application intact. Redefinition is performed at run time so multiple scoring functions are available to be selected and applied from a single search engine binary. We introduce the implementation of the pluggable scoring algorithm and also provide implementations of two TANDEM compatible scoring functions, one previously described scoring function compatible with PeptideProphet and one very simple scoring function that quantitative researchers may use to begin their development. This extension builds on the open-source TANDEM project and will facilitate research into and dissemination of novel algorithms for matching MS/MS spectra to peptide sequences. The pluggable scoring schema is also compatible with related search applications P3 and Hunter, which are part of the X! suite of database matching algorithms. The pluggable scores and the X! suite of applications are all written in C++. AVAILABILITY: Source code for the scoring functions is available from http://proteomics.fhcrc.org  相似文献   

12.
To find selective and predictive tests in texture profiling, a series of 20 tests and 2 texture profiles were submitted to 25 subjects. Selection was carried out according to ranking, scoring and a texture property knowledge questionnaire. Two profiles were then done on 5 Bolognese sauce and 8 rice samples. Assessors were assessed by Spearman correlation coefficients for ranking tests, F values for scoring, average square canonical correlation coefficients for measuring the dimensionality of individual sample space, product discrimination and response repeatability for both Bolognese sauce and rice samples.
Characterization test results showed that subject ability varied widely according to the test and the profile. Only one significant relationship between the texture property knowledge test and rice profile performances was found. More tests were successfully related to one or several texture attributes of both profiles. The ability to complete a complex profile could be discerned, albeit with difficulty, through simple selection tests.  相似文献   

13.
A structure-based method for protein sequence alignment   总被引:1,自引:0,他引:1  
MOTIVATION: With the continuing rapid growth of protein sequence data, protein sequence comparison methods have become the most widely used tools of bioinformatics. Among these methods are those that use position-specific scoring matrices (PSSMs) to describe protein families. PSSMs can capture information about conserved patterns within families, which can be used to increase the sensitivity of searches for related sequences. Certain types of structural information, however, are not generally captured by PSSM search methods. Here we introduce a program, Structure-based ALignment TOol (SALTO), that aligns protein query sequences to PSSMs using rules for placing and scoring gaps that are consistent with the conserved regions of domain alignments from NCBI's Conserved Domain Database. RESULTS: In most cases, the alignment scores obtained using the local alignment version follow an extreme value distribution. SALTO's performance in finding related sequences and producing accurate alignments is similar to or better than that of IMPALA; one advantage of SALTO is that it imposes an explicit gapping model on each protein family. AVAILABILITY: A stand-alone version of the program that can generate global or local alignments is available by ftp distribution (ftp://ftp.ncbi.nih.gov/pub/SALTO/), and has been incorporated to Cn3D structure/alignment viewer. CONTACT: bryant@ncbi.nlm.nih.gov.  相似文献   

14.
Danielson ML  Lill MA 《Proteins》2012,80(1):246-260
Flexible loop regions play a critical role in the biological function of many proteins and have been shown to be involved in ligand binding. In the context of structure-based drug design, using or predicting an incorrect loop configuration can be detrimental to the study if the loop is capable of interacting with the ligand. Three protein systems, each with at least one flexible loop region in close proximity to the known binding site, were selected for loop prediction using the CorLps program; a six residue loop region from phosphoribosylglycinamide formyltransferase (GART), two nine residue loop regions from cytochrome P450 (CYP) 119, and an 11 residue loop region from enolase were selected for loop prediction. The results of this study indicate that the statistically based DFIRE scoring function implemented in the CorLps program did not accurately rank native-like predicted loop configurations in any protein system. In an attempt to improve the ranking of the native-like predicted loop configurations, the MM/GBSA and the optimized MM/GBSA-dsr scoring functions were used to re-rank the predicted loops with and without bound ligand. In general, single snapshot MM/GBSA scoring provided the best ranking of native-like loop configurations. Based on the scoring function analyses presented, the optimal ranking of native-like loop configurations is still a difficult challenge and the choice of the "best" scoring function appears to be system dependent.  相似文献   

15.
Martin O  Schomburg D 《Proteins》2008,70(4):1367-1378
Biological systems and processes rely on a complex network of molecular interactions. While the association of biological macromolecules is a fundamental biochemical phenomenon crucial for the understanding of complex living systems, protein-protein docking methods aim for the computational prediction of protein complexes from individual subunits. Docking algorithms generally produce large numbers of putative protein complexes with only few of these conformations resembling the native complex structure within an acceptable degree of structural similarity. A major challenge in the field of docking is to extract near-native structure(s) out of the large pool of solutions, the so called scoring or ranking problem. A series of structural, chemical, biological and physical properties are used in this work to classify docked protein-protein complexes. These properties include specialized energy functions, evolutionary relationship, class specific residue interface propensities, gap volume, buried surface area, empiric pair potentials on residue and atom level as well as measures for the tightness of fit. Efficient comprehensive scoring functions have been developed using probabilistic Support Vector Machines in combination with this array of properties on the largest currently available protein-protein docking benchmark. The established classifiers are shown to be specific for certain types of protein-protein complexes and are able to detect near-native complex conformations from large sets of decoys with high sensitivity. Using classification probabilities the ranking of near-native structures was drastically improved, leading to a significant enrichment of near-native complex conformations within the top ranks. It could be shown that the developed schemes outperform five other previously published scoring functions.  相似文献   

