首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alzheimer’s disease (AD) is the most common neurodegenerative disease with multifactorial pathologies including Aβ containing senile plaques and neurofibrillary tangles (NFT) consisted of aggregated Tau. Most of the AD patients are sporadic and the familial mutation hereditary patients are composed only 1% of all cases. However, the current AD mouse models employ mutated APP, PS1, or even Tau mutant, in order to display a portion of AD pathologies. Delta-secretase (legumain, or asparaginyl endopeptidase, AEP) simultaneously cleaves both APP and Tau and augments Aβ production and Tau hyperphosphorylation and aggregation, contributing to AD pathogenesis. Here we show that δ-secretase is sufficient to promote prominent AD pathologies in wild-type hAPP/hMAPT double transgenic mice. We crossed hAPP l5 mice and hMAPT mice to generate double transgenic mouse model carrying both human wild-type APP and Tau. Compared to the single transgenic parents, these double transgenic mice demonstrated AD-related pathologies in one-year-old hAPP/hMAPT mice. Notably, overexpression of δ-secretase in hAPP/hMAPT double-transgenic mice evidently accelerated enormous senile plaques and NFT, associated with prominent synaptic defects and cognitive deficits. Hence, δ-secretase facilitates AD pathogenesis independent of any patient-derived mutation.Subject terms: Alzheimer''s disease, Neurological disorders  相似文献   

2.
Neurotoxic β-amyloid (Aβ) peptides participate in Alzheimer’s disease (AD); therefore, reduction of Aβ generated from APP may provide a therapeutic approach for AD. Gene knockout studies in transgenic mice producing human Aβ may identify targets for reducing Aβ. This study shows that knockout of the cathepsin B gene in mice expressing human wild-type APP (hAPPwt) results in substantial decreases in brain Aβ40 and Aβ42 by 67% and decreases in levels of the C-terminal β-secretase fragment (CTFβ) derived from APP. In contrast, knockout of cathepsin B in mice expressing hAPP with the rare Swedish (Swe) and Indiana (Ind) mutations had no effect on Aβ. The difference in reduction of Aβ in hAPPwt mice, but not in hAPPSwe/Ind mice, shows that the transgenic model can affect cathepsin B gene knockout results. Since most AD patients express hAPPwt, these data validate cathepsin B as a target for development of inhibitors to lower Aβ in AD.  相似文献   

3.
Wang CY  Wang T  Zheng W  Zhao BL  Danscher G  Chen YH  Wang ZY 《PloS one》2010,5(12):e15349

Background

Abnormal zinc homeostasis is involved in β-amyloid (Aβ) plaque formation and, therefore, the zinc load is a contributing factor in Alzheimer''s disease (AD). However, the involvement of zinc in amyloid precursor protein (APP) processing and Aβ deposition has not been well established in AD animal models in vivo.

Methodology/Principal Findings

In the present study, APP and presenilin 1 (PS1) double transgenic mice were treated with a high dose of zinc (20 mg/ml ZnSO4 in drinking water). This zinc treatment increased APP expression, enhanced amyloidogenic APP cleavage and Aβ deposition, and impaired spatial learning and memory in the transgenic mice. We further examined the effects of zinc overload on APP processing in SHSY-5Y cells overexpressing human APPsw. The zinc enhancement of APP expression and cleavage was further confirmed in vitro.

Conclusions/Significance

The present data indicate that excess zinc exposure could be a risk factor for AD pathological processes, and alteration of zinc homeostasis is a potential strategy for the prevention and treatment of AD.  相似文献   

4.
Epidemiological and biochemical data suggest a link between the cholesterol metabolism, the amyloid precursor protein (APP) processing and the increased cerebral beta-amyloid (Abeta) deposition in Alzheimer's disease (AD). The individual and combined effects of a high-cholesterol (HC) diet and the overexpression of the human apoB-100 gene were therefore examined on the cerebral expression and processing of APP in homozygous apoB-100 transgenic mice [Tg (apoB(+/+))], a validated model of atherosclerosis. When fed with 2% cholesterol for 17 weeks, only the wild-type mice exhibited significantly increased APP695 (123%) and APP770 (138%) mRNA levels in the cortex. The HC diet-induced hypercholesterolemia significantly increased the APP isoform levels in the membrane-bound fraction, not only in the wild-type animals (114%), but also in the Tg apoB(+/+) group (171%). The overexpression of human apoB-100 gene by the liver alone reduced the brain APP isoform levels in the membrane-bound fraction (78%), whereas the levels were increased by the combined effect of HC and the overexpression of the human apoB-100 gene (134%). The protein kinase C and beta-secretase protein levels were not altered by the individual or combined effects of these two factors. Our data indicate that the two atherogenic factors, the HC diet and the overexpression of the human apoB-100 gene by the liver, could exert different effects on the processing and expression of APP in the mice brain.  相似文献   

