首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) was administered to 2-4-week-old mice (5, 25, and 50 micrograms/kg body wt.) and to in vitro cultures (10(-9) M) of fetal thymi. By monitoring thymocyte populations with respect to the differentiation antigens CD4 and CD8, it was found that the cell number in all thymocyte populations except for CD8+ decreased significantly compared with controls. In vivo the most marked decrease occurred among double negative (DN) and double positive (DP) cells, whereas in vitro, the DP cells were most severely affected. The cell number had already decreased to some extent by day 1 after a dose of 50 micrograms/kg body wt. of TCDD, although a severe reduction did not become apparent until day 4. There was a clear dose/response relationship between 5 and 50 micrograms/kg body wt. Autoradiography and liquid scintillation counting studies showed that incorporation of [3H]thymidine in the thymus had already decreased 24 h after TCDD treatment, with the decrease being even more pronounced at 48 h. By 96 h, the rate of cell proliferation had returned to approximately normal values. The results show that TCDD has a long-lasting effect on thymocyte abundance together with a transient effect on cell proliferation. This indicates that in addition to the initial effects of TCDD on cell proliferation, it may also more permanently disturb the normal process of elimination by means of selection.  相似文献   

2.
In unidirectional mixed lymphocyte cultures containing (as responders, stimulators, or regulators) spleen cells from mice infected with Trypanosoma cruzi, alloantigen responses were less than in cultures containing normal spleen cells only. Depletion of plastic adherent cells from infected spleen cells (stimulators or regulators) reversed their inhibitory effect on normal spleen cells (responders); removal of adherent responder cells and/or B lymphocytes did not alter the low alloantigen responses of normal spleen cells (stimulated by infected spleen cells) or infected spleen cells (stimulated by normal spleen cells). Infected spleen cells were effective in regulating mixed lymphocyte cultures only when added at the initiation of the culture. Serum from infected mice suppressed mixed lymphocyte cultures containing responder spleen cells syngeneic to the serum donor if added up to 24 hr after initiation of cultures, whereas the “suppressor serum” had to be present at the initiation of cultures when responder cells were allogeneic to the serum donor. Cultures of infected spleen cells (whole or macrophage enriched) produced a factor which was suppressive when added to mixed lymphocyte cultures containing syngeneic responder cells at initiation. It is proposed that the serum suppressor substance regulates cell-mediated immune responses directly by suppressing the response-potential of cells and indirectly by triggering the release of a factor from adherent splenic cells which induces a hyporesponsive state in T lymphocytes.  相似文献   

3.
In many species systemic toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is manifested by a generalized wasting syndrome accompanied by a variety of specific organ changes including atrophy of the thymus and spleen. TCDD toxicity in most tissues is thought to be mediated by the Ah receptor. Although the spleen is a prime target for TCDD toxicity, the possible presence of Ah receptor in the spleen has not previously been investigated. Specific binding of [3H]TCDD to Ah receptor in spleen cytosols was assessed by velocity sedimentation on sucrose gradients. Ah receptor was detected in spleen cytosols from adult Rhesus monkeys (mean +/- SEM, 36 +/- 8 fmol/mg cytosol protein), fetal Rhesus monkeys (9 +/- 6), Sprague-Dawley rats (20 +/- 5), C57BL/6J mice (18 +/- 2), New Zealand white rabbits (19 +/- 2), and Hartley guinea pigs (15 +/- 2). Ah receptor was not detectable in spleen cytosol from genetically "nonresponsive" DBA/2J mice or from Golden Syrian hamsters, a species resistant to toxicity of TCDD. Molecular properties of Ah receptor from spleen were similar to those of the receptor from liver of the same species. The high Ah receptor content in spleen cytosols from those species that are most susceptible to TCDD toxicity is consistent with the view that the Ah receptor mediates TCDD toxicity in spleen as well as in other tissues.  相似文献   

