首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cells of Myxococcus xanthus will, at times, organize their movement such that macroscopic traveling waves, termed ripples, are formed as groups of cells glide together on a solid surface. The reason for this behavior has long been a mystery, but we demonstrate here that rippling is a feeding behavior which occurs when M. xanthus cells make direct contact with either prey or large macromolecules. Rippling has been observed during two fundamentally distinct environmental conditions: (i) starvation-induced fruiting body development and (ii) predation of other organisms. Our results indicate that case (i) does not occur in all wild-type strains and is dependent on the intrinsic level of autolysis. Analysis of predatory rippling indicates that rippling behavior is inducible during predation on proteobacteria, gram-positive bacteria, yeast (such as Saccharomyces cerevisiae), and phage. Predatory efficiency decreases under genetic and physiological conditions in which rippling is inhibited. Rippling will also occur in the presence of purified macromolecules such as peptidoglycan, protein, and nucleic acid but does not occur in the presence of the respective monomeric components and also does not occur when the macromolecules are physically separated from M. xanthus cells. We conclude that rippling behavior is a mechanism utilized to efficiently consume nondiffusing growth substrates and that developmental rippling is a result of scavenging lysed cell debris.  相似文献   

2.
Myxococcus xanthus cells self-organize into periodic bands of traveling waves, termed ripples, during multicellular fruiting body development and predation on other bacteria. To investigate the mechanistic basis of rippling behavior and its physiological role during predation by this Gram-negative soil bacterium, we have used an approach that combines mathematical modeling with experimental observations. Specifically, we developed an agent-based model (ABM) to simulate rippling behavior that employs a new signaling mechanism to trigger cellular reversals. The ABM has demonstrated that three ingredients are sufficient to generate rippling behavior: (i) side-to-side signaling between two cells that causes one of the cells to reverse, (ii) a minimal refractory time period after each reversal during which cells cannot reverse again, and (iii) physical interactions that cause the cells to locally align. To explain why rippling behavior appears as a consequence of the presence of prey, we postulate that prey-associated macromolecules indirectly induce ripples by stimulating side-to-side contact-mediated signaling. In parallel to the simulations, M. xanthus predatory rippling behavior was experimentally observed and analyzed using time-lapse microscopy. A formalized relationship between the wavelength, reversal time, and cell velocity has been predicted by the simulations and confirmed by the experimental data. Furthermore, the results suggest that the physiological role of rippling behavior during M. xanthus predation is to increase the rate of spreading over prey cells due to increased side-to-side contact-mediated signaling and to allow predatory cells to remain on the prey longer as a result of more periodic cell motility.  相似文献   

3.
Myxococcus xanthus is a common soil bacterium with an intricate multicellular lifestyle that continues to challenge the way in which we conceptualize the capabilities of prokaryotic organisms. Myxococcus xanthus is the preferred laboratory representative from the Myxobacteria , a family of organisms distinguished by their ability to form highly structured biofilms that include tentacle-like packs of surface-gliding cell groups, synchronized rippling waves of oscillating cells and massive spore-filled aggregates that protrude upwards from the substratum to form fruiting bodies. But most of the Myxobacteria are also predators that thrive on the degradation of macromolecules released through the lysis of other microbial cells. The aim of this review is to examine our understanding of the predatory life cycle of M. xanthus . We will examine the multicellular structures formed during contact with prey, and the molecular mechanisms utilized by M. xanthus to detect and destroy prey cells. We will also examine our understanding of microbial predator–prey relationships and the prospects for how bacterial predation mechanisms can be exploited to generate new antimicrobial technologies.  相似文献   

4.
The csgA mutations of Myxococcus xanthus (formerly known as spoC) inhibit sporulation as well as rippling, which involves ridges of cells moving in waves. Sporulating revertants of CsgA cells were isolated by direct selection, since spores are much more resistant to heat and ultrasonic treatment than are vegetative cells. The revertants fell into seven groups on the basis of phenotype and the chromosomal location of the suppressor alleles. Group 1 contained one allele that was a back mutation of the original csgA mutation. Group 2 contained two linked alleles that were unlinked to the csgA locus and restored fruiting-body formation, sporulation, and rippling. Group 3 revertants regained the ability to sporulate in fruiting bodies but not the ability to ripple. Revertants in groups 4 to 7 were able to sporulate but unable to form fruiting bodies or ripples. The suppressors were all found to be bypass suppressors even though they were not selected as such in most cases. The csgA mutation prevented expression of several developmentally regulated promoters, each fused to a lacZ reporter gene and assayed by beta-galactosidase production. In four of five suppressor groups (groups 4 to 7), expression of each of these csgA-dependent fusions was restored, which suggests that bypass suppression restores developmental gene expression near the point at which expression is disrupted in CsgA mutants. Bypass suppression did not restore production of C factor, and morphological manifestations of development such as rippling and fruiting-body formation were usually abnormal. One interpretation of these results is that C factor has multiple functions and few suppressors can compensate for all of them.  相似文献   

