首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hansenula polymorpha CBS 4732 was studied during cultivation on methanol and different glucose concentrations. Activities of Cu/Zn and Mn superoxide dismutase, catalase and methanol oxidase were investigated. During cultivation on methanol, increased superoxide dismutase and catalase activities and an induced methanol oxidase were achieved. Transfer of a methanol grown culture to medium with a high glucose concentration caused growth inhibition, low consumption of carbon, nitrogen and phosphate substrates, methanol oxidase inactivation as well as decrease of catalase activity (21.8 +/- 0.61 deltaE240 x min(-1) x mg protein(-1)). At the same time, a high value for superoxide dismutase enzyme was found (42.9 +/- 0.98 U x mg protein(-1), 25% of which was represented by Mn superoxide dismutase and 75% - by the Cu/Zn type). During derepression methanol oxidase was negligible (0.005 +/- 0.0001 U x mg protein(-1)), catalase tended to be the same as in the repressed culture, while superoxide dismutase activity increased considerably (63.67 +/- 1.72 U x mg protein(-1), 69% belonging to the Cu/Zn containing enzyme). Apparently, the cycle of growth inhibition and reactivation of Hansenula polymorpha CBS 4732 cells is strongly connected with the activity of the enzyme superoxide dismutase.  相似文献   

2.
3.
The most commonly used expression platform for production of recombinant proteins in the methylotrophic yeast Hansenula polymorpha relies on the strong and strictly regulated promoter from the gene encoding peroxisomal enzyme alcohol (or methanol) oxidase (P(MOX)). Expression from P(MOX) is induced by methanol and is partially derepressed in glycerol or xylose medium, whereas in the presence of hexoses, disaccharides or ethanol, it is repressed. The need for methanol for maximal induction of gene expression in large-scale fermentation is a significant drawback, as this compound is toxic, flammable, supports a slow growth rate and requires extensive aeration. We isolated H. polymorpha mutants deficient in glucose repression of P(MOX) due to an impaired HpGCR1 gene, and other yet unidentified secondary mutations. The mutants exhibited pronounced defects in P(MOX) regulation only by hexoses and xylose, but not by disaccharides or ethanol. With one of these mutant strains as hosts, we developed a modified two-carbon source mode expression platform that utilizes convenient sugar substrates for growth (sucrose) and induction of recombinant protein expression (glucose or xylose). We demonstrate efficient regulatable by sugar carbon sources expression of three recombinant proteins: a secreted glucose oxidase from the fungus Aspergillus niger, a secreted mini pro-insulin, and an intracellular hepatitis B virus surface antigen in these mutant hosts. The modified expression platform preserves the favorable regulatable nature of P(MOX) without methanol, making a convenient alternative to the traditional system.  相似文献   

4.
Genetically defined strains of the yeast Hansenula polymorpha were constructed from a clone of H. polymorpha CBS4732 with very low mating and sporulation abilities. Mating, spore viability, and the percentage of four-spore-containing asci were increased to a level at which tetrad analysis was possible. Auxotrophic mutations in 30 genes were isolated and used to construct strains with multiple markers for mapping studies, transformation with plasmid DNA, and mutant screening. Various other types of mutants were isolated and characterized, among them mutants that displayed an altered morphology, methanol-utilization deficient mutants and strains impaired in the biosynthesis of alcohol oxidase and catalase. Also, the mutability of H. polymorpha CBS4732 vs H. polymorpha NCYC495 was compared. The data revealed clear differences in frequencies of appearance and mutational spectra of some mutants isolated. Many of the mutants isolated had good mating abilities, and diploids resulting from their crossing displayed high sporulation frequencies and high spore viability. Most of the markers used revealed normal Mendelian segregation during meiosis.The frequency of tetratype spore formation was lower than in Saccharomyces cerevisiae suggesting a lower frequency of recombination during the second meiotic division. The properties of genetically defined strains of H. polymorpha CBS4732 as well as their advantages for genetics and molecular studies are discussed.  相似文献   