4.
Li YF  He RR  Tsoi B  Li XD  Li WX  Abe K  Kurihara H 《PloS one》2012,7(4):e33190
Carnosine (β-alanyl-L-histidine), a naturally occurring dipeptide, has been characterized as a putative neurotransmitter and serves as a reservoir for brain histamine, which could act on histaminergic neurons system to relieve stress-induced damages. However, understanding of the role of carnosine in stress-evoked immunocompromise is limited. In this study, results showed that when mice were subjected to restraint stress, spleen index and the number of spleen lymphocytes including Natural Killer (NK) cells were obviously decreased. Results also demonstrated that restraint stress decreased the cytotoxic activity of NK cells per spleen (LU(10)/spleen) while the activity of a single NK cell (LU(10)/10(6) cells) was not changed. However, oral administration of carnosine (150 and 300 mg/kg) increased spleen index and number of spleen lymphocytes (including NK cells), and elevated the cytotoxic activity of NK cells per spleen in restraint-stressed mice. These results indicated that carnosine ameliorated stress-evoked immunocompromise through spleen lymphocyte number maintenance. Carnosine was further found to reduce stress-induced elevation of plasma corticosterone level. On the other hand, results showed that carnosine and RU486 (a glucocorticoids receptor antagonist) treatment prevented the reduction in mitochondrion membrane potential and the release of mitochondrial cytochrome c into cytoplasm, increased Bcl-2/Bax mRNA ratio, as well as decreased terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL)-positive cells in spleen lymphocytes of stressed mice. The results above suggested that the maintenance of spleen lymphocyte number by carnosine was related with the inhibition of lymphocytes apoptosis caused by glucocorticoids overflow. The stimulation of lymphocyte proliferation by carnosine also contributed to the maintenance of spleen lymphocyte number in stressed mice. In view of the elevated histamine level, the anti-stress effects of carnosine on restraint-evoked immunocompromise might be via carnosine-histamine metabolic pathway. Taken together, carnosine maintained spleen lymphocyte number by inhibiting lymphocyte apoptosis and stimulating lymphocyte proliferation, thus prevented immunocompromise in restraint-stressed mice.  相似文献   

5.
XB, a cell line derived from a mouse teratoma, differentiates into stratified squamous epithelium when incubated with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). To examine the possible biochemical mediators of this response, we compared the effects produced by TCDD to those elicited by other compounds which stimulate epidermal proliferation and/or differentiation in mice. XB/3T3 cultures keratinize when incubated with cholera toxin, epidermal growth factor (EGF), or TCDD, but not 12-0-tetradecanoylphorbol-13-acetate (TPA). Incubation of XB cells with TCDD (10(-9)M) for 48 hours produces a 20% increase in thymidine incorporation, a response which is neither as large nor as rapid as that produced by cholera toxin, TPA, or EGF. Although both cholera toxin and TCDD stimulate differentiation and thymidine incorporation in XB/3T3 cultures, cholera toxin increases cAMP 30-fold in these cells, while TCDD does not affect cAMP accumulation at any of the times studies (15 min to 120 hours). Inhibitors of arachidonic acid metabolism, which block epidermal proliferative responses to TPA in vivo, do not prevent the differentiation of XB cells in response to TCDD. In XB/3T3 cultures, TPA stimulates arachidonic acid release at all times tested (1,6, and 24 hours) and increases the incorporation of 32Pi into total phospholipids and phosphatidylcholine after 3 hours. In contrast, TCDD affects neither arachidonic acid release nor the turnover of phosphatidylinositol or phosphatidylcholine at any of the times tested. Although we examined biochemical effects which have been suggested as part of the mechanism of TCDD and which are produced by other epidermal proliferative compounds in XB cells, no mediator of the TCDD-produced differentiation of XB/3T3 cultures was observed.  相似文献   

6.
The arylhydrocarbon receptor (AhR) plays a central role in mediating 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) toxicity in animals. The investigations described here provide evidence that support a role for the AhR in TCDD-mediated pyruvate carboxylase (PC) level/activity reductions in mice. Pyruvate carboxylase plays a pivotal role in gluconeogenesis and in supplying carbon units for the citric acid cycle. Delivered ip in a corn oil carrier, TCDD suppresses PC activity/amount at doses as low as 1 μg/kg in responsive C57BL/6J(Ahb/b) mice. Corn oil alone injected ip into mice at 4 mL/kg appears to be an inducer that increases the amount and activity of PC. However, TCDD suppresses this induction. In the Ahb/b mouse, PC levels and activity are reduced to 10% of control values at a dose of 75 μg/kg. A time-course experiment shows that the PC reductions are apparent within 16 hours post-TCDD exposure. Here we report investigations on the PC/TCDD response using a congenic C57BL/6J(Ahd/d) mouse strain having an AhR with a low affinity for TCDD. If the PC/TCDD response is AhR mediated, the congenic mouse strain (Ahd/d) would require much higher doses of TCDD to suppress PC. In the Ahd/d mice, we observe that an approximately 60-fold increase in TCDD dose is necessary to produce a PC/TCDD effect. We also find that in Ahd/d mice, corn oil does not induce an increase in PC activity/amounts, as reported for Ahb/b mice.  相似文献   

