首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Comparative studies have been made in the specific activity of sorbitol dehydrogenase, glucose-6-phosphate and alcohol dehydrogenases in the cytoplasm from the liver of wild and domestic ducks, hen and pheasant. High activity of all the three enzymes was found in ducks indicating the effective sorbitol (polyol) metabolism of glucose. The activity of glucose-6-phosphate dehydrogenase is an order lower as compared with the activity of sorbitol and alcohol dehydrogenases in the cytoplasm of hen liver. The same relationship was found for the activity of sorbitol dehydrogenase in the cytoplasm of pheasant liver.  相似文献   

2.
Studies have been made on the activity of sorbitol dehydrogenase and glucose-6-phosphate dehydrogenase in the liver of hibernating ground squirrels. It was found that the activity of the former is an order higher than that of the latter. Contribution of sorbitol pathway in total metabolism of the glucose in hibernating ground squirrels is discussed.  相似文献   

3.
The amino acid sequence of sheep liver sorbitol dehydrogenase has been fitted to the high-resolution model of the homologous horse liver alcohol dehydrogenase by computer graphics. This has allowed construction of a model of sorbitol dehydrogenase that provides explanations why sorbitol is not a substrate for alcohol dehydrogenase, why ethanol is not a substrate for sorbitol dehydrogenase, and what determines its specificity for polyols. An important feature of the model is that one of the ligands to the active site zinc atom is a glutamic acid residue instead of a cysteine residue, which is the corresponding ligand in the homologous alcohol dehydrogenases. This is one component of the structural change that can be related to the different substrate specificities, showing how altered enzymic activity might be brought about by structural changes of the kind that it is now possible to introduce by site-directed mutagenesis and recombinant DNA techniques.  相似文献   

4.
1. Cellulose acetate zymograms of alcohol dehydrogenase (ADH), aldehyde dehydrogenase, sorbitol dehydrogenase, aldehyde oxidase, "phenazine" oxidase and xanthine oxidase extracted from tissues of inbred mice were examined. 2. ADH isozymes were differentially distributed in mouse tissues: A2--liver, kidney, adrenals and intestine; B2--all tissues examined; C2--stomach, adrenals, epididymis, ovary, uterus, lung. 3. Two NAD+-specific aldehyde dehydrogenase isozymes were observed in liver and kidney and differentially distributed in other tissues. Alcohol dehydrogenase, aldehyde oxidase, "phenazine" oxidase and xanthine oxidase were also stained when aldehyde dehydrogenase was being examined. 4. Two aldehyde oxidase isozymes exhibited highest activities in liver. 5. "Phenazine oxidase" was widely distributed in mouse tissues whereas xanthine oxidase exhibited highest activity in intestine and liver extracts. 6. Genetic variants for ADH-C2 established its identity with a second form of sorbitol dehydrogenase observed in stomach and other tissues. The major sorbitol dehydrogenase was found in high activity in liver, kidney, pancreas and male reproductive tissues.  相似文献   

5.
A ';null' activity variant phenotype for sorbitol dehydrogenase (SDH) was observed in C57BL/LiA mice and used to examine the genetics of this enzyme. Linkage studies of the locus ( Sdh-1 ) with non-agouti (a) and a biochemical Iocus encoding liver L-α-hydroxyacid oxidase ( Hao-1 ) demonstrated that it is coincident with or closely linked to the structural locus, previously localized on chromosome 2. Alcohol dehydrogenase (ADH) isozymes were also examined, since the liver A2 isozyme exhibited some activity as a sorbitol dehydrogenase on cellulose acetate zymograms. It is apparent that SDH activity is not ';essential' in this mouse strain.  相似文献   