5.
Migrating cells of Myxococcus xanthus (MX) in the early stages of starvation-induced development exhibit elaborate patterns of propagating waves. These so-called rippling patterns are formed by two sets of waves travelling in opposite directions. It has been experimentally shown that formation of these waves is mediated by cell-cell contact signalling (C-signalling). Here, we develop an individual-based model to study the formation of rippling patterns in MX populations. Following the work of Igoshin et al. (Proc. Natl. Acad. Sci. 98 (2001) 14913) we consider each moving cell to have an internal clock which controls its turning behaviour and sensitivity to C-signal. Specifically, we examine the effects of changing: C-signal strength, sensitivity/refractoriness, cell density, and noise upon the formation and structure of the rippling patterns. We also consider three modified models that have no explicit refractory period and examine their ability to produce rippling patterns.  相似文献   

6.
Single mutations in the mglA gene in Myxococcus xanthus render cells incapable of gliding. The mglA strains are unique in that all other nonmotile strains of M. xanthus isolated are the result of at least two independent mutations in separate motility system genes. Translational fusions of trpE, or of lacZ, to mglA were constructed, and the resulting fusion polypeptides were used to generate antibodies. Antibodies specific to MglA protein were purified. Antibody-tagged MglA was found localized to the cytoplasm of M. xanthus cells both by fractionation of cell extracts and by electron microscopy of thin sections of whole cells. Four of the five mglA missense mutants tested failed to produce detectable levels of the MglA antigen in whole cell extracts. Nonmotile double mutants (A-S-), which have one mutation in a gene of system A and one mutation in a gene of system S, have the same phenotype as null mglA mutants but produce wild-type levels of MglA protein. MglA protein is conserved in all strains of myxobacteria tested. The amino acid sequence of MglA protein includes three sequence motifs characteristic of GDP/GTP-binding proteins. On the basis of its genetic properties, intracellular location, and amino acid sequence, it is argued that MglA protein is a regulator in the sequence of functions leading to cell movement.  相似文献   

7.
Intact cells of Myxococcus xanthus were examined for de novo purine synthesis and salvage utilization. The cellular uptake rates of radioactive glycine (de novo purine precursor), adenine, and guanine were measured, and thin-layer chromatography and radioautography were used to examine cell extracts for de novo synthesized purine nucleotides. Intact vegatative cells, glycerol-induced myxospores, and germinating cells of M. xanthus CW-1 were able to carry out de novo purine and salvage synthesis. Germinating cells and glycerol-induced myxospores were metabolically more active or as active as vegetative cells with respect to purine anabolism. We conclude that M. xanthus is capable of synthesizing purine nucleotides and salvaging purines throughout the glycerol version of its life cycle.  相似文献   

8.
Autocides produced by Myxococcus xanthus.   总被引:4,自引:4,他引:0       下载免费PDF全文
M Varon  S Cohen    E Rosenberg 《Journal of bacteriology》1984,160(3):1146-1150
Ethanol extracts of Myxococcus xanthus contained several substances, referred to as autocides, which were bactericidal to the producing strain but showed no activity against other bacteria. The autocides were produced by growing cells and remained largely cell bound throughout the growth cycle; ca. 5% of the autocidal activity was found in the supernatant fluid at the time cell lysis began. The autocides were separated by sequential-column and thin-layer chromatography into five active fractions (AM I through AM V). Each of the fractions was at least 20 times more active against M. xanthus than against the other gram-negative or gram-positive bacteria tested. AM I, AM IV, and AM V were inactive against yeasts, whereas a mixture of fractions AM II and AM III was active against Rhodotorula sp. At low concentrations, AM I reversibly inhibited the growth of M. xanthus; at higher concentrations of AM I, the cells lysed within 1 h. The lowest concentration of AM IV that showed any activity caused rapid cell death and lysis. The mode of action of the major autocide, AM V, was different from that of AM I and AM IV. During the initial 2 h of treatment, the viable count of M. xanthus cells remained constant; during the next few hours killing occurred without lysis; within 24 h lysis was complete. The autocidal activity of each of the fractions was expressed when the cells were suspended in buffer, as well as in growth medium. The possible role of autocides in developmental lysis of M. xanthus is discussed.  相似文献   