7.
BALB/c (H-2d) thymus-derived lymphocytes sensitized to C57BL/6 (H-2b) alloantigens have been propagated in vitro for over 9 months. These T lymphocytes are specifically cytotoxic to H-2b target cells but are stimulated to proliferate by both H-2b and H-2k spleen cells. This indicates that for these selected cells the antigen requirements for cell proliferation are different from those for cell-mediated cytotoxicity. If not continuously stimulated with allogeneic spleen cells, the cytotoxic cultures fail to divide and rapidly lose their cytotoxic activity. Allogeneic erythrocytes do not stimulate cell proliferation in "quiescent" cell cultures and allogeneic tumor cells do so only in the presence of spleen cells. However, "quiescent" cell cultures display cytotoxicity in the presence of phytohemagglutinin A as do cell cultures which have lost their cytotoxic activity although they proliferate upon allogeneic stimulation. The significance of these findings is discussed.  相似文献   

8.
Experimental autoimmune thyroiditis (EAT) can be induced in susceptible strains of mice by injection of mouse thyroglobulin (MTg) and adjuvant. Lymphocytes from immunized mice develop a proliferative response to MTg which generally correlates with the development of EAT. We utilize a cell transfer system wherein spleen cells from CBA/J mice primed with MTg and lipopolysaccharide (LPS) in vivo are activated by culture with MTg in vitro to transfer EAT to naive recipients. In vivo priming of CBA/J mice is required to develop an antigen specific proliferative response to MTg. This response is optimal between 48 and 90 hr of culture at an MTg concentration of 125-250 micrograms/ml. The correlation between proliferation and transfer of EAT is not absolute as primed Balb/c X CBA/J F1 and AKR lymphocytes do not proliferate detectably in response to MTg but can be activated to transfer EAT; primed Balb/c lymphocytes neither proliferate nor transfer EAT. Proliferation per se is not sufficient to activate cells to transfer EAT as culture with nonspecific mitogens is not effective in activating primed CBA/J spleen cells to transfer EAT. However, lymphoblasts generated during in vitro culture of primed CBA/J spleen cells with MTg are responsible for transfer of EAT; small lymphocytes are ineffective. We conclude that antigen specific proliferation in response to MTg is essential in activating lymphocytes in vitro to transfer EAT.  相似文献   

9.
The effects of in vivo exposure to dexamethasone (DEX) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on thymocyte proliferation and thymocyte number were compared. In the thymus of DEX-treated mice (1 mg/kg) both proliferation and cell number had decreased by 70% one day after exposure. This decrease was, however, transient, and values returned to normal within 2 weeks. By contrast, in TCDD exposed mice (50 micrograms/kg), a reduction in proliferation was not observed until day 2 after exposure, and the degree of reduction was only about 50%. By this point in time, cell number had only decreased by 20%. Proliferation increased again on day 3 after TCDD administration, whereas cell number continued to decrease and remained low throughout the observation period (8 days). DEX had a direct and immediate effect on cells in all thymocyte subpopulations whereas TCDD initially only affected the immature double negative (DN) and double positive (DP) populations.  相似文献   

10.
A significant and constant increase in DNA synthesis was observed in human lymphocytes cultured in the presence of purified anti-immunoglobulin antibodies specific for human IgG, IgA, and IgM. This has been found in cultures of lymphocytes isolated from blood, tonsils, spleen, and lymph nodes. The optimal culture conditions for blood and tonsil lymphocytes were determined. As a rule 6-day cultures containing 2 x 10(6) cells/ml and 100 mug/ml of antibody yielded the highest 3H-thymidine uptake. Purified T cell cultures could not be stimulated, whereas a low response could be observed in most of the purified B cell cultures. Optimal culture conditions were the same for the B and total tonsil lymphocytes. However, when the purified B cells were totally depleted of T cells, no response was observed. A T and B cell synergy has been demonstrated by supplementing B cell cultures with purified T cells, whether treated or not with mitomycin. These experiments indicated a permissive and potentiating effect of T cells on the B cell response. Cultures containing mitomycin-treated B cells and purified T cells (mB + T) could be stimulated by a-Ig, thus indicating a T cell proliferation. In keeping with this finding was the observation of an increased response of total lymphocytes supplemented with T cells but not with B cells. Adherent cells are necessary for an optimal response to a-Ig; they enhanced the B cell proliferation observed in (Tm + B) cultures and suppressed the response of T cells in (T + Bm) cultures.  相似文献   