6.
Purification and characterization of human liver sorbitol dehydrogenase   总被引:1,自引:0,他引:1  
W Maret  D S Auld 《Biochemistry》1988,27(5):1622-1628
Sorbitol dehydrogenase from human liver was purified to homogeneity by affinity chromatography on immobilized triazine dyes, conventional cation-exchange chromatography, and high-performance liquid chromatography. The major form is a tetrameric, NAD-specific enzyme containing one zinc atom per subunit. Human liver sorbitol dehydrogenase oxidizes neither ethanol nor other primary alcohols. It catalyzes the oxidation of a secondary alcohol group of polyol substrates such as sorbitol, xylitol, or L-threitol. However, the substrate specificity of human liver sorbitol dehydrogenase is broader than that of the liver enzymes of other sources. The present report describes the stereospecific oxidation of (2R,3R)-2,3-butanediol, indicating a more general function of sorbitol dehydrogenase in the metabolism of secondary alcohols. Thus, the enzyme complements the substrate specificities covered by the three classes of human liver alcohol dehydrogenase.  相似文献   

7.
The activity of fructose cycle enzymes remains practically constant in chick embryonic liver during ontogenesis. Change in ratio of aldolase A to B activities was detected. It is suggested that fructose enters the cycle via the sorbitol pathway in which aldose reductase and sorbitol dehydrogenase are involved.  相似文献   

8.
The relations between the kinetic parameters for both sorbitol oxidation and fructose reduction by sheep liver sorbitol dehydrogenase show that a Theorell-Chance compulsory order mechanism operates from pH 7.4 to 9.9. This is supported by many parallels with the kinetics of horse liver alcohol dehydrogenase, which operates by this classical mechanism. An isotope-exchange study using D-(2H8)sorbitol confirmed the existence of ternary complexes and that, under maximum velocity conditions, their interconversion is not rate-determining. Substrate inhibition at high concentrations of D-sorbitol or D-fructose confirmed rate-determining enzyme--coenzyme product dissociation, slowed by the existence of more stable abortive ternary enzyme-coenzyme product complexes with substrate. The effect of the inhibitor/activator 2,2,2-tribromoethanol showed the existence of enzyme-NAD-CBr3CH2OH complexes inhibiting the first phase of reaction and enzyme-NADH-CBr3CH2OH complexes dissociating more rapidly than the usual rate-determining enzyme-NADH coenzyme product dissociation in the final phase. Inhibition studies with dithiothreitol also confirmed an ordered binding of coenzymes and second substrates to sorbitol dehydrogenase. Neither D-sorbitol nor D-fructose had any effect on enzyme inactivation by the affinity labelling reagent DL-2-bromo-3-(5-imidazolyl)propionic acid, thus giving no evidence for their existence as binary enzyme-substrate complexes. Several alternative polyol substrates for sorbitol dehydrogenase gave the same maximum velocity as sorbitol. This indicated a common rate-limiting binary enzyme-NADH product dissociation and a similarity of mechanism. An enzyme assay for pH 7.0 and 9.9 is given which enables the concentration of sorbitol dehydrogenase to be determined from initial rate measurements of enzyme activity.  相似文献   

9.
Carbon tetrachloride and the sorbitol pathway in the diabetic mouse   总被引:1,自引:0,他引:1  
1. Sorbitol dehydrogenase activity and the hepatic and serum concentrations of sorbitol, glucose and fructose were quantified in diabetic mice. 2. Blood glucose concentrations were increased over 300% by diabetes and were decreased toward normal after insulin-treatment. 3. Hepatic sorbitol concentrations ranged from 7-15 mumol/g and were highest in uncontrolled diabetic mice. 4. Hepatic concentrations of fructose and sorbitol were not affected by insulin administration. 5. Challenge with carbon tetrachloride (25 microliters/kg i.p.) did not alter concentrations of glucose, sorbitol or fructose in blood or liver. 6. Sorbitol dehydrogenase activity in blood was increased similarly in normal, diabetic and insulin-treated diabetic mice after CCl4 administration. 7. The data indicate that sorbitol did not accumulate in diabetic mice, and that induction of diabetes did not increase the susceptibility of mice to CCl4 hepatotoxicity as occurs in rats.  相似文献   

