首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fluorescence probes based on the principle of Förster resonance energy transfer (FRET) have shed new light on our understanding of signal transduction cascades. Among them, unimolecular FRET probes containing fluorescence proteins are rapidly increasing in number because these genetically encoded probes can be easily loaded into living cells and allow simple acquisition of FRET images. We have developed probes for small GTPases, tyrosine kinases, serine–threonine kinases and phosphoinositides. Images obtained with these probes have revealed that membrane protrusions such as nascent lamellipodia or neurites provide an active signalling platform in the growth factor-stimulated cells.  相似文献   

2.
Rho-family GTPases regulate many cellular functions. To visualize the activity of Rho-family GTPases in living cells, we developed fluorescence resonance energy transfer (FRET)-based probes for Rac1 and Cdc42 previously (Itoh, R.E., K. Kurokawa, Y. Ohba, H. Yoshizaki, N. Mochizuki, and M. Matsuda. 2002. Mol. Cell. Biol. 22:6582-6591). Here, we added two types of probes for RhoA. One is to monitor the activity balance between guanine nucleotide exchange factors and GTPase-activating proteins, and another is to monitor the level of GTP-RhoA. Using these FRET probes, we imaged the activities of Rho-family GTPases during the cell division of HeLa cells. The activities of RhoA, Rac1, and Cdc42 were high at the plasma membrane in interphase, and decreased rapidly on entry into M phase. From after anaphase, the RhoA activity increased at the plasma membrane including cleavage furrow. Rac1 activity was suppressed at the spindle midzone and increased at the plasma membrane of polar sides after telophase. Cdc42 activity was suppressed at the plasma membrane and was high at the intracellular membrane compartments during cytokinesis. In conclusion, we could use the FRET-based probes to visualize the complex spatio-temporal regulation of Rho-family GTPases during cell division.  相似文献   

3.
Numerous unimolecular, genetically-encoded F?rster Resonance Energy Transfer (FRET) probes for monitoring biochemical activities in live cells have been developed over the past decade. As these probes allow for collection of high frequency, spatially resolved data on signaling events in live cells and tissues, they are an attractive technology for obtaining data to develop quantitative, mathematical models of spatiotemporal signaling dynamics. However, to be useful for such purposes the observed FRET from such probes should be related to a biological quantity of interest through a defined mathematical relationship, which is straightforward when this relationship is linear, and can be difficult otherwise. First, we show that only in rare circumstances is the observed FRET linearly proportional to a biochemical activity. Therefore in most cases FRET measurements should only be compared either to explicitly modeled probes or to concentrations of products of the biochemical activity, but not to activities themselves. Importantly, we find that FRET measured by standard intensity-based, ratiometric methods is inherently non-linear with respect to the fraction of probes undergoing FRET. Alternatively, we find that quantifying FRET either via (1) fluorescence lifetime imaging (FLIM) or (2) ratiometric methods where the donor emission intensity is divided by the directly-excited acceptor emission intensity (denoted R(alt)) is linear with respect to the fraction of probes undergoing FRET. This linearity property allows one to calculate the fraction of active probes based on the FRET measurement. Thus, our results suggest that either FLIM or ratiometric methods based on R(alt) are the preferred techniques for obtaining quantitative data from FRET probe experiments for mathematical modeling purposes.  相似文献   

4.
Numerous unimolecular, genetically-encoded Förster Resonance Energy Transfer (FRET) probes for monitoring biochemical activities in live cells have been developed over the past decade. As these probes allow for collection of high frequency, spatially resolved data on signaling events in live cells and tissues, they are an attractive technology for obtaining data to develop quantitative, mathematical models of spatiotemporal signaling dynamics. However, to be useful for such purposes the observed FRET from such probes should be related to a biological quantity of interest through a defined mathematical relationship, which is straightforward when this relationship is linear, and can be difficult otherwise. First, we show that only in rare circumstances is the observed FRET linearly proportional to a biochemical activity. Therefore in most cases FRET measurements should only be compared either to explicitly modeled probes or to concentrations of products of the biochemical activity, but not to activities themselves. Importantly, we find that FRET measured by standard intensity-based, ratiometric methods is inherently non-linear with respect to the fraction of probes undergoing FRET. Alternatively, we find that quantifying FRET either via (1) fluorescence lifetime imaging (FLIM) or (2) ratiometric methods where the donor emission intensity is divided by the directly-excited acceptor emission intensity (denoted Ralt) is linear with respect to the fraction of probes undergoing FRET. This linearity property allows one to calculate the fraction of active probes based on the FRET measurement. Thus, our results suggest that either FLIM or ratiometric methods based on Ralt are the preferred techniques for obtaining quantitative data from FRET probe experiments for mathematical modeling purposes.  相似文献   

5.
6.
The involvement of the small GTPase Arf6 in Rac activation, cell migration, and cancer invasiveness suggests that it is activated in a spatially and temporally regulated manner. Small GTPase activation has been imaged in cells using probes in which the GTPase and a fragment of a downstream effector protein are fused to fluorescent reporter proteins that constitute a fluorescence resonance energy transfer (FRET) donor/acceptor pair. Unlike other Ras family GTPases, the N terminus of Arf6 is critical for membrane targeting and, thus, cannot be modified by fusion to a fluorescent protein. We found that the previously described C-terminal green fluorescent protein (GFP) derivative also shows diminished membrane targeting. Therefore, we inserted a fluorescent protein into an inert loop within the Arf6 sequence. This fusion showed normal membrane targeting, nucleotide-dependent interaction with the downstream effector GGA3, and normal regulation by a GTPase-activating protein (GAP) and a guanine nucleotide exchange factor (GEF). Using the recently developed CyPET/YPET fluorescent proteins as a FRET pair, we found that Arf6-CyPET underwent efficient energy transfer when bound to YPET-GGA3 effector domain in intact cells. The addition of platelet-derived growth factor (PDGF) to fibroblasts triggered a rapid and transient increase in FRET, indicative of Arf6 activation. These reagents should be useful for investigations of Arf6 activation and function.  相似文献   