11.
12.
The effect of alleles of the Ah locus on the induction of sister-chromatid exchanges (SCE) was studied in C57Bl/6 and in DBA/2 mice treated twice intragastrically with benzo[a]pyrene (BP, 100 or 10 mg/kg b.w.). To measure the changes in the frequency of SCE, 2 protocols were used: in vivo in bone marrow cells after implantation of 5-bromodeoxyuridine (BrdU) tablets and in vivo/in vitro in spleen lymphocytes cultured with BrdU. On day 5 mice were killed and SCEs estimated in bone marrow cells. BP-DNA adducts in bone marrow and spleen were analyzed on day 5 after the same exposure to BP. In the spleen lymphocytes SCE frequencies were analyzed after an additional 48 h of culture. We found that at both doses of BP, the number of SCEs and BP-DNA adducts in bone marrow and in spleen cells was significantly higher in aryl hydrocarbon hydroxylase (AHH)-non-inducible (DBA/2) mice than in AHH-inducible (C57BL/6) mice. Only marginal induction of SCE was noted after the high dose of BP in C57BL/6 mice in bone marrow in vivo, whereas a highly significant increase in the frequency of SCEs was found in splenocytes in the in vivo/in vitro test. The spleen cells contained larger amounts of BP-DNA adducts and demonstrated higher absolute levels of SCEs than bone marrow cells. The sensitivity of both the in vivo/in vitro and the in vivo SCE test is high enough for assessment of Ah locus-linked differences in BP genotoxicity in mice at the prolonged time between treatment and cell preparation. The present data confirm the influence of inducibility of AHH in the intestine on the genotoxicity of BP to distal tissues after oral exposure to BP.  相似文献   

13.
The present studies were undertaken to define the contribution of the autologous or syngeneic mixed-leukocyte reactions (AMLR/SMLR) to the cellular proliferation observed in unfractionated spleen cell cultures. Proliferation was studied in whole, untreated 6-day murine spleen cell cultures supplemented with syngeneic serum. These cultures exhibited relatively low but significant levels of cellular proliferation as measured by uptake of radioactive thymidine ([3H]TdR). Treatment of spleen cells with monoclonal anti-Thy 1.2 antibody and complement before culture, the addition of specific anti-I-A monoclonal antibodies to the cultures or removal of Ia+ adherent cells before initiation of culture all inhibited the proliferative response significantly. Thus, the autologous proliferation of untreated and unfractionated spleen cells manifests the main characteristics of the AMLR/SMLR, namely, its dependence on T (responder) and Ia+ (stimulator) cells and specific inhibition by anti-I-A antibodies. A marked augmentation in cellular proliferation was observed in unfractionated spleen cell cultures treated for the initial 24 hr of culture with 5 X 10(-6) M indomethacin, an inhibitor of prostaglandin synthesis. Conversely, the addition of 7 X 10(-9) M prostaglandin E1 (PGE1) to these cultures depressed cellular proliferation. This suppression of autologous splenic cell proliferation induced by PGE1 could be partially reversed by the addition of concanavalin A-induced lymphokine (LK) preparations early in the culture. These findings indicate that (a) the proliferation of unfractionated spleen cell cultures occurring in the absence of exogenous stimulatory signals is due largely to an ongoing AMLR, and (b) biologically active mediators with opposing influences, namely, prostaglandins and immunostimulatory LK, participate in the regulation of the AMLR.  相似文献   