9.
Myxobacteria build their species-specific fruiting bodies by cell movement and then differentiate spores in specific places within that multicellular structure. New steps in the developmental aggregation of Myxococcus xanthus were discovered through a frame-by-frame analysis of a motion picture. The formation and fate of 18 aggregates were captured in the time-lapse movie. Still photographs of 600 other aggregates were also analyzed. M. xanthus has two engines that propel the gliding of its rod-shaped cells: slime-secreting jets at the rear and retractile pili at the front. The earliest aggregates are stationary masses of cells that look like three-dimensional traffic jams. We propose a model in which both engines stall as the cells' forward progress is blocked by other cells in the traffic jam. We also propose that these blockades are eventually circumvented by the cell's capacity to turn, which is facilitated by the push of slime secretion at the rear of each cell and by the flexibility of the myxobacterial cell wall. Turning by many cells would transform a traffic jam into an elliptical mound, in which the cells are streaming in closed orbits. Pairs of adjacent mounds are observed to coalesce into single larger mounds, probably reflecting the fusion of orbits in the adjacent mounds. Although fruiting bodies are relatively large structures that contain 10(5) cells, no long-range interactions between cells were evident. For aggregation, M. xanthus appears to use local interactions between its cells.  相似文献   

10.
Alteration of Escherichia coli murein during amino acid starvation.   总被引:27,自引:20,他引:7       下载免费PDF全文
We have studied the mechanisms by which amino acid starvation of Escherichia coli induces resistance against the lytic and bactericidal effects of penicillin. Starvation of E. coli strain W7 of the amino acids lysine or methionine resulted in the rapid development of resistance to autolytic cell wall degradation, which may be effectively triggered in growing bacteria by a number of chemical or physical treatments. The mechanism of this effect in the amino acid-starved cells involved the production of a murein relatively resistant to the hydrolytic action of crude murein hydrolase extracts prepared from normally growing E. coli. Resistance to the autolysins was not due to the covalently linked lipoprotein. Resistance to murein hydrolase developed most rapidly and most extensively in the portion of cell wall synthesized after the onset of amino acid starvation. Lysozymes digests of the autolysin-resistant murein synthesized during the first 10 min of lysine starvation yielded (in addition to the characteristic degradation products) a high-molecular-weight material that was absent from the lysozyme-digests of control cell wall preparations. It is proposed that inhibition of protein synthesis causes a rapid modification of murein structure at the cell wall growth zone in such a manner that attachment of murein hydrolase molecules is inhibited. The mechanism may involve some aspects of the relaxed control system since protection against penicillin-induced lysis developed much slower in amino acid-starved relaxed controlled (relA) cells than in isogenic stringently controlled (relA+) bacteria.  相似文献   

11.
Mitotic HeLa cells (M cells) synthesize protein at about 25% of the rate of S phase cells. This decrease in protein synthesis is due to a reduction in the rate of initiation. However, extracts prepared from M cells are almost as active in protein synthesis as S cell extracts. Both cell extracts are quite active in in vitro initiation of protein synthesis. Moreover, two steps in initiation, binding of Met-tRNAf to 40S ribosomal subunits and binding of mRNA to ribosomes, show similar activity in both extracts. The difference in protein synthesizing activity observed in vivo is largely eliminated in the preparation of cell-free systems. The ribosomes of M cells contain small mol wt RNA, which inhibits protein synthesis in vitro. This RNA, which has possibly a nuclear origin, may be a cause of the reduction in the rate of protein synthesis in M cells.  相似文献   