5.
Modified methylotrophic yeast Hansenula polymorpha (HP A16) that was obtained by repressing leucine oxotrophic yeast; a wild type of Hansenula polymorpha CB4732 was used in this study. The yeast is grown with methanol, which is used as a sole carbon source, using various methanol concentrations and temperatures, and methanol oxidase (MOX) which is a key enzyme of methanol metabolism; production is maximized. Whole yeast cells were cultivated under optimized inoculation conditions; they were separated into two portions. One portion of these cells was directly used in bioconversion of methanol to formaldehyde. The second portion of the free cells was broken into pieces and a crude enzyme extract was obtained. The MOX enzyme in this extract was purified via salt precipitation, dialysis, and chromatographic methods. The purified MOX enzyme of yeast (HP A16) oxidized the methanol to formaldehyde. Optimization of bioconversion conditions was studied to reach maximum activity of enzyme. The optimum temperature and pH were found to be 35 degrees C and pH 8.0 in boric acid/NaOH buffer, and it was stable over the pH range of 6-9, at the 20 degrees C 15 min. A suitable reaction period was found as 50 min. The enzyme indicated low carbon primary alcohols (C2 to C4), as well as methanol. Initially, MOX activity increased with the increase of methanol concentration, but enzyme activity decreased. The apparent Km and Vmax values for methanol substrate of HP A16 MOX were 0.25 mM and 30 U/mg, respectively. The purified MOX enzyme was applied onto sodium dodecyl sulphate-polyacrylamide gel electrophoresis; molecular weight of the enzyme was calculated to be about 670 kDa. Each MOX enzyme is composed of eight identical subunits, each of whose molecular weight is around 82 kDa and which contain eight moles of FAD as the prosthetic group, and the pI of the natural enzyme is found to be 6.4. The purified MOX enzyme was used in the bioconversion of methanol to formaldehyde as a catalyst; this conversion was compared to the conversion percentages of whole cells in our previous article in terms of catalytic performances.  相似文献   

6.
Saccharomyces cerevisiae SU50B and Hansenula polymorpha 8/2, both carrying a multicopy integrated guar alpha-galactosidase, have been cultivated in continuous cultures, using various mixtures of carbon sources and cultivation conditions. Both S. cerevisiae SU50B and H. polymorpha 8/2 are stable and produce high levels of extracellular alpha-galactosidase in continuous cultures for more than 500 h. For these expression systems the strong inducible promoter systems GAL7 and methanol oxidase, respectively, were used. The induction of alpha-galactosidase synthesis by galactose in SU50B is limited by the low galactose uptake. Apart from that, at high dilution rates, the glucose repression is substantial, and a maximal expression level of 28.6 mg of extracellular alpha-galactosidase.g (dry weight) of biomass-1 could be obtained. In H. polymorpha, the induction of alpha-galactosidase synthesis, in addition to methanol oxidase synthesis using formaldehyde, is very effective up to 42 mg of extracellular alpha-galactosidase.g (dry weight) of biomass-1. Productivities in terms of specific production rate enable a good comparison with those of other heterologous expression systems in the literature. The productivities found with S. cerevisiae SU50B and H. polymorpha, 3.25 and 5.5 mg of alpha-galactosidase.g of biomass-1.liter-1.h-1, respectively, rank among the highest reported in the literature. Enzyme production and secretion in H. polymorpha are more complex. A two-peaked optimum is found in enzyme production. No clear explanation of this phenomenon can be given.  相似文献   