14.
We have evaluated both the proliferative response as well as the Thy-1 Ag expression of lymphocytes from mice treated in vivo with an anti-Thy-1 immunotoxin (IT). The IT was a rat IgG2c mAb recognizing the Thy-1 Ag, disulfide-linked to a ribosome-inactivating protein isolated from the seeds of the plant Saponaria officinalis (soapwort). Toxicity studies showed that a single i.v. injection of doses up to 20 micrograms IT/mouse was well tolerated and allowed indefinite survival. The Con A-induced proliferative response of spleen cells from mice killed 1 day after treatment with sublethal doses of IT was inhibited in a dose-dependent manner, with complete inhibition observed at doses of greater than or equal to 5 micrograms IT/mouse. Control experiments showed that the inhibition was due to the IT and not to its single components. Moreover, the IT effect was abolished by a large (100-fold) excess of anti-Thy-1 mAb alone given concurrently, but not by an unrelated, isotype-matched rat mAb. At all IT doses, the proliferative response to a B cell mitogen (LPS) was normal. Kinetic studies showed a time- and dose-dependent reconstitution of Con A responsiveness. In limiting dilution cultures of spleen cells from mice treated with 5 micrograms IT 1 or 4 days before death, a 97% depletion of T lymphocytes capable of proliferation was observed. Limiting dilution cultures showed that also the thymus of IT-treated mice was depleted by more than 90% of growth-competent T lymphocytes. Cytofluorographic studies of Thy-1+ cells from the spleens of IT-treated mice gave results which did not correlate with those obtained in functional assays. Thus, a dose-dependent reduction, followed by a time-dependent reconstitution of Thy-1+ cells was observed in this case too, but the depletion occurred at later time points and was less complete than that observed in functional assays. Moreover, the mean fluorescence intensity of the residual Thy-1+ cells decreased below normal levels.  相似文献   

15.
This study was carried out to determine the influence of short chain fatty acids (SCFA) on spleen and mesenteric lymph node lymphocyte proliferation, goblet cells and apoptosis in the mouse small intestine during invasion by Trichinella spiralis. BALB/c mice were infected with 250 larvae of T. spiralis. An SCFA water solution containing acetic, propionic and butyric acids (30:15:20 mM) was administered orally starting 5 days before infection and ending 20 days post infection (dpi). Fragments of the jejunum were collected by dissection 7 and 10 dpi, and were examined for apoptotic cells in the lamina propria of the intestinal mucosa, and for goblet cells. The proliferation index of the cultured spleen and mesenteric lymph node lymphocytes with MTT test was also determined. The orally administered SCFA solution decreased the proliferation of mesenteric lymph node lymphocytes in the mice infected with T. spiralis at both examination times, but did not influence the proliferative activity of the spleen cells. Seven dpi, both in the spleen and mesenteric lymph nodes, the highest proliferation index of concanavalin A (Con A)-stimulated lymphocytes was found in the group of uninfected animals receiving SCFA animals. This tendency could still be seen 10 dpi in the mesenteric lymph nodes but not in the spleen, where the proliferation index in this group had significantly decreased. In vitro studies revealed, that butyric and propionic acids added to the cell cultures suppressed the proliferation of Con A-stimulated mesenteric lymph nodes and spleen lymphocytes taken from uninfected and T. spiralis-infected mice. Acetic acid stimulated proliferation of splenocytes taken from uninfected mice but did not affect lymphocyte proliferation in mesenteric lymph nodes from uninfected or infected mice. Orally administered SCFA increased the number of goblet cells found in the epithelium of the jejunum 7 dpi, but this number had decreased 10 dpi. The number of apoptotic cells in the lamina propria of the intestinal mucosa of animals infected with the T. spiralis and receiving SCFA was also lower, particularly 10 dpi. The above results show that SCFA can participate in the immune response during the course of trichinellosis in mice.  相似文献   

16.
Nylon wool columns eluting lymphocytes from the spleen of mice bearing a clinically evident spontaneous, nonimmunogenic adenocarcinoma of recent origin (TS/A) do not display cytotoxic response, release of lymphokines, and proliferation in vitro against TS/A cells, nor do they inhibit TS/A tumor growth in a Winn-type neutralization assay in vivo. After 5-day co-culture with allogeneic spleen cells from mice differing at multiple minor histocompatibility antigens only, these lymphocytes are still noncytolytic against TS/A cells, whereas they release interferon-gamma, mediate delayed-type hypersensitivity (DTH) reactions, and inhibit TS/A tumor growth in the Winn assay. In the Winn test, alloactivated lymphocytes from TS/A tumor-bearing mice are more effective than those from normal mice on a per cell basis. The induction of this TS/A tumor inhibition ability depends on the presence in the cultures of Thy-1+ lymphocytes. The presence of Lyt-2+ lymphocytes is also important, whereas that of asialo GM1+ is not. The TS/A inhibition in vivo by alloactivated lymphocytes mostly depends on Thy-1+, Lyt-2- and asialo GM- lymphocytes, even though a few Thy- cells are also very efficient tumor inhibitors. The alloactivated lymphocytes inhibit TS/A tumor growth by recruiting the radiosensitive effector mechanisms of the recipient mice required for ultimate tumor rejection. TS/A tumor rejection leaves a specific DTH and an immunologic memory resulting in rejection of a second lethal TS/A challenge in a significant number of mice.  相似文献   