5.
Recent studies indicate that the Tg2576 transgenic mouse model of Alzheimer's disease [tg(hAPP)] demonstrates disturbances in plasma glucose and neuroendocrine function reminiscent of Alzheimer's disease (AD). Alterations in any one of these systems can have a profound effect on hepatic cytochrome P450 (CYP) expression. Additionally, the recent discovery that amyloid beta 1-42 can induce the expression of CYP reductase in neuronal cultures further suggests that hepatic CYP-related metabolism may be affected by the expression of mutant human amyloid precursor protein in these tg(hAPP) mice. Therefore, the current study was conducted to investigate the activity and protein content of several CYP isoforms in the livers and kidneys of aged (20-month-old) tg(hAPP) mice. tg(hAPP) mice exhibit significant elevations in hepatic CYP2B, CYP2E1-, CYP3A- and CYP4A-associated activities and CYP4A immunoreactive protein compared with wild-type. In contrast to the liver, a significant depression in renal CYP2E1- and CYP4A-associated activities were demonstrated in tg(hAPP) mice. The presence of the mutant hAPP protein was detected in the brain, kidney and livers of tg(hAPP) mice.  相似文献   

6.
Homozygous and heterozygous transgenic mice of the Tg152 line overexpressing the human copper/zinc superoxide dismutase (hSOD-1) were rapidly differentiated by fluorescencein situ hybridization (FISH) using intérphase lymphocyte nuclei. We have devised a simple and fast method for preparing interphase nuclei with very small quantities of whole mouse blood, avoiding several steps of the classical FISH technique. Lymphocyte separation and cell culture were not required. This technique provides an excellent tool for the unambiguous detection of homozygous and heterozygous transgenic mice in a litter. It can be used to check young animals since 2 l of whole blood is sufficient. We also show that in this transgenic line numerous copies of the hSOD-1 transgene are. integrated at a single autosomal locus, in tandem head-to-tail organization  相似文献   

7.
Amyloid-beta peptides (Abeta) are widely presumed to play a causal role in Alzheimer disease. Release of Abeta from the amyloid precursor protein (APP) requires proteolysis by the beta-site APP-cleaving enzyme (BACE1). Although increased BACE1 activity in Alzheimer disease brains and human (h) BACE1 transgenic (tg) mice results in altered APP cleavage, the contribution of these molecular alterations to neurodegeneration is unclear. We therefore used the murine Thy1 promoter to express high levels of hBACE1, with or without hAPP, in neurons of tg mice. Compared with hAPP mice, hBACE1/hAPP doubly tg mice had increased levels of APP C-terminal fragments (C89, C83) and decreased levels of full-length APP and Abeta. In contrast to non-tg controls and hAPP mice, hBACE1 mice and hBACE1/hAPP mice showed degeneration of neurons in the neocortex and hippocampus and degradation of myelin. Neurological deficits were also more severe in hBACE1 and hBACE1/hAPP mice than in hAPP mice. These results demonstrate that high levels of BACE1 activity are sufficient to elicit neurodegeneration and neurological decline in vivo. This pathogenic pathway involves the accumulation of APP C-terminal fragments but does not depend on increased production of human Abeta. Thus, inhibiting BACE1 may block not only Abeta-dependent but also Abeta-independent pathogenic mechanisms.  相似文献   

