首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In the Mexican axolotl Ambystoma mexicanum recessive mutant gene c, by way of abnormal inductive processes from surrounding tissues, results in an absence of embryonic heart function. The lack of contractions in mutant heart cells apparently results from their inability to form normally organized myofibrils, even though a few actin-like (60-A) and myosin-like (150-A) filaments are present. Amorphous "proteinaceous" collections are often visible. In the present study, heavy meromyosin (HMM) treatment of mutant heart tissue greatly increases the number of thin filaments and decorates them in the usual fashion, confirming that they are actin. The amorphous collections disappear with the addition of HMM. In addition, an analysis of the constituent proteins of normal and mutant embryonic hearts and other tissues is made by sodium dodecyl sulfate (SDS) gel electrophoresis. These experiments are in full agreement with the morphological and HMM binding studies. The gels show distinct 42,000-dalton bands for both normal and mutant hearts, supporting the presence of normal actin. During early developmental stages (Harrison's stage 34) the cardiac tissues in normal and mutant siblings have indistinguishable banding patterns, but with increasing development several differences appear. Myosin heavy chain (200,000 daltons) increases substantially in normal hearts during development but very little in mutants. Even so the quantity of 200,000-dalton protein in mutant hearts is significantly more than in any of the nonmuscle tissues studied (i.e. gut, liver, brain). Unlike normal hearts, the mutant hearts lack a prominent 34,000-dalton band, indicating that if mutants contain muscle tropomyosin at all, it is present in drastically reduced amounts. Also, mutant hearts retain large amounts of yolk proteins at stages when the platelets have virtually disappeared from normal hearts. The morphologies and electrophoresis patterns of skeletal muscle from normal and mutant siblings are identical, confirming that gene c affects only heart muscle differentiation and not skeletal muscle. The results of the study suggest that the precardiac mesoderm in cardiac lethal mutant axolotl embryos initiates but then fails to complete its differentiation into functional muscle tissue. It appears that this single gene mutation, by way of abnormal inductive processes, affects the accumulation and organization of several different muscle proteins, including actin, myosin, and tropomyosin.  相似文献   

2.
SYNOPSIS. A naturally-occurring genetic mutation, designatedc for "cardiac lethal" in axolotls, Ambystoma mexicanum, isproving to be a useful model for studying myofibrillogenesisin differentiating heart cells. In this paper I describe morphological,biochemical and immunofluorescence studies which compare thecontractile proteins in normal and mutant hearts. In addition,morphological studies on anterior endoderm, an important heartinductor tissue in salamanders, are reviewed. Detailed electronmicroscopic studies show that normal heart myocytes containnumerous well-organized myofibrils. Although mutant heart cellscontain a few myosin and actin filaments, there are no organizedmyofibrils. Instead, amorphous proteinaceous collections areprominent in the peripheral cytoplasm of the cell where myofibrilswould be expected to first form. SDS-polyacrylamide gel electrophoresisshows that actin is present in almost normal amounts in mutanthearts, myosin heavy chain is reduced and tropomyosin is virtuallyabsent. Immunofluorescence studies reveal that myosin, -actininand tropomyosin are located prominently in theorganized myofibrilsof normal heart cells. In mutant hearts myosin is localizedalmost exclusively in the amorphous collections at the cellperipheries, -actinin also is distributed mainly in the peripheralcell cytoplasm. There is almost no staining for tropomyosin.Heavy meromyosin (HMM) binding experiments demonstrate thatthe actin in mutant heart cells is contained within the amorphouscollections in a non-filamentous state and the addition of HMMcauses its polymerization into filaments. In view of these findings,we undertook studies to determine whether there might be a causalrelationship between theabsence of tropomyosin in mutants andthe failure of actin to form into filaments. Our results indeedshow that addition of tropomyosin to glycerinated mutant heartsor homogenates of mutant hearts causes the amorphous actin toform into filaments. Thus, this single gene mutation resultsin mutant heart cells having reduced, but significant, amountsof myosin and actin, even though non-filamentous, and substantialamounts of -actinin. There is almost no tropomyosin. It is impliedthat the drastic reduction of tropomyosin in mutant cells issomehow related to the failure of normal myofilament formation,which in turn would seem to be an essential step in the normalorganization of myofibrils.  相似文献   

