首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The antigenic relationship of the egg jelly coat glycoproteins from Bufo japonicus japonicus and Xenopus laevis laevis was investigated using agar double diffusion methods. The presence of ligands in the jelly coats for the cortical granule lectin from X.l. laevis eggs was also investigated. Anti-jelly serum for both anuran species crossreacted with the jelly coat from the other species with precipitin patterns of identity. Each egg jelly coat of both species contained two ligands for the cortical granule lectin. Although the ligands in the two different jelly coats appeared to react with the lectin in a pattern of identity, the species ligands were antigenically distinguishable using anti-Xenopus jelly serum. The observations that the two anuran egg jelly coats were antigenically related and that they both contained ligands for the X.l. laevis cortical granule lectin was interpreted in terms of fertilization mechanisms in the two different species. In addition, these observations bring into question the currently accepted phylogenetic relationship of B.j. japonicus and X.l. laevis.  相似文献   

2.
The block to polyspermy in Xenopus laevis involves an interaction between a cortical granule lectin, released at fertilization, and a ligand located in the egg extracellular matrix. The egg extracellular matrix in X. laevis consists of a vitelline envelope and three distinct jelly layers, designated J1, J2 and J3. To localize cortical granule lectin ligand in the egg extracellular matrix, we used enzyme-linked lectin assays that showed that cortical granule lectin ligands were absent in J2, J3 and the vitelline envelope. Cortical granule lectin bound to a ligand(s) in J1 in a galactose-dependent fashion. In addition, we separated egg jelly macromolecules electrophoretically and, in conjunction with western blotting, have shown that J1 contains two major, high molecular weight ligands for cortical granule ligand. Finally, using confocal microscopy, we demonstrated that the ligand(s) for cortical granule lectin occupies a 20–30 μm thick band in a region of J1 just proximal to the vitelline envelope.  相似文献   

3.
Immunoelectron microscopic studies demonstrated cortical granule lectins (CGLs) in coelomic, unfertilized and fertilized eggs of Xenopus laevis . An antiserum raised against purified cortical granule lectin 1 specifically reacted with the CGLs in immunoblotting and agar diffusion tests. When ultrathin sections were treated with the antiserum and protein A-gold solution, gold particles, indicating antigenic sites, were seen over cortical granules of coelomic and unfertilized eggs, and over the perivitelline space, the vitelline coat and the condensed region of the fertilization layer of fertilized eggs. The pre-fertilization layer immediately adjacent to the outer margin of the vitelline coat in unfertilized eggs was free from gold particles. These observations suggest that released CGLs permeate through the vitelline coat of fertilized eggs and interact with the pre-fertilization layer mainly at the outer margin of the vitelline coat, resulting in formation of the fertilization layer which acts as a block to polyspermy.  相似文献   

4.
At fertilization, the vitelline envelope surrounding the egg of Xenopus laevis is modified by the addition of an electron-dense component termed the “F layer.” The F layer functions as a block to polyspermy and as a block to the escape of macromolecules from the perivitelline space, thereby causing an osmotically driven envelope elevation. F-layer formation has been hypothesized to result from interaction between a cortical-granule lectin, released in the cortical reaction, and a jelly-coat ligand. Evidence for this hypothesis was sought by determining the location of the cortical-granule lectin both before and after fertilization, using a specific antibody conjugated to horseradish peroxidase. The cortical-granule lectin was localized only in the cortical granules of the unfertilized egg and was located predominantly in the perivitelline space and the F layer of a fertilized egg. These observations support the hypothesis that the F layer is formed by a cortical-granule-Iectin–jelly layer-ligand interaction.  相似文献   

5.
Properties of the Cortical Granule Lectin Isolated from Xenopus Eggs   总被引:4,自引:4,他引:0  
The cortical granule lectin that participates in forming the fertilization layer in Xenopus laevis was isolated and partially characterized. About 400 μg of lectin was purified from 5 mg of crude exudate by chromatography on Sepharose 6B and Concanavalin A-conjugated Sepharose 4B columns and electrophoretic separation on polyacrylamide gel. The lectin has a molecular weight of 550 Kd and is composed of two species of polypeptides (46 Kd and 42 Kd). The lectin gave a single precipitin line against material in the prefertilization layer in an agglutination reaction on an agarose plate. The agglutination reaction involved D-galactoside residues and metal ions. The lectin formed an electron-dense layer on the outer surface of the vitelline coat of oviducal eggs covered with the prefertilization layer, but on the outer surface of jelly layer, not on that of the vitelline coat of jellied eggs. Although the jelly could be agglutinated by the lectin, the possibility that the jelly layer is the site of fertilization layer formation was excluded by the fact that the prefertilization layer is the first to meet the cortical granule lectin during normal fertilization.  相似文献   