7.
The Hansenula polymorpha (strain CBS4732) genome sequencing and analysis   总被引:4,自引:0,他引:4  
The methylotrophic yeast Hansenula polymorpha is a recognised model system for investigation of peroxisomal function, special metabolic pathways like methanol metabolism, of nitrate assimilation or thermostability. Strain RB11, an odc1 derivative of the particular H. polymorpha isolate CBS4732 (synonymous to ATCC34438, NRRL-Y-5445, CCY38-22-2) has been developed as a platform for heterologous gene expression. The scientific and industrial significance of this organism is now being met by the characterisation of its entire genome. The H. polymorpha RB11 genome consists of approximately 9.5 Mb and is organised as six chromosomes ranging in size from 0.9 to 2.2 Mb. Over 90% of the genome was sequenced with concomitant high accuracy and assembled into 48 contigs organised on eight scaffolds (supercontigs). After manual annotation 4767 out of 5933 open reading frames (ORFs) with significant homologies to a non-redundant protein database were predicted. The remaining 1166 ORFs showed no significant similarity to known proteins. The number of ORFs is comparable to that of other sequenced budding yeasts of similar genome size.  相似文献   

8.
9.
A simple way to prevent protein hyperglycosylation in Hansenula polymorpha was found. When glucose oxidase from Aspergillus niger and carboxymethyl cellulase from Bacillus subtilis were expressed under the control of an inducible methanol oxidase (MOX) promoter using methanol as a carbon source, hyperglycosylated forms occurred. In contrast, MOX-repressing carbon sources (e.g., glucose, sorbitol, and glycerol) greatly reduced the extent of hyperglycosylation. Carbon source starvation of the cells also reduced the level of glycosylation, which was reversed to hyperglycosylation by the resumption of cell growth. It was concluded that the proteins expressed under actively growing conditions are produced as hyperglycosylated forms, whereas those under slow or nongrowing conditions are as short-glycosylated forms. The prevention of hyperglycosylation in the Hansenula polymorpha expression system constitutes an additional advantage over the traditional Saccharomyces cerevisiae system in recombinant production of glycosylated proteins.  相似文献   

10.
The glyceraldehyde-3-phosphate dehydrogenase promoter, P(GAP), was employed to direct the constitutive expression of recombinant human serum albumin (HSA) in Hansenula polymorpha. A set of integration vectors containing the HSA cDNA under the control of P(GAP) was constructed and the elemental parameters affecting the expression of HSA from P(GAP) were analyzed. The presence of a 5'-untranslated region derived from the HSA cDNA and the integration of the expression vector into the GAP locus were shown to improve the expression of HSA under P(GAP). Glycerol supported a higher level of HSA expression from P(GAP) along with a higher cell density than either glucose or methanol. The growth at high glycerol concentrations up to 12% did not cause any significant repression of the cell growth. A high cell density culture, up to 83 g l(-1) dry cell weight with a HSA production of 550 mg l(-1), was obtained in less than 32 h of cultivation in a fed-batch fermentation employing intermittent feeding with 12% glycerol. The GAP promoter-based HSA expression system showed a higher specific production rate and required a much simpler fermentation process than the MOX promoter-based system, demonstrating that P(GAP) can be a practical alternative of the MOX promoter in the large-scale production of HSA from H. polymorpha.  相似文献   

11.
The Delta(6)-desaturase gene isoform II involved in the formation of gamma-linolenic acid (GLA) was identified from Mucor rouxii. To study the possibility of alteration of the synthetic pathway of essential fatty acids in the methylotrophic yeast, Hansenula polymorpha, the cloned gene of M. rouxii under the control of the methanol oxidase (MOX) promoter of H. polymorpha, was used for genetic modification of this yeast. Changes in flux through the n-3 and n-6 pathways in the transgenic yeast were observed. The proportion of GLA varied dramatically depending on the growth temperature and media composition. This can be explained by the effects of either substrate availability or enzymatic activity. In addition to the potential application for manipulating the fatty acid profile, this study provides an attractive model system of H. polymorpha for investigating the deviation of fatty acid metabolism in eukaryotes.  相似文献   