3.
Recessive mutant gene c for "cardiac nonfunction" in axolotls results in an absence of normal heart contractions in affected embryos due to a failure of myofibril formation. In the present study, the intermediate filament protein, desmin, is compared in developing normal and mutant hearts by means of two-dimensional gel electrophoresis, immunofluorescent microscopy, and immunoelectron microscopy. Tissues were fixed in periodate-lysine-paraformaldehyde or paraformaldehyde-glutaraldehyde solutions and rapidly frozen or embedded in Lowicryl resin. Frozen sections stained with FITC-conjugated antibodies by an indirect approach revealed that desmin is localized in the I-band regions of adult cardiac myofibrils. In normal embryonic hearts at stage 32 (preheartbeat) desmin is localized as "spots" or amorphous collections in the cells. As development progresses to stage 35, staining for desmin in normal hearts becomes more intense with localization being most pronounced at the cell peripheries. By stage 41 most of the desmin in normal hearts is localized in the I band areas of the organized myofibrils and the staining of amorphous areas is much less prominent. During early development, the distribution of desmin in mutant hearts is similar to normal. However, while most of the desmin in normal organs at stage 41 is associated with myofibrils, the staining remains diffuse in mutants. Two-dimensional gel electrophoresis reveals comparable patterns for desmin from normal and mutant hearts. Immunogold staining shows desmin localization to be between the myofibrils and around the I-band regions in adult cardiac muscle and in stage 41 normal embryonic hearts. Immunogold staining confirms a diffuse distribution of desmin in mutant hearts.  相似文献   

4.
Ca2(+)-regulated native thin filaments were extracted from sheep aorta smooth muscle. The caldesmon content determined by quantitative gel electrophoresis was 0.06 caldesmon molecule/actin monomer (1 caldesmon molecule per 16.3 actin monomers). Dissociation of caldesmon and tropomyosin from the thin filament and the depolymerization of actin was measured by sedimenting diluted thin filaments. Actin critical concentration was 0.05 microM at 10.1 and 0.13 at 10.05 compared with 0.5 microM for pure F-actin. Tropomyosin was tightly bound, with half-maximal dissociation at less than 0.3 microM thin filaments (actin monomer) under all conditions. Caldesmon dissociation was independent of tropomyosin and not co-operative. The concentration of thin filaments where 50% of the caldesmon was dissociated (CD50) ranged from 0.2 microM (actin monomer) at 10.03 to 8 microM at 10.16 in a 5 mM-MgCl2, pH 7.1, buffer. Mg2+, 25 mM at constant I, increased CD50 4-fold. CD50 was 4-fold greater at 10(-4) M-Ca2+ than at 10(-9) M-Ca2+. Aorta heavy meromyosin (HMM).ADP.Pi complex (2.5 microM excess over thin filaments) strongly antagonized caldesmon dissociation, but skeletal-muscle HMM.ADP.Pi did not. The behaviour of caldesmon in native thin filaments was indistinguishable from caldesmon in reconstituted synthetic thin filaments. The variability of Ca2(+)-sensitivity with conditions observed in thin filament preparations was shown to be related to dissociation of regulatory caldesmon from the thin filament.  相似文献   