8.
The incidence of Alzheimer's disease (AD) is greater in women than men at any age, as is the development of amyloid pathology in several transgenic mouse models of AD. Due to the involvement of metals in AD pathogenesis, variations between the sexes in metal metabolism may contribute to the sex difference in AD risk. In this study, we investigated sex differences in brain metal levels across the lifespan in mice of two different background strains, as well as in mice overexpressing the human amyloid precursor protein (APP) and amyloid-beta protein (Abeta). We demonstrate consistently lower Cu and higher Mn levels in females compared with males at any age studied. The sex differences in Cu and Mn levels are independent of APP/Abeta expression. AD brain exhibits decreased Cu and increased Mn levels, as do transgenic mice overexpressing APP or Abeta. The age-dependent elevations of Cu, Fe and Co levels were found to be significantly greater in mice of B6/SJL background compared with B6/DBA. If depleting Cu and/or rising Mn levels contribute to AD pathogenesis, natural sex differences in these brain metal levels may contribute to the increased propensity of females to develop AD.  相似文献   

9.
Amyloid-beta (Abeta) the primary component of the senile plaques found in Alzheimer's disease (AD) is generated by the rate-limiting cleavage of amyloid precursor protein (APP) by beta-secretase followed by gamma-secretase cleavage. Identification of the primary beta-secretase gene, BACE1, provides a unique opportunity to examine the role this unique aspartyl protease plays in altering Abeta metabolism and deposition that occurs in AD. The current experiments seek to examine how modulating beta-secretase expression and activity alters APP processing and Abeta metabolism in vivo. Genomic-based BACE1 transgenic mice were generated that overexpress human BACE1 mRNA and protein. The highest expressing BACE1 transgenic line was mated to transgenic mice containing human APP transgenes. Our biochemical and histochemical studies demonstrate that mice overexpressing both BACE1 and APP show specific alterations in APP processing and age-dependent Abeta deposition. We observed elevated levels of Abeta isoforms as well as significant increases of Abeta deposits in these double transgenic animals. In particular, the double transgenics exhibited a unique cortical deposition profile, which is consistent with a significant increase of BACE1 expression in the cortex relative to other brain regions. Elevated BACE1 expression coupled with increased deposition provides functional evidence for beta-secretase as a primary effector in regional amyloid deposition in the AD brain. Our studies demonstrate, for the first time, that modulation of BACE1 activity may play a significant role in AD pathogenesis in vivo.  相似文献   

10.
The accumulation of beta-amyloid protein in specific brain regions is a central pathological feature of Alzheimer's disease (AD). The 4 kd beta-amyloid protein derives from a larger amyloid precursor protein (APP) by as yet unknown mechanisms. In the absence of a laboratory animal model of AD, transgenic mice expressing various APP gene products may provide new insights into the relationship between APP and beta-amyloid formation and the pathogenesis of AD. beta-amyloid accumulation in AD brain may result from interactions between APP and other molecules. Such interactions are likely to be developmentally regulated and tissue-specific. A transgenic mouse model of AD, therefore, would aim for APP transgene expression that mimics the endogenous APP gene. As an initial step in developing an animal model, we have identified a 4.5 kb DNA fragment from the 5' end of the human APP gene, which mediates neuron-specific gene expression in the CNS of transgenic mice, using E. coli lacZ as a reporter gene. Detectable levels of transgene expression are found in most neurons but not in glial and vascular endothelial cells. The expression pattern of this reporter gene closely resembles the distribution of endogenous APP mRNA in both the human and mouse CNS.  相似文献   

11.
Many proteins suspected of causing neurodegenerative diseases exist in diverse assembly states. For most, it is unclear whether shifts from one state to another would be helpful or harmful. We used mutagenesis to change the assembly state of Alzheimer disease (AD)-associated amyloid-beta (Abeta) peptides. In vitro, the "Arctic" mutation (AbetaE22G) accelerated Abeta fibrillization but decreased the abundance of nonfibrillar Abeta assemblies, compared with wild-type Abeta. In human amyloid precursor protein (hAPP) transgenic mice carrying mutations adjacent to Abeta that increase Abeta production, addition of the Arctic mutation markedly enhanced the formation of neuritic amyloid plaques but reduced the relative abundance of a specific nonfibrillar Abeta assembly (Abeta*56). Mice overexpressing Arctic mutant or wild-type Abeta had similar behavioral and neuronal deficits when they were matched for Abeta*56 levels but had vastly different plaque loads. Thus, Abeta*56 is a likelier determinant of functional deficits in hAPP mice than fibrillar Abeta deposits. Therapeutic interventions that reduce Abeta fibrils at the cost of augmenting nonfibrillar Abeta assemblies could be harmful.  相似文献   