6.
A Xenopus laevis egg cortical granule, calcium-dependent, galactosyl-specific lectin participates in forming the fertilization layer of the egg envelope and functions in establishing a block to polyspermy. We report the cDNA cloning of the lectin, expression of the cortical granule lectin gene during oogenesis and early development, and identification of a new family of lectins. The translated cDNA for the cortical granule lectin had a signal peptide, a structural sequence of 298 amino acids, a molecular weight of 32.7 K, contained consensus sequence sites for N-glycosylation and a fibrinogen domain. The lectin cDNA was expressed during early stages of oogenesis. Lectin glycoprotein levels were constant during development with 2/3 of the lectin associated with the extracellular perivitelline space and the egg/embryo fertilization envelope. Lectin mRNA levels were from 100- to 1000-fold greater in ovary than in other adult tissues. The lectin had no sequence homology to the previously identified lectin families. The lectin had 41-88% amino acid identity with nine translated cDNA sequences from an ascidian, lamprey, frog, mouse, and human. Based on the conserved carbohydrate binding and structural properties of these glycoproteins, we propose a new family of lectins, the eglectin family.  相似文献   

7.
While the anuran amphibian Xenopus laevis is a widely used vertebrate model system, it is not optimal for genetic manipulations due to its tetraploid genome and long generation time. A current alternative amphibian model system, Xenopus tropicalis, has the advantages of a diploid genome and a much shorter generation time. We undertook a comparative investigation of X. tropicalis egg extracellular matrix glycoproteins in relation to those already characterized in X. laevis. Fertilization methods and isolation of egg extracellular molecules were directly transferable from X. laevis to X. tropicalis. Cross-fertilizations were successful in both directions, indicating similar molecules involved in sperm-egg interactions. Egg envelopes analyzed by SDS-PAGE were found to have almost identical gel patterns, whereas jelly component profiles were similar only for the larger macromolecules (>90 kDa). The cDNA sequences for egg envelope glycoproteins ZPA, ZPB, ZPC, ZPD and ZPAX, and also egg cortical granule lectin involved in the block to polyspermy, were cloned for X. tropicalis and showed a consistent approximately 85% amino acid identity to the X. laevis sequences. Thus, homologous egg extracellular matrix molecules perform the same functions, and the molecular and cellular mechanisms of fertilization in these two species are probably equivalent.  相似文献   

8.
Distribution of lectin binding sites in Xenopus laevis egg jelly.   总被引:1,自引:0,他引:1  
Eggs from the anuran Xenopus laevis are surrounded by a thick jelly coat that is required during fertilization. The jelly coat contains three morphologically distinct layers, designated J1, J2, and J3. We examined the lectin binding properties of the individual jelly coat layers as a step in identifying jelly glycoproteins that may be essential in fertilization. The reactivity of 31 lectins with isolated jelly coat layers was examined with enzyme-linked lectin-assays (ELLAs). Using ELLA we found that most of the lectins tested showed some reactivity to all three jelly layers; however, two lectins showed jelly layer selectivity. The lectin Maackia amurensis (MAA) reacted only with J1 and J2, while the lectin Trichosanthes kirilowii (TKA) reacted only with J2 and J3. Some lectins were localized in the jelly coat using confocal microscopy, which revealed substantial heterogeneity in lectin binding site distribution among and within jelly coat layers. Wheat germ agglutinin (WGA) bound only to the outermost region of J3 and produced a thin, but very intense, band of fluorescence at the J1/J2 interface while the remainder of J2 stained lightly. The lectin MAA produced an intense fluorescence-staining pattern only at the J1/J2 interface. Several lectins were also tested for the ability to inhibit fertilization. WGA, MAA, and concanavalin A significantly inhibited fertilization and WGA was found to block fertilization by preventing sperm from penetrating the jelly. Using Western blotting, we identified high-molecular-weight components in J1 and J2 that may be important in fertilization.  相似文献   