10.
Summary The histochemioal distribution of sorbitol dehydrogenase in normal and cryptorchid rat testis has been studied. In the normal testis sorbitol dehydrogenase is localized in the spermatids, increases during their differentiation and is maximal in those spermatids attached to the Sertoli cells (stages V–VII). In the cryptorchid testis, sorbitol dehydrogenase activity of the spermatids, similarly to that of the Sertoli cells, is completely abolished. Therefore, we conclude that sorbitol dehydrogenase activity of the Sertoli cells depends on the spermatid differentiation.Abbreviations used SBDH sorbitol dehydrogenase - NAD nicotinamide adenine dinucleotide - NBT m-nitroneotetrazolium chloride - PMS phenazine methosulfate - Tris tris (hydroxymethyl) aminomethane  相似文献   

11.
1. The accumulation of glucose, fructose and sorbitol was determined in the lens, liver, and blood from normal, streptozotocin-induced diabetic, and insulin-treated diabetic rats and mice. 2. Sorbitol concentration in rat lens was 10-100 times greater than that in mouse lens, with the highest concentrations in the diabetic animals. 3. Sorbitol levels in rat and mouse liver, and mouse lens were similar and increased only slightly under hyperglycemic conditions. 4. Fructose accumulation was similar in rat and mouse liver and was elevated in the diabetic mouse blood and diabetic rat lens. 5. Aldose reductase activity in rat lens was approximately 350 times that of mouse lens. 6. Lenticular sorbitol dehydrogenase activity in rats was approximately ten times that in mouse lens. 7. Administration of insulin tended to lower liver glucose and subsequent sorbitol formation in the diabetic rat and mouse.  相似文献   

12.
Conditions of continuous registration of enzyme activity are considered on the example of alcohol dehydrogenase and sorbitol dehydrogenase from cytoplasm of the bovine liver cells. A device permitting to register the initial steps of enzyme interaction with the effector (substrate, coenzyme or inhibitor) is described. The importance of the reaction product coupling for analysis of enzyme activity is demonstrated.  相似文献   

13.
Continuous loss of bile in rats with a bile reservoir applied to the common bile duct caused an increase in specific activity of malic dehydrogenase, lactic dehydrogenase, glutamic dehydrogenase, glucose-6-phosphoric dehydrogenase, alkaline and acid phosphatase, urokinase and histidinase in the liver homogenates by the 7th day; the specific activity decreased by the 10th day. Disruption of innervation of the liver caused a sharp decrease of the ATP content and the abovementioned specifc activity in this organ. In continuous loss of bile there were revealed oscillations in the activity of the above-mentioned enzymes and sorbitol dehydrogenase in bile from the 1st to the 10th day of the experiment. Marked changes in the oscillations in the dysinnervated liver were in favour of the fact that those oscillations coursed under the control of the nervous system.  相似文献   

14.
Shimazaki Y  Sugawara Y  Manabe T 《Proteomics》2004,4(5):1406-1411
After cytosol proteins in the mouse liver were separated by nondenaturing two-dimensional electrophoresis (2-DE), activities of several enzymes, such as fructose bisphosphatase, sorbitol dehydrogenase and malate dehydrogenase, transferase and sorbitol dehydrogenase, or several dehydrogenases, were analyzed on the same 2-D gel. Further, peptidase (or protease) activity can be examined by matrix-assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS) when peptides such as angiotensin and adenocorticotropic hormone are incubated in the presence of the cytosol protein separated by nondenaturing 2-DE. Sequence structures of proteins on the 2-D gel were analyzed by peptide mass fingerprinting using MALDI-TOF-MS or by peptide sequencing using electrospray ionization-tandem mass spectrometry (ESI-MS/MS). The combination of activity and sequence structure accurately verified the position and activity range of the separated enzymes on the nondenaturing 2-D gel. From these results, we created a nondenaturing 2-D enzyme profile involving activities and sequence structure of cytosol proteins from mouse liver. This profile can be used for checking whether activities of enzymes were specifically or nonspecifically inhibited by inhibitors.  相似文献   