5.
When homozygous, recessive mutant gene c in Ambystoma mexicanum results in a failure of embryonic heart function. This failure is apparently due to abnormal inductive influences from the anterior endoderm resulting in an absence of normal sarcomeric myofibril formation. Biochemical and immunofluorescent studies were undertaken to evaluate the contractile proteins actin and tropomyosin in normal and mutant hearts. For the immunofluorescent studies, cardiac tissues were fixed in periodate-lysine-paraformaldehyde, frozen sectioned, and immunostained by an indirect method with monospecific polyclonal antibodies produced against highly purified chicken heart actin and tropomyosin. In normal hearts, both antiactin and antitropomyosin stained the myofibrillar I-bands intensely. In mutant hearts, intensity of staining with antiactin antibody was similar to normal, although sarcomeric patterns were not observed. Staining intensity for tropomyosin with antitropomyosin antibody was significantly reduced in mutant hearts when compared to normal. Biochemical studies were used to evaluate antibody specificity, antigenic variability, and relative protein concentrations of actin and tropomyosin in normal and mutant cardiac tissues. Tissue homogenates were electrophoresed in two dimensions, and second-dimension slab gels were either Coomassie Blue silver-stained or transblotted onto nitrocellulose and the proteins stained with antibodies. Stained gels and immunoblots of cardiac proteins reveal that the amounts of actin isoforms are identical in normal and mutant hearts. However, these methods demonstrate a significantly reduced amount of tropomyosin in mutant tissue. This confirms earlier studies suggesting reduced amounts of tropomyosin in mutant hearts based upon immunological assays. Thus, failure of normal myofibrillogenesis in gene c mutant hearts does not appear to result from a change in actin isoform composition but may be related to a deficiency in tropomyosin.  相似文献   

6.
Actin and nonmuscle myosin heavy chain (myosin-II) have been identified and localized in the cortex of unfertilized zebrafish eggs using techniques of SDS-polyacrylamide gel electrophoresis, immunoblotting, and fluorescence microscopy. Whole egg mounts, egg fragments, cryosections, and cortical membrane patches probed with rhodamine phalloidin, fluorescent DNase-I, or anti-actin antibody showed the cortical cytoskeleton to contain two domains of actin: filamentous and nonfilamentous. Filamentous actin was restricted to microplicae and the cytoplasmic face of the plasma membrane where it was organized as an extensive meshwork of interconnecting filaments. The cortical cytoplasm deep to the plasma membrane contained cortical granules and sequestered actin in nonfilamentous form. The cytoplasmic surface (membrane?) of cortical granules displayed an enrichment of nonfilamentous actin. An antibody against human platelet myosin was used to detect myosin-II in whole mounts and egg fragments. Myosin-II colocalized with both filamentous and nonfilamentous actin domains of the cortical cytoskeleton. It was not determined if egg myosin was organized into filaments. Similar to nonfilamentous actin, myosin-II appeared to be concentrated over the surface of cortical granules where staining was in the form of patches and punctate foci. The identification of organized and interconnected domains of filamentous actin, nonfilamentous actin, and myosin-II provides insight into possible functions of these proteins before and after fertilization. © 1996 Wiley-Liss, Inc.  相似文献   

7.
Tropomyosin is a well-characterized regulator of muscle contraction. It also stabilizes actin filaments in a variety of muscle and non-muscle cells. Although these two functions of tropomyosin could have different impacts on actin cytoskeletal organization, their functional relationship has not been studied in the same experimental system. Here, we investigated how tropomyosin stabilizes actin filaments and how this function is influenced by muscle contraction in Caenorhabditis elegans body wall muscle. We confirmed the antagonistic role of tropomyosin against UNC-60B, a muscle-specific ADF/cofilin isoform, in actin filament organization using multiple UNC-60B mutant alleles. Tropomyosin was also antagonistic to UNC-78 (AIP1) in vivo and protected actin filaments from disassembly by UNC-60B and UNC-78 in vitro, suggesting that tropomyosin protects actin filaments from the ADF/cofilin-AIP1 actin disassembly system in muscle cells. A mutation in the myosin heavy chain caused greater reduction in contractility than tropomyosin depletion. However, the myosin mutation showed much weaker suppression of the phenotypes of ADF/cofilin or AIP1 mutants than tropomyosin depletion. These results suggest that muscle contraction has only minor influence on the tropomyosin's protective role against ADF/cofilin and AIP1, and that the two functions of tropomyosin in actin stability and muscle contraction are independent of each other.  相似文献   

8.
An actin-like protein from amoebae of dictyostelium discoideum   总被引:5,自引:0,他引:5  
An actin-like protein has been isolated and purified from amoebae of Dictyostelium discoideum. The 3.7S protein polymerizes upon addition of 0.1 m KCl to a polymer of 26S. An increase in viscosity accompanies this polymerization and electron micrographs have revealed beaded, helical filaments with a diameter of 60–75 Å and an axial periodicity of 350 Å. These F-actin-like filaments produced a 5-fold activation of muscle myosin Mg-ATPase at low ionic strength. When incubated with rabbit muscle heavy meromyosin (HMM) the amoeba F-actin-like protein formed typical “arrowhead” structures with polarized binding of HMM and arrowhead spacings of 350 Å. In SDS polyacrylamide disc gel electrophoresis the purified amoeba protein migrates as a single band corresponding to a molecular weight of 48,000 daltons. The amino acid composition is very similar to that of muscle actin and includes the unusual amino acid 3-methylhistidine.  相似文献   