12.
Myxococcus xanthus is a Gram-negative, soil-dwelling bacterium with a complex life cycle which includes fruiting body formation and sporulation in response to starvation. This developmental process is slow, requiring a minimum of 24–48 h, and requires cells to be at high cell density on a solid surface. It is known that, in the absence of starvation, vegetatively growing cell suspensions can form 'glycerol spores' when exposed to high levels of glycerol, usually 0.5 M. The cells differentiate from rods to resistant spheres rapidly (2–4 h) and synchronously. We have found that the chromosomally encoded β-lactamase of M. xanthus can be induced by numerous β-lactam antibiotics as well as by non-specific inducers including glycine and many D -amino acids. In addition, D -cycloserine, phosphomycin, and hen egg-white lysozyme also induce β-lactamase in this bacterium. Unexpectedly, agents which induce β-lactamase can induce 'glycerol spores'; all of the agents tested which induce glycerol spores (glycerol, DMSO, ethylene glycol) also induce β-lactamase. During the induction of sporulation, β-lactamase activity increases, reaching a peak during the morphological transition from rod-shaped cells to spherical spores. These spores are viable and resistant to many treatments which disrupt vegetatively growing rods but are not as resistant as fruiting body spores. The concomitant induction of β-lactamase and starvation-independent sporulation suggests that these processes share a common signal-transduction pathway. These results also suggest that starvation-independent sporulation may be an adaptation of cells in order to resist agents that damage peptidoglycan structure and therefore threaten cell survival.  相似文献   

13.
Wang J  Hu W  Lux R  He X  Li Y  Shi W 《Journal of bacteriology》2011,193(9):2122-2132
Myxococcus xanthus belongs to the delta class of the proteobacteria and is notable for its complex life-style with social behaviors and relatively large genome. Although previous observations have suggested the existence of horizontal gene transfer in M. xanthus, its ability to take up exogenous DNA via natural transformation has not been experimentally demonstrated. In this study, we achieved natural transformation in M. xanthus using the autonomously replicating myxobacterial plasmid pZJY41 as donor DNA. M. xanthus exopolysaccharide (EPS) was shown to be an extracellular barrier for transformation. Cells deficient in EPS production, e.g., mutant strains carrying ΔdifA or ΔepsA, became naturally transformable. Among the inner barriers to transformation were restriction-modification systems in M. xanthus, which could be partially overcome by methylating DNA in vitro using cell extracts of M. xanthus prior to transformation. In addition, the incubation time of DNA with cells and the presence of divalent magnesium ion affected transformation frequency of M. xanthus. Furthermore, we also observed a potential involvement of the type IV pilus system in the DNA uptake machinery of M. xanthus. The natural transformation was totally eliminated in the ΔpilQ/epsA and Δtgl/epsA mutants, and null mutation of pilB or pilC in an ΔepsA background diminished the transformation rate. Our study, to the best of our knowledge, provides the first example of a naturally transformable species among deltaproteobacteria.  相似文献   

14.
The identity of a heteropolysaccharide from cell walls of Mycobacterium tuberculosis H37Ra with Seibert's tuberculopolysaccharide I was demonstrated by thin-layer chromatography, chemical analysis, and antigenic tests. The polysaccharide of M. kansasii was shown to be identical with that of M. tuberculosis. Defatted cells were disintegrated by ultrasonic treatment in the presence of glass beads; cell walls were obtained by differential ultracentrifugation. Ethyl alcohol-precipitated carbohydrate extracts were analyzed for protein and nucleic acid; these impurities were removed. Tuberculopolysaccharide I from the mycobacterial culture filtrate is probably derived from a lipopolysaccharide of the cell wall, which is partially removed by chloroform in the intact state. Alkaline extraction releases additional polysaccharide, in varying degrees of association with cell wall murein.  相似文献   

15.
Cell surface hydrophobicity was measured in the bacterium Myxococcus xanthus during vegetative growth, fruiting body formation, and glycerol-induced spore formation by the method of Rosenberg et al. (FEMS Microbiol. Lett. 9:29-33, 1980). A significant decrease in cell surface hydrophobicity was observed 12 to 36 h after fruiting body formation and 60 to 120 min after glycerol-induced sporulation. The hydrophilic shift was correlated with the ability of the cells to sporulate but not with their ability to aggregate. Sucrose gradient purification removed the hydrophilic substance from the fruiting body spores but not from the glycerol-induced spores. The change in cell surface hydrophobicity in M. xanthus should be a useful developmental marker.  相似文献   