12.
A catabolite repression-insensitive mutant of Candida boidinii A5, strain ADU-15, was investigated as to alcohol oxidase production and the production of cells exhibiting the maximum catalytic activity for formaldehyde production. The mutant strain ADU-15 showed higher cell productivity and higher alcohol oxidase activity when grown on mixed substrates (glucose-methanol), especially with a high concentration of glucose in the medium. Thus, even under substrate (glucose-methanol)-limited chemostat conditions, where the glucose concentration was low, partial derepression of alcohol oxidase by glucose in mutant strain ADU-15 was detected. The chemostat culture conditions with the glucose-methanol medium were optimized for alcohol oxidase production and the production of cells exhibiting the maximum catalytic activity for formaldehyde production, respectively. By means of chemostat culturing on mixed substrates, we improved the alcohol oxidase productivity 5.0-fold and the productivity of cells exhibiting the maximum catalytic activity for formaldehyde production 3.8-fold, in comparison with the parent strain chemostat cultured with methanol as the single substrate.  相似文献   

13.
汉森酵母表达载体的构建和人血管生成抑制素基因的表达   总被引:1,自引:0,他引:1  
汉森酵母(H.polymorpha)是一类能以甲醇为唯一碳源和能源的甲基营养酵母,具有高表达外源基因、易于高密度发酵和产业化的特点。应用PCR技术扩增汉森酵母甲醇氧化酶(Methanol oxidase MOX)基因启动子和转录终止序列,并与汉森酵母Leu基因(Hpleu2)和人血管生成抑制素基因一起重组进大肠杆菌质粒pSP72,构建了整合型表达载体pSMA17,采用LiAc法将pSMA17转入汉森酵母A16(leu),筛选出阳性转化子H.polymorpha A16(pSMA17)。转化子在YPGE培养基中培养至对数生长后期,用甲醇进行诱导表达。ELISA和SDSPAGE分析结果证明人血管生成抑制素已获表达,表达产物分泌至培养基中。Western blot结果显示重组的人血管生成抑制素能与抗人纤溶酶原抗血清特异结合,具有免疫原性。  相似文献   

14.
Development in the strain and the fermentation process of Hansenula polymorpha was implemented for the production of gamma-linolenic acid (GLA, C18:3 delta 6,9,12), which is an n-6 polyunsaturated fatty acid (PUFA) and has been reported to possess a number of health benefits. The mutated delta 6-desaturase (S213A) gene of Mucor rouxii was expressed in H. polymorpha under the control of the methanol oxidase (MOX) promoter. Without utilization of methanol a high cell-density culture of the yeast recombinant carrying the delta 6-desaturase gene was achieved by fed-batch fermentation using glycerol-limited conditions. The delta 6-desaturated products, octadecadienoic acid (C18:2 delta6,9), GLA and stearidonic acid (C18:4 delta6,9,12,15), accumulated at high levels under the derepression condition. The GLA production was also optimized by adjusting specific growth rates. The results show that the specific growth rate affected both lipid content and fatty acid composition of the GLA-producing recombinant. Among the various specific growth rates studied, the highest GLA concentration, which was at of 697 mg/l, was obtained in the culture with the specific growth rate of 0.08 /h. Interestingly, the fatty acid profile of the yeast recombinant bearing the Mucor delta 6-desaturase gene was similar to that of blackcurrant oil with both containing similar proportions of n-3 and n-6 essential fatty acids.  相似文献   