17.
The effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on the growth of estrogen-responsive MCF-7 human breast cancer cells in the presence of 17 beta-estradiol was determined. After treatment with 17 beta-estradiol (1 nM), TCDD (10 nM) and 17 beta-estradiol (1 nM) plus TCDD (10 nM) the cells were monitored daily for cell growth and DNA content for 7 days. The results showed that TCDD inhibited cell proliferation and DNA content of untreated cells and inhibited the 17 beta-estradiol-stimulated cell proliferation and increase in cellular DNA content. In contrast, TCDD did not effect the growth of estrogen non-responsive MDA-MB-231 human breast cancer cells. TCDD (0.1-10 nM) also caused a concentration-dependent decrease in the 17 beta-estradiol-induced proliferation in MCF-7 cells. The effects of TCDD on the 17 beta-estradiol-induced secretion of the 52-kDa protein (i.e. procathepsin D), the 34-kDa (cathepsin D) and 160-kDa proteins were also determined in the MCF-7 and MDA-MB-231 human breast cancer cell lines. The levels of the proteins were determined by autoradiographic analysis of the incorporation of [35S]methionine into the secreted proteins which were separated by denaturing sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Treatment of MCF-7 cells with 17 beta-estradiol (1 nM), TCDD (10 and 100 nM) and 17 beta-estradiol (1 nM) plus TCDD (10 nM) resulted in levels of the 52-kDa protein which were 497, 63.6, 98.1 and 66.3%, respectively, of the corresponding levels observed in control (untreated) cells. Using the same concentrations, the levels of the 34-kDa protein secreted into the media were 372, 42.3, 64.0 and 43.8% of control values, respectively, and the corresponding levels of the 160-kDa protein were 381, 52.9, 71.2 and 76.6% of the control values, respectively. In contrast, treatment of MDA-MB-231 cells with 17 beta-estradiol (1 nM), TCDD (10 and 100 nM) and 17 beta-estradiol (1 nM) plus TCDD (10 nM) resulted in a 31-39% reduction in the secretion of the 52-kDa protein however these effects were not statistically different from the control values. In addition, the treatments did not cause any significant effects on the secretion of the 34- and 160-kDa proteins by MDA-MB-231 cells. These results clearly confirm and extend the range of antiestrogenic effects caused by TCDD in estrogen-responsive MCF-7 cells and indicate that the MDA-MB-231 cells are not responsive to the antiestrogenic effects of TCDD.  相似文献   

18.
The effect of cyclosporin A (CsA) on the production of gamma interferon (IFN gamma) versus IFN alpha/beta was studied using mouse and human lymphocytes and fibroblasts. Spleen cells from C57Bl/6 mice produced low but significant levels (40-60 U/ml) of IFN gamma after 2 to 3 days of culture with irradiated DBA spleen cells. The addition of CsA at concentrations as low as 0.1 microgram/ml completely inhibited (less than 10 U/ml) IFN gamma production in these cultures. High levels of IFN gamma (170-1200 U/ml) were produced when either C57Bl/6 spleen cells or Ficoll-Hypaque-purified human peripheral blood lymphocytes (PBL) were cultured with the T-cell mitogen staphylococcal enterotoxin A (SEA). The addition of CsA (0.1 microgram/ml) to these cultures also completely inhibited (less than 10 U/ml) IFN gamma production. This inhibition was shown not to be due to a change in the kinetics of IFN gamma production or to a change in the amount of SEA required for stimulation. IFN gamma production in SEA-stimulated mouse spleen cells was inhibited at 3 days of culture even when CsA was added at 24 or 48 hr postculture initiation. Thus, CsA inhibits IFN gamma production even when early events associated with lymphocyte activation have been allowed to take place. In contrast to IFN gamma production, IFN alpha/beta production by Newcastle disease virus (NDV)-infected mouse and human lymphocytes or fibroblasts was not inhibited by the addition of CsA (1 microgram/ml). CsA also did not block the action of IFN gamma or IFN alpha/beta since addition of CsA (1 microgram/ml) to reference IFN standards had no effect on their antiviral activity. Thus, CsA inhibits the production of IFN gamma by T cells but appears to have no effect on the production of IFN alpha/beta by virus-infected cells or on the antiviral action of already produced IFN gamma and IFN alpha/beta.  相似文献   