12.
β-amyloid peptide (Aβ) deposition derived from sequential cleavage of the amyloid precursor protein (APP) through the amyloidogenic pathway is an important characteristic feature of Alzheimer's disease (AD). During this process, cellular trafficking plays a crucial role. A large Sec7-domain containing ADP-ribosylation factor guanine nucleotide exchange factor (ARF-GEF), Golgi brefeldin A resistance factor 1 (GBF1) has been reported to initiate the ADP-ribosylation factor (Arf) activation cascade at trans-Golgi network, which plays a crucial function at the endoplasmic reticulum-Golgi interface. In this study, we investigated the role of GBF1 in APP transmembrane transport and Aβ formation. Using APP/PS1 (presenilin 1) overexpressing transgenic mice, we demonstrate that GBF1 has upregulated the expression of APP, indicating a role for GBF1 in APP physiological process. Knocking down of GBF1 using small interfering has significantly increased the intracellular but not the surface expression of APP. In contrast, overexpression of wild-type (WT) and guanine nucleotide exchange factor (GEF) in the activated form but not the GEF deficient mutation induced continuous activation of GBF1, which subsequently increased the surface level of APP. Interestingly, inhibition of GBF1 by c(BFA) also impaired APP trafficking and induced endoplasmic reticulum (ER) stress in SH-SY5Y cells. Our results thus for identified the role of GBF1 in APP trafficking and cleavage, and provide evidence for GBF1 as a possible therapeutic target in AD.  相似文献   

13.
It is reported that chitinase1 increases in Alzheimer’s disease (AD). However, the alteration of chitinase1 in the progress of AD is still unclear. Thus, we designed the present study to detect chitinase1 level in different stages of APP/PS1 double transgenic mice. Experimental models were APP/PS1 double transgenic mice with 4, 12 and 22 months. Cognitive function was detected by Morris water maze test in APP/PS1 mice as well as controls. ELISA and the quantitative RT-PCR were used to detect chitinase1 level in different groups. The study displayed that expression of chitinase1 gradually increased in a time-dependent manner in APP/PS1 mice, while there were no statistical differences among the wild-type mice in varies ages. Moreover, chitnase1 increased significantly in APP/PS1 mice aged 12 and 22 months compared with the age matched wild-type group, respectively. However, no difference of chitnase1 was found between 4 months-old APP/PS1 mice and wild-type mice. Comparing with the age matched wild type group, the consequences of mRNA on the increase in chitnase1 is in accordance with protein in APP/PS1 mice. Furthermore, Morris water maze showed that 4 months-old APP/PS1 mice have normal spatial learning and impaired spatial memory; both spatial learning and spatial memory in 12 and 22 months-old APP/PS1 mice were declined. Time-dependent increase of chitnase1 in APP/PS1 double transgenic mice indicates that the level of chitinase1 is associated with decline of cognition. Therefore, chitinase1 might be a biomarker of disease progression in AD.  相似文献   

14.

Background

Atypical expression of cell cycle regulatory proteins has been implicated in Alzheimer's disease (AD), but the molecular mechanisms by which they induce neurodegeneration are not well understood. We examined transgenic mice expressing human amyloid precursor protein (APP) and presenilin 1 (PS1) for changes in cell cycle regulatory proteins to determine whether there is a correlation between cell cycle activation and pathology development in AD.

Results

Our studies in the AD transgenic mice show significantly higher levels of cyclin E, cyclin D1, E2F1, and P-cdc2 in the cells in the vicinity of the plaques where maximum levels of Threonine 668 (Thr668)-phosphorylated APP accumulation was observed. This suggests that the cell cycle regulatory proteins might be influencing plaque pathology by affecting APP phosphorylation. Using neuroglioma cells overexpressing APP we demonstrate that phosphorylation of APP at Thr668 is mitosis-specific. Cells undergoing mitosis show altered cellular distribution and localization of P-APP at the centrosomes. Also, Thr668 phosphorylation in mitosis correlates with increased processing of APP to generate Aβ and the C-terminal fragment of APP, which is prevented by pharmacological inhibitors of the G1/S transition.