9.
The fertilization layer of Xenopus laevis is formed upon egg activation by the binding of the cortical granule lectin (CGL) to its ligand in the egg extracellular matrix. Using Western blotting methods with biotinylated CGL as a probe, oviductal tissue extracts were examined to determine the site of origin of the CGL ligand. Three glycoprotein ligands of Mrs= > 250,000, 160,000, and 90,000 (reduced samples) were localized to the pars convoluta oviduct immediately posterior to the pars recta oviduct. The binding of CGL to these glycoproteins was inhibited in the presence of 200 mM galactose, but not with 200 mM mannose indicating a specific lectin interaction. The Mrs= > 250,000 and 90,000 glycoproteins were linked by disulfide bonds. In addition, these ligands were secreted from a more anterior region of the pars convoluta oviduct than the Mr=160,000 ligand. No binding of CGL was detected to pars recta secretory granule lysate components. The highest molecular weight CGL ligand seen in the pars convoluta corresponded to the CGL ligand in isolated fertilization envelopes. Thus, the CGL ligand involved in the formation of the fertilization layer is a product of the pars convoluta oviduct.  相似文献   

10.
S M Chamow  J L Hedrick 《FEBS letters》1986,206(2):353-357
The cortical granule lectin of Xenopus laevis eggs is a large molecular mass glycoprotein involved in the post-fertilization block to polyspermy. We have investigated the subunit structure of this lectin and found that the native molecule contains 10-12 monomers, each of which has considerable charge and size heterogeneity due to glycosylated side chains. In addition, significant amino acid sequence homology is indicated by peptide mapping of subunits separated by isoelectric focusing.  相似文献   

11.
Peavy TR  Hernandez C  Carroll EJ 《Biochemistry》2003,42(44):12761-12769
The egg jelly that encapsulates amphibian eggs is essential for fertilization, but its molecular composition and roles remain largely unknown. We identified a calcium-dependent lectin from the pentraxin superfamily in the egg jelly coat from the South American burrowing frog, Lepidobatrachus laevis. This lectin, jeltraxin, was related to the host-response acute phase serum proteins C-reactive P component (CRP) and serum amyloid P component (SAP). The amino acid sequence of jeltraxin is 44% identical to that of Xenopus laevis CRP, 31-35% identical to those of mammalian CRP and SAP, and 21-27% identical to those of the large fusion pentraxins. Expression of jeltraxin mRNA was restricted to the oviduct, which distinguishes it as the first serum-related pentraxin not expressed in the liver. Purified jeltraxin was previously shown to exist in an oligomeric complex of approximately 250 kDa comprised of self-associating subunits. We have demonstrated by MALDI-TOF that this configuration is due to a decameric complex of 27.7 kDa subunits. Biotinylated jeltraxin bound to the high-molecular mass components of the egg jelly in a calcium-dependent manner with specificity for beta-galactose residues. On the basis of homology modeling, we predict that jeltraxin will coordinate two calcium ions. The function of jeltraxin will likely be related to its calcium-dependent lectin properties.  相似文献   

12.
Eggs from the anuran Xenopus laevis are surrounded by a thick jelly coat that is required during fertilization. The jelly coat contains three morphologically distinct layers, designated J1, J2, and J3. We examined the lectin binding properties of the individual jelly coat layers as a step in identifying jelly glycoproteins that may be essential in fertilization. The reactivity of 31 lectins with isolated jelly coat layers was examined with enzyme-linked lectin-assays (ELLAs). Using ELLA we found that most of the lectins tested showed some reactivity to all three jelly layers; however, two lectins showed jelly layer selectivity. The lectin Maackia amurensis (MAA) reacted only with J1 and J2, while the lectin Trichosanthes kirilowii (TKA) reacted only with J2 and J3. Some lectins were localized in the jelly coat using confocal microscopy, which revealed substantial heterogeneity in lectin binding site distribution among and within jelly coat layers. Wheat germ agglutinin (WGA) bound only to the outermost region of J3 and produced a thin, but very intense, band of fluorescence at the J1/J2 interface while the remainder of J2 stained lightly. The lectin MAA produced an intense fluorescence-staining pattern only at the J1/J2 interface. Several lectins were also tested for the ability to inhibit fertilization. WGA, MAA, and concanavalin A significantly inhibited fertilization and WGA was found to block fertilization by preventing sperm from penetrating the jelly. Using Western blotting, we identified high-molecular-weight components in J1 and J2 that may be important in fertilization.  相似文献   