9.
《Biophysical journal》2019,116(12):2275-2284
The initial binding of tropomyosin onto actin filaments and then its polymerization into continuous cables on the filament surface must be precisely tuned to overall thin-filament structure, function, and performance. Low-affinity interaction of tropomyosin with actin has to be sufficiently strong to localize the tropomyosin on actin, yet not so tight that regulatory movement on filaments is curtailed. Likewise, head-to-tail association of tropomyosin molecules must be favorable enough to promote tropomyosin cable formation but not so tenacious that polymerization precedes filament binding. Arguably, little molecular detail on early tropomyosin binding steps has been revealed since Wegner’s seminal studies on filament assembly almost 40 years ago. Thus, interpretation of mutation-based actin-tropomyosin binding anomalies leading to cardiomyopathies cannot be described fully. In vitro, tropomyosin binding is masked by explosive tropomyosin polymerization once cable formation is initiated on actin filaments. In contrast, in silico analysis, characterizing molecular dynamics simulations of single wild-type and mutant tropomyosin molecules on F-actin, is not complicated by tropomyosin polymerization at all. In fact, molecular dynamics performed here demonstrates that a midpiece tropomyosin domain is essential for normal actin-tropomyosin interaction and that this interaction is strictly conserved in a number of tropomyosin mutant species. Elsewhere along these mutant molecules, twisting and bending corrupts the tropomyosin superhelices as they “lose their grip” on F-actin. We propose that residual interactions displayed by these mutant tropomyosin structures with actin mimic ones that occur in early stages of thin-filament generation, as if the mutants are recapitulating the assembly process but in reverse. We conclude therefore that an initial binding step in tropomyosin assembly onto actin involves interaction of the essential centrally located domain.  相似文献   

10.
The mode of degradation of myofibrillar proteins by the action of highly purified rabbit muscle cathepsin D (EC 3.4.23.5) was studied using SDS-polyacrylamide gel electrophoresis. Cathepsin D optimally degraded myosin heavy chain, α-actinin, tropomyosin, troponin T and troponin I at around pH 3. It did not degrade actin or troponin C. Degradation of myosin heavy chain produced four major fragments of 155 000, 130 000, 110 000 and 90 000 daltons. Troponin T was hydrolyzed to 33 000-, and 20 000- and 11 000-dalton fragments. Troponin I was degraded into fragments of 13 000 and 11 000 daltons. Degradation of α-actinin and tropomyosin was not as rapid as that of mysoin and troponins T and I. Tropomyosin gave a fragment of 30 000 daltons, but α-actinin showed no distinct band of this fragment on gels.  相似文献   

11.
Contraction in striated muscles is regulated by Ca2+-dependent movement of tropomyosin-troponin on thin filaments. Interactions of charged amino acid residues between the surfaces of tropomyosin and actin are believed to play an integral role in this steric mechanism by influencing the position of tropomyosin on the filaments. To investigate this possibility further, thin filaments were isolated from troponin-regulated, indirect flight muscles of Drosophila mutants that express actin with an amino acid charge reversal at residue 93 located at the interface between actin subdomains 1 and 2, in which a lysine residue is substituted for a glutamic acid. Electron microscopy and 3D helical reconstruction were employed to evaluate the structural effects of the mutation. In the absence of Ca2+, tropomyosin was in a position that blocked the myosin-binding sites on actin, as previously found with wild-type filaments. However, in the presence of Ca2+, tropomyosin position in the mutant filaments was much more variable than in the wild-type ones. In most cases (approximately 60%), tropomyosin remained in the blocking position despite the presence of Ca2+, failing to undergo a normal Ca2+-induced change in position. Thus, switching of a negative to a positive charge at position 93 on actin may stabilize negatively charged tropomyosin in the Ca2+-free state regardless of Ca2+ levels, an alteration that, in turn, is likely to interfere with steric regulation and consequently muscle activation. These results highlight the importance of actin's surface charges in determining the distribution of tropomyosin positions on thin filaments derived from troponin-regulated striated muscles.  相似文献   