Conclusions

The data presented here suggests that cell cycle-dependent phosphorylation of APP may affect its normal cellular function. For example, association of P-APP with the centrosome may affect spindle assembly and cell cycle progression, further contributing to the development of pathology in AD. The experiments with G1/S inhibitors suggest that cell cycle inhibition may impede the development of Alzheimer's pathology by suppressing modification of βAPP, and thus may represent a novel approach to AD treatment. Finally, the cell cycle regulated phosphorylation and processing of APP into Aβ and the C-terminal fragment suggest that these proteins may have a normal function during mitosis.  相似文献   

15.
It has long been recognized that muscarinic acetylcholine receptors (mAChRs) are crucial for the control of cognitive processes, and drugs that activate mAChRs are helpful in ameliorating cognitive deficits of Alzheimer's disease (AD). On the other hand, GABAergic transmission in prefrontal cortex (PFC) plays a key role in "working memory" via controlling the timing of neuronal activity during cognitive operations. To test whether the muscarinic and gamma-aminobutyric acid (GABA) system are interconnected in normal cognition and dementia, we examined the muscarinic regulation of GABAergic transmission in PFC of an animal model of AD. Transgenic mice overexpressing a mutant gene for beta-amyloid precursor protein (APP) show behavioral and histopathological abnormalities resembling AD and, therefore, were used as an AD model. Application of the mAChR agonist carbachol significantly increased the spontaneous inhibitory postsynaptic current (sIPSC) frequency and amplitude in PFC pyramidal neurons from wild-type animals. In contrast, carbachol failed to increase the sIPSC amplitude in APP transgenic mice, whereas the carbachol-induced increase of the sIPSC frequency was not significantly changed in these mutants. Similar results were obtained in rat PFC slices pretreated with the beta-amyloid peptide (Abeta). Inhibiting protein kinase C (PKC) blocked the carbachol enhancement of sIPSC amplitudes, implicating the PKC dependence of this mAChR effect. In APP transgenic mice, carbachol failed to activate PKC despite the apparently normal expression of mAChRs. These results show that the muscarinic regulation of GABA transmission is impaired in the AD model, probably due to the Abeta-mediated interference of mAChR activation of PKC.  相似文献   

16.
Animal models of human diseases that accurately recapitulate clinical pathology are indispensable for understanding molecular mechanisms and advancing preclinical studies. The Alzheimer's disease (AD) research community has historically used first‐generation transgenic (Tg) mouse models that overexpress proteins linked to familial AD (FAD), mutant amyloid precursor protein (APP), or APP and presenilin (PS). These mice exhibit AD pathology, but the overexpression paradigm may cause additional phenotypes unrelated to AD. Second‐generation mouse models contain humanized sequences and clinical mutations in the endogenous mouse App gene. These mice show Aβ accumulation without phenotypes related to overexpression but are not yet a clinical recapitulation of human AD. In this review, we evaluate different APP mouse models of AD, and review recent studies using the second‐generation mice. We advise AD researchers to consider the comparative strengths and limitations of each model against the scientific and therapeutic goal of a prospective preclinical study.  相似文献   

17.
Oxidative stress is involved in the pathogenesis of neurodegeneration. Amyloid β (Aβ) oligomer as an intermediate of aggregates causes memory loss in Alzheimer's disease (AD). We have suggested that oxidative stress plays an important role in Aβ oligomerization and cognitive impairment using a human amyloid precursor protein (hAPP) transgenic AD mice lacking cytoplasmic superoxide dismutase (hAPP/Sod1-/-). Recently, clinical trials revealed inhibitors of Aβ production from hAPP as promising therapeutics, but the relationship between oxidative stress and Aβ metabolism remains unclear. Here we found that Sod1 deficiency enhanced β-cleavage of hAPP, suggesting that it increased Aβ production in hAPP/Sod1-/- mice. In contrast, Aβ degradation did not decrease in hAPP/Sod1-/- as compared with hAPP/Sod1+/+ mice. Furthermore, we successfully detected in situ superoxide radicals associated with increased protein carbonylation in hAPP/Sod1-/-. These results suggest that cytoplasmic oxidative stress is involved in Aβ production as well as aggregation during AD progression.  相似文献   