15.
Erythrocyte sorbitol dehydrogenase activity (EC 1.1.1.14) from selected non-mammalian vertebrates was studied showing great variability not related to their phylogenetical position. The Michaelis-Menten constant (Km) for sorbitol exhibited moderate low values in the studied animals. In snakes the Km for sorbitol was low with moderate activity of sorbitol dehydrogenase, suggesting that the enzyme could reach maximum activity with lower sorbitol concentration in comparison to other vertebrates. In the snakes the enzyme showed the same affinity for all the studied polyols, indicating that we are probably dealing with a very ancient enzyme, an unspecific enzyme.  相似文献   

16.
Structural comparisons of sorbitol dehydrogenase with zinc-containing 'long' alcohol dehydrogenases reveal distant but clear relationships. An alignment suggests 93 positional identities with horse liver alcohol dehydrogenase (25% of 374 positions) and 73 identities with yeast alcohol dehydrogenase (20%). Sorbitol dehydrogenase forms a link between these distantly related alcohol dehydrogenases and is in some regions more similar to one of them that they are to each other. 43 residues (11%) are common to all three enzymes and include a heavy over-representation of glycine (half of all glycine residues in sorbitol dehydrogenase), showing the importance of space restrictions in protein structures. Four regions are well conserved, two in each domain of horse liver alcohol dehydrogenase. They are two segments close to the active-site zinc atom of the catalytic domain, and two in the central beta-pleated sheet strands of the coenzyme-binding domain. These similarities demonstrate the general importance of internal and central building units in proteins. Large variations affect a region adjacent to the third protein ligand to the active-site zinc atom in horse liver alcohol dehydrogenase. Such changes at active sites of related enzymes are unusual. Other large differences concern the segment around the non-catalytic zinc atom of horse liver alcohol dehydrogenase; three of its four cysteine ligands are absent from sorbitol dehydrogenase. Three segments with several exchanges correspond to a continuous region with superficial areas, inter-domain contacts and inter-subunit interactions in the catalytic domain of alcohol dehydrogenase. They may correlate with the altered quaternary structure of sorbitol dehydrogenase. Regions corresponding to top and bottom beta-strands in the coenzyme-binding domain of the alcohol dehydrogenase are also little conserved. Within sorbitol dehydrogenase, a large segment shows an internal similarity. The two distantly related alcohol dehydrogenases and sorbitol dehydrogenase form a triplet of enzymes illustrating basic protein relationships. They are ancestrally close enough to establish similarities, yet sufficiently divergent to illustrate changes in all but fundamental properties.  相似文献   

17.
This study reports a molecular modelling investigation of human sorbitol dehydrogenase complexed with the substrate sorbitol and the inhibitor WAY135 706 based on the structures of human beta3 alcohol dehydrogenase, human sigma alcohol dehydrogenase and horse liver alcohol dehydrogenase. The tertiary structure of human beta3 alcohol dehydrogenase was used as a template for the construction of the model. The rms positional deviation between the main-chain atoms of the initial and final models of sorbitol dehydrogenase is 1.37 A. Similar residue interactions exist between sorbitol dehydrogenase and both sorbitol and inhibitor. Binding of sorbitol in the substrate-binding site results in interactions with Lys-294, Tyr-50, His-69, Glu-150, and NAD+ while WAY135 706 interacts with Ser-46, Lys-294 and Phe-59. The enzyme-inhibitor interactions revealed by this study will be useful in the design of more specific inhibitors.  相似文献   