13.
The morphological distribution of oligosaccharides is determined in the egg jelly surrounding Xenopus laevis eggs. This biological system is used to illustrate a method for readily identifying and quantifying oligosaccharides in specific tissues. The extracellular matrix surrounding X. laevis eggs consists of a vitelline envelope and a jelly coat. The jelly coat contains three morphologically distinct layers designated J1, J2, and J3 from the innermost to the outermost and is composed of 9-11 distinct glycoproteins. Each jelly layer is known to have specific functions in the fertilization of the egg. We developed a rapid method to separate and identify the oligosaccharides from X. laevis egg jelly layers. Identification was based on the retention times in high-performance liquid chromatography (porous graphitized carbon column), exact masses, and tandem mass spectrometry. Over 40 neutral and 30 sulfated oligosaccharides were observed in the three jelly layers. Neutral oligosaccharide structures from different jelly layers were both unique and overlapping, while sulfated oligosaccharides were detected only in layers J1 and J2. Neutral oligosaccharides unique to jelly layer J3 and the combined layers J1+J2 had similar core structures and similar residues. However, differences between these two sets of unique oligosaccharides were also observed and were primarily due to the branching carbohydrate moieties rather than the core structures.  相似文献   

14.
The enzyme N-acetyl-beta-D-glucosaminidase was purified from the cortical granules of Xenopus laevis eggs using affinity chromatography, gel filtration, and density gradient centrifugation. The enzyme had a molecular weight of 37,000-40,000 as determined by polyacrylamide gel electrophoresis and density gradient centrifugation, had a Km for p-nitrophenyl-beta-D-N-acetyl-glucosaminide of 0.66 mM and a Ki for glucosamine of 4.3 mM. The kinetic properties of the cortical granule enzyme were similar to the enzyme isolated from jack bean. Treatment of unfertilized eggs with the enzyme isolated from cortical granules or jack bean rendered eggs unfertilizable. Loss of fertilizability was proportional to the product of time and enzyme concentration, consistent with an enzymatic mechanism being responsible for the loss of fertilizability. The amount of enzyme present in the perivitelline space was approximately the same as that which reduced fertilizability by 50% in one hour. We suggest that the action of cortical granule N-acetyl-beta-D-glucosaminidase on egg integuments may function as a block to polyspermy at fertilization.  相似文献   

15.
Eggs of the amphibian, Xenopus laevis, were quick-frozen, deep-etched, and rotary-shadowed. The structure of the extracellular matrix surrounding these eggs, including the perivitelline space and the vitelline envelope (VE), was visualized in platinum replicas by electron microscopy. The perivitelline space contains an elaborate filamentous glycocalyx which connects microvillar tips to the plasma membrane, to adjacent microvilli, and to the overlying VE. The VE is comprised of two layers, the innermost of which is a thin network of horizontal fibrils lying on the tips of the microvilli. The outermost is a thicker layer of large, cable-like fibers which twist and turn throughout the envelope. Upon fertilization, three dramatic modifications of the matrix occur. A thin sheet of smooth material, termed the smooth layer, is deposited on the tips of the microvilli and separates the egg from the overlying envelopes. The VE above is transformed from a thick band of cable-like fibers to concentric fibrous sheets, the altered VE. Finally, an ornate band of particles, corresponding to the fertilization layer in previous studies, is deposited at the altered VE/jelly interface. The altered VE and the fertilization layer comprise the fertilization envelope, which effects the structural block to polyspermy.  相似文献   

16.
A cortical granule lectin was isolated from eggs of the South African clawed toad Xenopus laevis. The lectin was released from the cortical granules by activation of dejellied eggs with the Ca2+ ionophore A23187. The lectin was purified by affinity chromatography with its natural ligand, the egg jelly coat, chemically coupled to a Sepharose matrix. The purified lectin was homogeneous by the criteria of isoelectric focusing (pI = 4.6), immunodiffusion, and immunoelectrophoresis but existed in two different molecular weight isomers as determined by sedimentation velocity ultracentrifugation and disc gel electrophoresis. Molecular weights of the isomers were determined by ultracentrifugation, disc gel electrophoresis, and gel filtration and found to be 539,000 and 655,000. Chemically, the lectin was a metalloglycoprotein, composed of 84.0% protein, 15.8% carbohydrate, and 0.19% calcium. No unusual types or amounts of amino acids were present. The carbohydrate moiety was composed of fucose, mannose, galactose, glucosamine, galactosamine, and sialic acid. The monosaccharide specificity of the lectin was investigated with the sugar inhibition of the precipitin reaction in gels. The lectin was specific for D-galactosyl sugars with the configuration at carbon atoms 2-4 of primary importance.  相似文献   