18.
The metabolism of the amyloid precursor protein (APP) and tau are central to the pathobiology of Alzheimer''s disease (AD). We have examined the in vivo turnover of APP, secreted APP (sAPP), Aβ and tau in the wild-type and Tg2576 mouse brain using cycloheximide to block protein synthesis. In spite of overexpression of APP in the Tg2576 mouse, APP is rapidly degraded, similar to the rapid turnover of the endogenous protein in the wild-type mouse. sAPP is cleared from the brain more slowly, particularly in the Tg2576 model where the half-life of both the endogenous murine and transgene-derived human sAPP is nearly doubled compared to wild-type mice. The important Aβ degrading enzymes neprilysin and IDE were found to be highly stable in the brain, and soluble Aβ40 and Aβ42 levels in both wild-type and Tg2576 mice rapidly declined following the depletion of APP. The cytoskeletal-associated protein tau was found to be highly stable in both wild-type and Tg2576 mice. Our findings unexpectedly show that of these various AD-relevant protein metabolites, sAPP turnover in the brain is the most different when comparing a wild-type mouse and a β-amyloid depositing, APP overexpressing transgenic model. Given the neurotrophic roles attributed to sAPP, the enhanced stability of sAPP in the β-amyloid depositing Tg2576 mice may represent a neuroprotective response.  相似文献   

19.
To date there is no effective therapy for Alzheimer disease (AD). High levels of circulating high density lipoprotein (HDL) and its main protein, apolipoprotein A-I (apoA-I), reduce the risk of cardiovascular disease. Clinical studies show that plasma HDL cholesterol and apoA-I levels are low in patients with AD. To investigate if increasing plasma apoA-I/HDL levels ameliorates AD-like memory deficits and amyloid-β (Aβ) deposition, we generated a line of triple transgenic (Tg) mice overexpressing mutant forms of amyloid-β precursor protein (APP) and presenilin 1 (PS1) as well as human apoA-I (AI). Here we show that APP/PS1/AI triple Tg mice have a 2-fold increase of plasma HDL cholesterol levels. When tested in the Morris water maze for spatial orientation abilities, whereas APP/PS1 mice develop age-related learning and memory deficits, APP/PS1/AI mice continue to perform normally during aging. Interestingly, no significant differences were found in the total level and deposition of Aβ in the brains of APP/PS1 and APP/PS1/AI mice, but cerebral amyloid angiopathy was reduced in APP/PS1/AI mice. Also, consistent with the anti-inflammatory properties of apoA-I/HDL, glial activation was reduced in the brain of APP/PS1/AI mice. In addition, Aβ-induced production of proinflammatory chemokines/cytokines was decreased in mouse organotypic hippocampal slice cultures expressing human apoA-I. Therefore, we conclude that overexpression of human apoA-I in the circulation prevents learning and memory deficits in APP/PS1 mice, partly by attenuating neuroinflammation and cerebral amyloid angiopathy. These findings suggest that elevating plasma apoA-I/HDL levels may be an effective approach to preserve cognitive function in patients with AD.  相似文献   

20.
Accumulation of amyloid beta peptide (Abeta) in brain is a hallmark of Alzheimer's disease (AD). Inhibition of beta-site amyloid precursor protein (APP)-cleaving enzyme-1 (BACE1), the enzyme that initiates Abeta production, and other Abeta-lowering strategies are commonly tested in transgenic mice overexpressing mutant APP. However, sporadic AD cases, which represent the majority of AD patients, are free from the mutation and do not necessarily have overproduction of APP. In addition, the commonly used Swedish mutant APP alters APP cleavage. Therefore, testing Abeta-lowering strategies in transgenic mice may not be optimal. In this study, we investigated the impact of BACE1 inhibition in non-transgenic mice with physiologically relevant APP expression. Existing Abeta ELISAs are either relatively insensitive to mouse Abeta or not specific to full-length Abeta. A newly developed ELISA detected a significant reduction of full-length soluble Abeta 1-40 in mice with the BACE1 homozygous gene deletion or BACE1 inhibitor treatment, while the level of x-40 Abeta was moderately reduced due to detection of non-full-length Abeta and compensatory activation of alpha-secretase. These results confirmed the feasibility of Abeta reduction through BACE1 inhibition under physiological conditions. Studies using our new ELISA in non-transgenic mice provide more accurate evaluation of Abeta-reducing strategies than was previously feasible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号