12.
Tropomodulin and tropomyosin are important components of sarcomeric thin filaments in striated muscles. Tropomyosin decorates the side of actin filaments and enhances tropomodulin capping at the pointed ends of the filaments. Their functional relationship has been extensively characterized in vitro, but in vivo and cellular studies in mammals are often complicated by the presence of functionally redundant isoforms. Here, we used the nematode Caenorhabditis elegans, which has a relatively simple composition of tropomodulin and tropomyosin genes, and demonstrated that tropomodulin (unc-94) and tropomyosin (lev-11) are mutually dependent on each other in their sarcomere localization and regulation of sarcomeric actin assembly. Mutation of tropomodulin caused sarcomere disorganization with formation of actin aggregates. However, the actin aggregation was suppressed when tropomyosin was depleted in the tropomodulin mutant. Tropomyosin was mislocalized to the actin aggregates in the tropomodulin mutants, while sarcomere localization of tropomodulin was lost when tropomyosin was depleted. These results indicate that tropomodulin and tropomyosin are interdependent in the regulation of organized sarcomeric assembly of actin filaments in vivo.  相似文献   

13.
Heavy meromyosin (HMM) forms characteristic arrowhead complexes with actin filaments in situ. These complexes are readily visualized in sectioned muscle. Following HMM treatment similar complexes appear in sectioned fibroblasts, chondrogenic cells, nerve cells, and several types of epithelial cells. Thin filaments freshly isolated from chondrogenic cells also bind HMM and form arrowhead structures in negatively stained preparations. HMM-filament complexes are prominent in the cortex of a variety of normal metaphase and Colcemid-arrested metaphase cells. There is no detectable binding of HMM with other cellular components such as microtubules, 100-A filaments, tonofilaments, membranes, nuclei, or collagen fibrils. The significance of HMM-filament binding is discussed in view of the finding that arrowhead complexes form in types of cells not usually thought to contain actin filaments.  相似文献   

14.
Striated muscle tropomyosin spans seven actin monomers and contains seven quasi-repeating regions with loose sequence similarity. Each region contains a hypothesized actin binding motif. To examine the functions of these regions, full-length tropomyosin was compared with tropomyosin internal deletion mutants spanning either five or four actins. Actin-troponin-tropomyosin filaments lacking tropomyosin regions 2-3 exhibited calcium-sensitive regulation in in vitro motility and myosin S1 ATP hydrolysis experiments, similar to filaments with full-length tropomyosin. In contrast, filaments lacking tropomyosin regions 3-4 were inhibitory to these myosin functions. Deletion of regions 2-4, 3-5, or 4-6 had little effect on tropomyosin binding to actin in the presence of troponin or troponin-Ca(2+), or in the absence of troponin. However, all of these mutants inhibited myosin cycling. Deletion of the quasi-repeating regions diminished the prominent effect of myosin S1 on tropomyosin-actin binding. Interruption of this cooperative, myosin-tropomyosin interaction was least severe for the mutant lacking regions 2-3 and therefore correlated with inhibition of myosin cycling. Regions 3, 4, and 5 each contributed about 1.5 kcal/mol to this process, whereas regions 2 and 6 contributed much less. We suggest that a myosin-induced conformational change in actin facilitates the azimuthal repositioning of tropomyosin which is an essential part of regulation.  相似文献   

15.
The Dictyostelium/Tetrahymena-chimeric actin (Q228K/T229A/A230Y) showed higher Ca(2+)-activation of myosin S1 ATPase in the presence of tropomyosin-troponin. The crystal structure of the chimeric actin is almost the same as that of wild-type except the conformation of the side chain of Leu236. Here, we introduced an additional mutation (L236A), in which the side chain of Leu236 was truncated, into the chimeric actin (Q228K/T229A/A230Y/L236A). Without regulatory proteins, the new mutant actin showed normal myosin S1 activation and normal sliding velocity. However, in the presence of tropomyosin, the new mutant actin activated myosin S1 ATPase higher than the wild-type actin and showed higher velocities in in vitro motility assay at low HMM concentrations. These results suggest that the mutations of A230Y and L236A in the actin subdomain-4 facilitate the transition of thin filaments from a "closed" state to an "open" state.  相似文献   