17.
皱纹盘鲍受精过程的电镜观察   总被引:17,自引:0,他引:17  
本文用透射电镜观察了皱纹盘鲍的受精过程。鲍卵子的胶膜使精子活化,并诱发了顶体反应,卵黄膜使顶体反应达到高潮。精子入卵后,卵发生皮层反应并形成受精膜开 减数分裂。此外,还观察到鲍的多精入卵现象。  相似文献   

18.
The formation of the fertilization (F) layer in Xenopus laevis was studied by immunoelectron microscopic protein A-gold technique, employing an antiserum specific to the secretory granules in the bottom cells at the posterior portion of the pars recta of the oviduct (pars recta 2). In unfertilized eggs, the gold particles revealing the antigenic sites were specifically present over the pre-fertilization (PF) layer located between the vitelline coat and the jelly layer. Upon transformation of the PF layer into the F layer, the labeling became confined to the region on the outer surface of the F layer, suggesting the loss of antigenic site in the inner part of newly-formed F layer. These results provide an ultrastructural basis for the view that the PF layer is supplied by specific cells in the oviducal pars recta 2.  相似文献   

19.
In most species, cortical granule exocytosis is characteristic of egg activation by sperm. It is a Ca(2+)-mediated event which results in elevation of the vitelline coat to block permanently the polyspermy at fertilization. We examined the effect of mastoparan, an activator of G-proteins, on the sea urchin egg activation. Mastoparan was able to induce, in a concentration-dependent manner, the egg cortical granule exocytosis; mastoparan-17, an inactive analogue of mastoparan, had no effect. Mastoparan, but not sperm, induced cortical granule exocytosis in eggs preloaded with BAPTA, a Ca(2+) chelator. In isolated egg cortical lawns, which are vitelline layers and membrane fragments with endogenously docked cortical granules, mastoparan induced cortical granule fusion in a Ca(2+)-independent manner. By contrast, mastoparan-17 did not trigger fusion. We conclude that in sea urchin eggs mastoparan stimulates exocytosis at a Ca(2+)-independent late site of the signaling pathway that culminates in cortical granule discharge.  相似文献   

20.
《The Journal of cell biology》1993,123(6):1431-1440
The mammalian egg must be fertilized by only one sperm to prevent polyploidy. In most mammals studied to date, the primary block to polyspermy occurs at the zona pellucida, the mammalian egg coat, after exocytosis of the contents of the cortical granules into the perivitelline space. The exudate acts on the zona, causing it to lose its ability to bind sperm and to be penetrated by sperm previously bound to the zona. However, the cortical granule components responsible for the zona block have not been identified. Studies described herein demonstrate that N-acetylglucosaminidase is localized in cortical granules and is responsible for the loss in sperm-binding activity leading to the zona block to polyspermy. Before fertilization, sperm initially bind to the zona by an interaction between sperm surface GalTase and terminal N-acetylglucosamine residues on specific oligosaccharides of the zona glycoprotein ZP3 (Miller, D. J., M. B. Macek, and B. D. Shur. 1992. Nature (Lond.). 357:589-593). These GalTase-binding sites are lost from ZP3 after fertilization, an effect that can be duplicated by N-acetylglucosaminidase treatment. Therefore, N-acetylglucosaminidase, or a related glycosidase, may be present in cortical granules and be responsible for ZP3's loss of sperm-binding activity at fertilization. Of eight glycosidases assayed in exudates of ionophore-activated eggs, N-acetylglucosaminidase was 10-fold higher than any other activity. The enzyme was localized to cortical granules using immunoelectron microscopy. Approximately 70 or 90% of the enzyme was released from cortical granules after ionophore activation or in vivo fertilization, respectively. The isoform of N- acetylglucosaminidase found in cortical granules was identified as beta- hexosaminidase B, the beta, beta homodimer. Inhibition of N- acetylglucosaminidase released from activated eggs, with either competitive inhibitors or with specific antibodies, resulted in polyspermic binding to the zona pellucida. Another glycosidase inhibitor or nonimmune antibodies had no effect on sperm binding to activated eggs. Therefore, egg cortical granule N-acetylglucosaminidase is released at fertilization, where it inactivates the sperm GalTase- binding site, accounting for the block in sperm binding to the zona pellucida.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号