16.
Myxococcus xanthus cells aggregate and develop into multicellular fruiting bodies in response to starvation. A new M. xanthus locus, designated dif for defective in fruiting, was identified by the characterization of a mutant defective in fruiting body formation. Molecular cloning, DNA sequencing and sequence analysis indicate that the dif locus encodes a new set of chemotaxis homologues of the bacterial chemotaxis proteins MCPs (methyl-accepting chemotaxis proteins), CheW, CheY and CheA. The dif genes are distinct genetically and functionally from the previously identified M. xanthus frz chemotaxis genes, suggesting that multiple chemotaxis-like systems are required for the developmental process of M. xanthus fruiting body formation. Genetic analysis and phenotypical characterization indicate that the M. xanthus dif locus is required for social (S) motility. This is the first report of a M. xanthus chemotaxis-like signal transduction pathway that could regulate or co-ordinate the movement of M. xanthus cells to bring about S motility.  相似文献   

17.
Territorial interactions between two Myxococcus Species.   总被引:2,自引:0,他引:2       下载免费PDF全文
It is unusual to find fruiting bodies of different myxobacteria occupying the same territory on natural samples. We were thus interested in determining whether myxobacteria establish territorial dominance and, if so, what the mechanism of that interaction is. We had previously observed that vegetative swarms of Myxococcus xanthus and Stigmatella aurantiaca placed close to each other on an agar surface initially merged but eventually separated. Further studies indicated that these two species also formed separate fruiting bodies when mixed together on developmental agar (unpublished observation). We examined the interactions between two more closely related myxobacteria, M. xanthus and M. virescens, in greater detail. When mixtures of a kanamycin-resistant strain of M. xanthus and a kanamycin-sensitive strain of M. virescens were placed together under developmental conditions, the cells sorted themselves out and established separate fruiting body territories. In addition, differential viable counts of a mixture of the two species during development indicated that each strain was producing an extracellular component that inhibited the growth and development of the other. Nevertheless, finally, M. virescens invariably outcompeted M. xanthus at all input ratios of M. xanthus/M. virescens tested. This is consistent with the observation that M. virescens is by far the more commonly encountered of the two species. The properties of the inhibitory substance from M. virescens are consistent with the possibility that it is a bacteriocin. Our working hypothesis is that the bacteriocin plays a role in the establishment of myxobacterial territoriality. If so, this is an example of an ecological function of bacteriocins.  相似文献   

18.
Y Kimura  R Sato  K Mimura    M Sato 《Journal of bacteriology》1997,179(22):7098-7102
A dcm-1 mutant, obtained by transposon mutagenesis of Myxococcus xanthus, could aggregate and form mounds but was unable to sporulate under nutrient starvation. A sequence analysis of the site of insertion of the transposon showed that the insertion lies within the 3' end of a 1,572-bp open reading frame (ORF) designated the M. xanthus pccB ORF. The wild-type form of the M. xanthus pccB gene, obtained from a lambdaEMBL library of M. xanthus, shows extensive similarity to a beta subunit of propionyl coenzyme A (CoA) carboxylase, an alpha subunit of methylmalonyl-CoA decarboxylase, and a 12S subunit of transcarboxylase. In enzyme assays, extracts of the dcm-1 mutant were deficient in propionyl-CoA carboxylase activity. This enzyme catalyzes the ATP-dependent carboxylation of propionyl-CoA to yield methylmalonyl-CoA. The methylmalonyl-CoA rescued the dcm-1 mutant fruiting body and spore development. During development, the dcm-1 mutant cells also had reduced levels of long-chain fatty acids (C16 to C18) compared to wild-type cells.  相似文献   

19.
20.
M. xanthus has a complex multicellular lifestyle including swarming, predation and development. These behaviors depend on the ability of the cells to achieve directed motility across solid surfaces. M. xanthus cells have evolved two motility systems including Type-IV pili that act as grappling hooks and a controversial engine involving mucus secretion and fixed focal adhesion sites. The necessity for cells to coordinate the motility systems and to respond rapidly to environmental cues is reflected by a complex genetic network involving at least three complete sets of chemosensory systems and eukaryotic-like signaling proteins. In this review, we discuss recent advances suggesting that motor synchronization results from spatial oscillations of motility proteins. We further propose that these dynamics are modulated by the action of multiple upstream complementary signaling systems. M. xanthus is thus an exciting emerging model system to study the intricate processes of directed cell migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号