16.
Intensity fluctuations of laser light scattering were utilized in order to follow enhancement of translational motion of the actin-heavy meromyosin (HMM) complex in extremely dilute solutions accompanied by the hydrolysis of MgATP. Such enhancement was anticipated on the basis of the idea that active streaming along actin filaments should be associated with their mechanochemical reactivity. Native tropomyosin was added in order to stabilize actin in its filamentous form, thus allowing the reduction of actin concentration below 50 micrograms/ml to enable free movement of neighboring filaments and yet give a reliable signal. Analysis of the data in terms of Doppler broadening led to an approximate evaluation of the average velocity of translation of the mobile filaments. This velocity was found to increase with increasing HMM concentration up to a maximum attained at a molar ratio HMM/actin of 1:2, and then decreased. Total intensity measurements indicate that the mobile scatterer is actually a complex of HMM with an isolated actin filament. HMM subfragment-1 was found to be ineffective. These results suggest that cooperation between the two myosin heads is necessary for efficient induction of active streaming along isolated actin filaments.  相似文献   

17.
S Kojima  K Fujiwara  H Onishi 《Biochemistry》1999,38(36):11670-11676
To determine if a thiol group called SH1 has an important role in myosin's motor function, we made a mutant heavy meromyosin (HMM) without the thiol group and analyzed its properties. In chicken gizzard myosin, SH1 is located on the cysteine residue at position 717. By using genetic engineering techniques, this cysteine was substituted with threonine in chicken gizzard HMM, and that mutant HMM and unmutated HMM were expressed in biochemical quantities using a baculovirus system. The basal EDTA-, Ca(2+)-, and Mg(2+)-ATPase activities of the mutant were similar to those of HMM whose SH1 was modified by N-iodoacetyl-N'-(5-sulfo-1-naphthyl)ethylenediamine (IAEDANS). However, while the chemically modified HMM lost the function of the light chain phosphorylation-dependent regulation of the actin-activated ATPase activity, the mutant HMM exhibited the normal light chain-regulated actin-activated ATPase activity. Using an in vitro motility assay system, we found that the IAEDANS-modified HMM was unable to propel actin filaments but that the mutant HMM was able to move actin filaments in a manner indistinguishable from filament sliding generated by unmutated HMM. These results indicate that SH1 itself is not essential for the motor function of myosin and suggest that various effects observed with HMM modified by thiol reagents such as IAEDANS are caused by the bulkiness of the attached probes, which interferes with the swinging motion generated during ATP hydrolysis.  相似文献   

18.
Hearts from cardiac mutant Mexican axolotl, Ambystoma mexicanum, do not form organized myofibrils and fail to beat. Though previous biochemical and immunohistochemical experiments showed a possible reduction of cardiac tropomyosin it was not clear that this caused the lack of organized myofibrils in mutant hearts. We used cationic liposomes to introduce both rabbit and chicken tropomyosin protein into whole hearts of embryonic axolotls in whole heart organ cultures. The mutant hearts had a striking increase in the number of well-organized sarcomeric myofibrils when treated with rabbit or chicken tropomyosin. FITC-labeled rabbit tropomyosin was used to examine the kinetics of incorporation of the exogenous protein into mutant hearts and confirmed the uptake of exogenous protein by the cells of live hearts in culture. By 4 h of transfection, both normal and mutant hearts were found to incorporate FITC-labeled tropomyosin into myofibrils. We also delivered an anti-tropomyosin antibody (CH 1) into normal hearts to disrupt the existing cardiac myofibrils which also resulted in reduced heartbeat rates. CH1 antibody was detected within the hearts and disorganization of the myofibrils was apparent when compared to normal controls. Introduction of a C-protein monoclonal antibody (ALD 66) did not result in a disruption of organized myofibrils. The results show clearly that chicken or rabbit tropomyosin could be incorporated by the mutant hearts and that it was sufficient to overcome the factors causing a lack of myofibril formation in the mutant. This finding also suggests that a lack of organized myofibrils is caused primarily by either inadequate levels of tropomyosin or endogenous tropomyosin in mutant hearts is unsuitable for myofibril formation, which we were able to duplicate with the introduction of tropomyosin antibody. Furthermore, incorporation of a specific exogenous protein or antibody into normal and mutant hearts of the Mexican axolotl in whole heart organ culture offers an unique model to evaluate functionalroles of contractile proteins necessary for cardiac development and differentiation.  相似文献   