19.
Production of interferon (IFN) by Listeria monocytogenes (LM) in nonimmunized mouse spleen cell cultures was studied. IFN-gamma defined by virtue of its acid stability and antigenicity was produced in spleen cell cultures obtained from ddY mice, C57BL/6 mice, and BALB/c mice in response to heat-killed (HK) LM within 24 hr. On the other hand, production of IFN-alpha/beta was demonstrated in spleen cell cultures obtained from one of four nude mice (BALB/c, nu/nu). Therefore, it is important to know the reason why the spleen cells of mice other than nude mice did produce only IFN-gamma, but did not produce IFN-alpha/beta in response to HK-LM. Spleen cells obtained from ddY mice were fractionated, and the cellular source for IFN production of either IFN-alpha/beta or IFN-gamma induced by HK-LM was investigated. IFN-gamma was produced only by a mixture of T lymphocytes (nylon wool-nonadherent, Thy-1-positive cells) and macrophages by HK-LM. Neither T lymphocytes nor macrophages alone produced IFN by HK-LM. Macrophage-depleted spleen cells produced neither IFN-gamma nor IFN-alpha/beta, but these cells acquired the ability to produce IFN-alpha/beta, not IFN-gamma, only when they had been treated with IFN-alpha/beta. A possible mechanism of both IFN-gamma and IFN-alpha/beta induction by Listeria in mouse spleen cell cultures is discussed.  相似文献   

20.
The Ah (aromatic hydrocarbon) receptor mediates induction of aryl hydrocarbon hydroxylase (AHH; an enzyme activity associated with cytochrome P450IA1) by polycyclic aromatic hydrocarbon carcinogens such as 3-methylcholanthrene (MC) and benzo[a]pyrene (BP) and the halogenated toxin 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Until recently the AhR seemed to be present only at very low levels in human cells and tissue. With a modified assay (the presence of sodium molybdate and a reduction in the amount of charcoal used to adsorb "excess" ligand) we found that cytosol from LS180 cells contains a high concentration of AhR (400-500 fmol/mg cytosolic protein) when detected by [3H]TCDD or [3H]MC. Cytosolic receptor also was detected with [3H]BP but at a level that was 35% of that detected with [3H]TCDD or [3H]MC. These levels are similar to those found in mouse Hepa-1 hepatoma cells in which AhR has been extensively characterized. The apparent binding affinity (Kd) of the cytosolic receptor for [3H]TCDD and for [3H]MC was about 5 nM. As with Hepa-1, the human LS180 cytosolic AhR sedimented at about 9 S on sucrose gradients when detected with [3H]TCDD, [3H]BP or [3H]MC. The nuclear-associated ligand.receptor complex recovered from cells incubated in culture with [3H]TCDD sedimented at about 6.2 S. The 9.8 S cytosolic form corresponds to a multimeric protein of a relative molecular mass (Mr) of about 285,000 whereas the 6.2 S nuclear receptor corresponds to a multimeric protein of Mr 175,000. The smallest specific ligand-binding subunit (detected by sodium dodecyl sulfate-polyacrylamide electrophoresis under denaturing conditions of receptor photoaffinity labeled with [3H]TCDD) was about Mr 110,000. AHH activity was induced in cells exposed in culture to TCDD or benz[a]anthracene (BA). The EC50 was 4 x 10(-10) M for TCDD and 1.5 x 10(-5) M for BA. For both inducers the EC50 in LS180 cells was shifted about one log unit to the right as compared to the EC50 for AHH induction in mouse Hepa-1 cells. The lower sensitivity of the LS180 cells to induction of AHH activity by TCDD or BA is consistent with the lower affinity of TCDD and MC for binding to human AhR. The ligand-binding properties, physicochemical properties, and mode of action of the AhR in this human cell line are therefore very similar to those of the extensively characterized AhR in rodent cells and tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号