16.
In this article, we address the problem of designing a string with optimal complementarity properties with respect to another given string according to a given criterion. The motivation comes from a drug design application, in which the complementarity between two sequences (proteins) is measured according to the values of the hydropathic coefficients associated with the sequence elements (amino acids). We present heuristic and exact optimization algorithms, and we report on some computational experiments on amino peptides taken from Semaphorin and human Interleukin-1β, which have already been investigated in the literature using heuristic algorithms. With our techniques, we proved the optimality of a known solution for Semaphorin-3A, and we discovered several other optimal and near-optimal solutions in a short computing time; we also found in fractions of a second an optimal solution for human interleukin-1β, whose complementary value is one order of magnitude better than previously known ones. The source code of a prototype C++ implementation of our algorithms is freely available for noncommercial use on the web. As a main result, we showed that in this context mathematical programming methods are more successful than heuristics, such as simulated annealing. Our algorithm unfolds its potential, especially when different measures could be used for scoring peptides, and is able to provide not only a single optimal solution, but a ranking of provable good ones; this ranking can then be used by biologists as a starting basis for further refinements, simulations, or in vitro experiments.  相似文献   

17.
MOTIVATION: Pairwise local sequence alignment is commonly used to search data bases for sequences related to some query sequence. Alignments are obtained using a scoring matrix that takes into account the different frequencies of occurrence of the various types of amino acid substitutions. Software like BLAST provides the user with a set of scoring matrices available to choose from, and in the literature it is sometimes recommended to try several scoring matrices on the sequences of interest. The significance of an alignment is usually assessed by looking at E-values and p-values. While sequence lengths and data base sizes enter the standard calculations of significance, it is much less common to take the use of several scoring matrices on the same sequences into account. Altschul proposed corrections of the p-value that account for the simultaneous use of an infinite number of PAM matrices. Here we consider the more realistic situation where the user may choose from a finite set of popular PAM and BLOSUM matrices, in particular the ones available in BLAST. It turns out that the significance of a result can be considerably overestimated, if a set of substitution matrices is used in an alignment problem and the most significant alignment is then quoted. RESULTS: Based on extensive simulations, we study the multiple testing problem that occurs when several scoring matrices for local sequence alignment are used. We consider a simple Bonferroni correction of the p-values and investigate its accuracy. Finally, we propose a more accurate correction based on extreme value distributions fitted to the maximum of the normalized scores obtained from different scoring matrices. For various sets of matrices we provide correction factors which can be easily applied to adjust p- and E-values reported by software packages.  相似文献   

18.
One of the challenges faced by all molecular docking algorithms is that of being able to discriminate between correct results and false positives obtained in the simulations. The scoring or energetic function is the one that must fulfill this task. Several scoring functions have been developed and new methodologies are still under development. In this paper, we have employed the Compactly Supported Radial Basis Functions (CSRBF) to create analytical representations of molecular surfaces, which are then included as key components of a new scoring function for molecular docking. The method proposed here achieves a better ranking of the solutions produced by the program DOCK, as compared with the ranking done by its native contact scoring function. Our new analytical scoring function based on CSRBF can be easily included in different available docking programs as a reliable and quick filter in large-scale docking simulations.  相似文献   

19.
Since its introduction in 1959 the ability of the classical Mantel-Haenszel (M–H) procedure for combining the odds ratios of a set of I 2 × 2 tables has led to its use also in stratified or multicentre type clinical trials. A familiar application is the M–H logrank test in survival analysis. An extension of the M–H procedure covering the case of 2 × K contingency tables (MANTEL , 1963) with ordered levels retains the essential property of pooling the results of I homogeneous tables (i.e. in absence of qualitative interactions). The assignment of some score for the K columns of a table is essential for the use of the method (in comparing 2 treatments). Some possibilities of score assignment are discussed: for clinical outcome variables such as the degree of severity of a disease, pain and so on, the score is at hand in a natural way. A less well-known type of scoring consists in ranking the observations of a continuous variable, leading to cell sizes of 1 or 0. In this case, however, if equidistant ranking was used, the E–M–H procedure appears as an extension of Wilcoxon's rank sum test and represents a powerful non-parametric approach in stratified or multicentre type designs with non normally distributed outcome variables. The results of some Monte-Carlo simulations for 2 possible equidistant ranking procedures are presented, which indicate only a moderate gain in power as compared to Wilcoxon's rank sum test under the common situation of centre effects not exceeding treatment effects. Use of the E–M–H pro?edure is also recommended as a simple method to overcome the potential bias due to unequally distributed prognostic factors among treatment groups.  相似文献   

20.
Several simple scoring methods were examined for 2 series of beta-secretase (BACE-1) inhibitors to identify a docking/scoring protocol which could be used to design BACE-1 inhibitors in a drug discovery program. Both the PLP1 score and MMFFs interaction energy (E(inter)) performed as well or better than more computationally intensive methods for a set of substrate-based inhibitors, while the latter performed well for both sets of inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号