19.
A previously unrecognized nonmuscle myosin II heavy chain (NMHC II), which constitutes a distinct branch of the nonmuscle/smooth muscle myosin II family, has recently been revealed in genome data bases. We characterized the biochemical properties and expression patterns of this myosin. Using nucleotide probes and affinity-purified antibodies, we found that the distribution of NMHC II-C mRNA and protein (MYH14) is widespread in human and mouse organs but is quantitatively and qualitatively distinct from NMHC II-A and II-B. In contrast to NMHC II-A and II-B, the mRNA level in human fetal tissues is substantially lower than in adult tissues. Immunofluorescence microscopy showed distinct patterns of expression for all three NMHC isoforms. NMHC II-C contains an alternatively spliced exon of 24 nucleotides in loop I at a location analogous to where a spliced exon appears in NMHC II-B and in the smooth muscle myosin heavy chain. However, unlike neuron-specific expression of the NMHC II-B insert, the NMHC II-C inserted isoform has widespread tissue distribution. Baculovirus expression of noninserted and inserted NMHC II-C heavy meromyosin (HMM II-C/HMM II-C1) resulted in significant quantities of expressed protein (mg of protein) for HMM II-C1 but not for HMM II-C. Functional characterization of HMM II-C1 by actin-activated MgATPase activity demonstrated a V(max) of 0.55 + 0.18 s(-1), which was half-maximally activated at an actin concentration of 16.5 + 7.2 microm. HMM II-C1 translocated actin filaments at a rate of 0.05 + 0.011 microm/s in the absence of tropomyosin and at 0.072 + 0.019 microm/s in the presence of tropomyosin in an in vitro motility assay.  相似文献   

20.
Interactions of the components of reconstituted thin filaments were investigated using a tropomyosin internal deletion mutant, D234, in which actin-binding pseudo-repeats 2, 3, and 4 are missing. D234 retains regions of tropomyosin that bind troponin and form end-to-end tropomyosin bonds, but has a length to span only four instead of seven actin monomers. It inhibits acto-myosin subfragment 1 ATPase (acto-S-1 ATPase) and filament sliding in vitro in both the presence and absence of Ca(2+) (, J. Biol. Chem. 272:14051-14056) and lowers the affinity of S-1.ADP for actin while increasing its cooperative binding. Electron microscopy and three-dimensional reconstruction of reconstituted thin filaments containing actin, troponin, and wild-type or D234 tropomyosin were carried out to determine if Ca(2+)-induced movement of D234 occurred in the filaments. In the presence and absence of Ca(2+), the D234 position was indistinguishable from that of the wild-type tropomyosin, demonstrating that the mutation did not affect normal tropomyosin movement induced by Ca(2+) and troponin. These results suggested that, in the presence of Ca(2+) and troponin, D234 tropomyosin was trapped on filaments in the Ca(2+)-induced position and was unable to undergo a transition to a completely activated position. By adding small amounts of rigor-bonded N-ethyl-maleimide-treated S-1 to mutant thin filaments, thus mimicking the myosin-induced "open" state, inhibition could be overcome and full activation restored. This myosin requirement for full activation provides support for the existence of three functionally distinct thin filament states (off, Ca(2+)-induced, myosin-induced; cf.;, J. Mol. Biol. 266:8-14). We propose a further refinement of the three-state model in which the binding of myosin to actin causes allosteric changes in actin that promote the binding of tropomyosin in an otherwise energetically unfavorable "open" state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号