15.
We have cloned the Hansenula polymorpha BIP gene from genomic DNA using a PCR-based strategy. H. polymorpha BIP encodes a protein of 665 amino acids, which shows very high homology to Saccharomvces cerevisiae KAR2p. KAR2p belongs to the Hsp70 family of molecular chaperones and resides in the endoplasmic reticulum (ER)-lumen. H. polymorpha BiP contains a putative N-terminal signal sequence of 30 amino acids together with the conserved -HDEL sequence, the typical ER retention signal, at the extreme C-terminus. We have analysed the effect of BIP overexpression, placing the gene under control of the strong alcohol oxidase promoter (P(MOX)) on the secretion of artificially produced Aspergillus niger glucose oxidase (GOX) by H. polymorpha. BiP overproduction did not lead to any growth defects of the cells; at the subcellular level, proliferation of ER-like vesicles was observed. However, artificially enhanced BiP levels strongly affected GOX secretion and led to accumulation of this protein in the ER-like vesicles. This was not simply due to the high BiP overproduction, because it was also observed under conditions of low P(MOX) induction during growth of cells on glycerol. Vacuolar carboxypeptidase Y was properly sorted to its target organelle in the BiP overproducing strains.  相似文献   

16.
17.
18.
The methylotrophic yeast Hansenula polymorpha CBS4732 leu2 detoxifies electrophilic xenobiotics by glutathione (GSH)-dependent accumulation in vacuoles, as shown by fluorescence microscopy. GSH-dependent and GSH-independent export of xenobiotic derivatives were also demonstrated by high-performance liquid chromatography (HPLC). Conjugates of GSH and N-acetylcysteine with monobromobimane and N-[1-pyrene]maleimide were observed among the HPLC fractions, along with unidentified derivatives.  相似文献   

19.
Summary Many of the potential technical applications of alcohol oxidase (MOX; EC 1.1.3.13) are limited by the presence of high activities of catalase in the enzyme preparations. In order to circumvent laborious and costly purification or inactivation procedures, the induction of MOX in a catalase-negative mutant of Hansenula polymorpha has been studied. Emphasis was laid on the induction of activities of MOX and the dissimilatory enzymes in continuous cultures grown on various mixtures of formate/glucose and formaldehyde/glucose. In continuous cultures of the catalase-negative mutant grown on these mixtures, MOX can be induced efficiently. To obtain a stable and productive process, the ratio of the substrates is of critical importance. The optimal ratios of the mixtures for the catalase-negative strain for formate/glucose and formaldehyde/glucose were 3:1 and 1–2:1, respectively. Under identical cultivation conditions the wild-type strain showed similar induction patterns for MOX and the dissimilatory enzymes formaldehyde dehydrogenase (FaDH) and formate dehydrogenase (FoDH). The MOX levels in the catalase-negative strain were approx. 50% of those in the wild-type strain.  相似文献   

20.
The utilization of mixtures of methanol (C(1)) and glucose (C(6)) of different composition by the methylotrophic yeast Hansenula polymorpha was studied in carbon-limited chemostat culture. For all mixtures tested a similar utilization pattern was observed: At low dilution rates both carbon sources were utilized simultaneously, but at high dilution rates the cells used glucose only and the unutilized methanol accumulated in the culture medium. When grown with C(1) only, the cells exhibited a critical dilution rate D(c)(C(1)) of 0.19 h(-1), but when C(1)-C(6) mixtures were used as the carbon and energy substrate, the yeast was able to completely utilize C(1) at dilution rates considerably higher than D(c)(C(1)). The dilution rate at which the transition from C(1)-C(6) growth to C(6) growth occurred (D(t)) was strictly dependent on the composition of the C(1)-C(6) mixture in the feed, and D(t) increased with decreasing proportions of C(1) in the mixture. During mixed substrate growth the formation of biomass from the two substrates was additive. The results reported indicate that the utilization of C(1)-C(6) mixtures and hence D(t) in H. polymorpha are subject to two different regulatory regimes. When the cells were growing with C(1)-C(6) mixtures containing more than 60% C(1), the transition form C(1)-C(6) to C(6) growth was most probably influenced by the maximum C(1) oxidizing capacity of the cells, whereas for growth with mixtures containing less than 40% C(1), a growth rate of 0.28-0.30 h(-1) seemed to be the limiting barrier for the simultaneous utilization of the components of the binary carbon and energy substrate mixture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号