18.
In apple (Malus domestica Borkh.) sorbitol is the primary product of photosynthesis, the major translocated form of carbon, and a common fruit constituent and storage compound. Previous work on sorbitol metabolism has revealed a NADPH-dependent aldose 6-phosphate reductase (A6PR) in green tissues, and a NAD-dependent sorbitol dehydrogenase in nongreen tissues. Results here show a decrease in sorbitol dehydrogenase activity and an increase in A6PR activity as leaves developing in the spring undergo the transition from sink to source. Sorbitol dehydrogenase activity reached a minimum as A6PR peaked. These changes were related to increases in leaf carbohydrate levels, especially sorbitol, and to increases in rates of net photosynthesis. Studies conducted in the autumn on senescing leaves also showed changes in enzyme activites, leaf carbohydrate levels, and photosynthesis. At this time, however, sorbitol dehydrogenase increased in specific activity, whereas A6PR activity, leaf carbohydrates, and photosynthetic rates all decreased substantially. Other experiments showed differences in the ability of young and mature leaves to metabolize sorbitol and in the distribution of sorbitol enzymes in leaves at transitional developmental stages. The results suggest that sorbitol metabolism in apple is tightly controlled and may be related to mechanisms regulating partitioning or source and sink activity.  相似文献   

19.
The polyol pathway comprises the enzymes aldose reductase and sorbitol dehydrogenase, which convert glucose to sorbitol and sorbitol to fructose, respectively, particularly in hyperglycemic states. The accumulation and toxicity of sorbitol in specific tissues has been implicated in the development of microvascular problems in some diabetic patients. Inappropriate sorbitol accumulation in some patients may be the result of polymorphic variation in the human sorbitol dehydrogenase gene, causing reduced expression levels or enzymatic activity. We now describe the structure and expression profile of the human sorbitol dehydrogenase gene and identify a range of polymorphic variants that may be useful for co-segregation studies in diabetic patients with and without severe clinical complications from their disease.  相似文献   

20.
Co-ordination of catalytic Zn2+ in sorbitol/xylitol dehydrogenases of the medium-chain dehydrogenase/reductase superfamily involves direct or water-mediated interactions from a glutamic acid residue, which substitutes a homologous cysteine ligand in alcohol dehydrogenases of the yeast and liver type. Glu154 of xylitol dehydrogenase from the yeast Galactocandida mastotermitis (termed GmXDH) was mutated to a cysteine residue (E154C) to revert this replacement. In spite of their variable Zn2+ content (0.10-0.40 atom/subunit), purified preparations of E154C exhibited a constant catalytic Zn2+ centre activity (kcat) of 1.19+/-0.03 s(-1) and did not require exogenous Zn2+ for activity or stability. E154C retained 0.019+/-0.003% and 0.74+/-0.03% of wild-type catalytic efficiency (kcat/K(sorbitol)=7800+/-700 M(-1) x s(-1)) and kcat (=161+/-4 s(-1)) for NAD+-dependent oxidation of sorbitol at 25 degrees C respectively. The pH profile of kcat/K(sorbitol) for E154C decreased below an apparent pK of 9.1+/-0.3, reflecting a shift in pK by about +1.7-1.9 pH units compared with the corresponding pH profiles for GmXDH and sheep liver sorbitol dehydrogenase (termed slSDH). The difference in pK for profiles determined in 1H2O and 2H2O solvent was similar and unusually small for all three enzymes (approximately +0.2 log units), suggesting that the observed pK in the binary enzyme-NAD+ complexes could be due to Zn2+-bound water. Under conditions eliminating their different pH-dependences, wild-type and mutant GmXDH displayed similar primary and solvent deuterium kinetic isotope effects of 1.7+/-0.2 (E154C, 1.7+/-0.1) and 1.9+/-0.3 (E154C, 2.4+/-0.2) on kcat/K(sorbitol) respectively. Transient kinetic studies of NAD+ reduction and proton release during sorbitol oxidation by slSDH at pH 8.2 show that two protons are lost with a rate constant of 687+/-12 s(-1) in the pre-steady state, which features a turnover of 0.9+/-0.1 enzyme equivalents as NADH was produced with a rate constant of 409+/-3 s(-1). The results support an auxiliary participation of Glu154 in catalysis, and possible mechanisms of proton transfer in sorbitol/xylitol dehydrogenases are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号