7.
Investigation of the intracellular fate of small interference RNA (siRNA) following their delivery into cells is of great interest to elucidate dynamics of siRNA in cytoplasm. However, its cellular delivery and sustainability should be understood at the molecular level and improved for the successful in vivo application of siRNA. Here we present a fluorescence resonance energy transfer (FRET) based method using oligonucleotide probes to study intracellular dissociation (or melting) and sustainability of siRNAs in live cells. The FRET probes were specifically designed to observe intracellular dissociation (or melting) and degradation of short synthetic RNAs in real-time, thus providing the desired kinetic information in cells. Intracellular FRET analysis shows that siRNA duplex is gradually diffused into cytosol, dissociated, and degraded for a duration of 3.5 h, which is confirmed by confocal microscopy colocalization measurements. In addition, our FRET assays reveal the asymmetric degradation as well as the time-dependent dissociation of each siRNA strand. The application of this FRET technique can allow for direct information on siRNA integrity inside living cells, providing a detection tool for dynamics of biological molecules.  相似文献   

8.
Fluorescence resonance energy transfer (FRET) provides a unique means of measuring interatomic distances in biological molecules in real time. Recent advances have been made in the application of this technique to studies of conformational changes in proteins. New ways of introducing fluorescence probes into proteins, newly developed fluorescence probes, and progress in the technologies for fluorescence signal detection have greatly expanded the range of applications of FRET. In particular, studies of conformational changes in proteins at a single molecule level and in the native in vivo context of a living cell are now possible.  相似文献   

9.
Fluorescence resonance energy transfer (FRET) between matched carbocyanine lipid analogs in the plasma membrane outer leaflet of RBL mast cells was used to investigate lateral distributions of lipids and to develop a general method for quantitative measurements of lipid heterogeneity in live cell membranes. FRET measured as fluorescence quenching of long-chain donor probes such as DiO-C18 is greater with long-chain, saturated acceptor probes such as DiI-C16 than with unsaturated or shorter-chain acceptors with the same chromophoric headgroup compared at identical concentrations. FRET measurements between these lipid probes in model membranes support the conclusion that differential donor quenching is not caused by nonideal mixing or spectroscopic differences. Sucrose gradient analysis of plasma membrane-labeled, Triton X-100-lysed cells shows that proximity measured by FRET correlates with the extent of lipid probe partitioning into detergent-resistant membranes. FRET between DiO-C16 and DiI-C16 is sensitive to cholesterol depletion and disruption of liquid order (Lo) by short-chain ceramides, and it is enhanced by cross linking of Lo-associated proteins. Consistent results are obtained when homo-FRET is measured by decreased fluorescence anisotropy of DiI-C16. These results support the existence of nanometer-scale Lo/liquid disorder heterogeneity of lipids in the outer leaflet of the plasma membrane in live cells.  相似文献   

10.
Genetically encoded probes based on Förster resonance energy transfer (FRET) enable us to decipher spatiotemporal information encoded in complex tissues such as the brain. Firstly, this review focuses on FRET probes wherein both the donor and acceptor are fluorescence proteins and are incorporated into a single molecule, i.e. unimolecular probes. Advantages of these probes lie in their easy loading into cells, the simple acquisition of FRET images, and the clear evaluation of data. Next, we introduce our recent study which encompasses FRET imaging and in silico simulation. In nerve growth factor-induced neurite outgrowth in PC12 cells, we found positive and negative signaling feedback loops. We propose that these feedback loops determine neurite-budding sites. We would like to emphasize that it is now time to accelerate crossover research in neuroscience, optics, and computational biology.  相似文献   

11.
We have compared the performance of two Troponin-C-based calcium FRET sensors using fluorescence lifetime read-outs. The first sensor, TN-L15, consists of a Troponin-C fragment inserted between CFP and Citrine while the second sensor, called mTFP-TnC-Cit, was realized by replacing CFP in TN-L15 with monomeric Teal Fluorescent Protein (mTFP1). Using cytosol preparations of transiently transfected mammalian cells, we have measured the fluorescence decay profiles of these sensors at controlled concentrations of calcium using time-correlated single photon counting. These data were fitted to discrete exponential decay models using global analysis to determine the FRET efficiency, fraction of donor molecules undergoing FRET and calcium affinity of these sensors. We have also studied the decay profiles of the donor fluorescent proteins alone and determined the sensitivity of the donor lifetime to temperature and emission wavelength. Live-cell fluorescence lifetime imaging (FLIM) of HEK293T cells expressing each of these sensors was also undertaken. We confirmed that donor fluorescence of mTFP-TnC-Cit fits well to a two-component decay model, while the TN-L15 lifetime data was best fitted to a constrained four-component model, which was supported by phasor analysis of the measured lifetime data. If the constrained global fitting is employed, the TN-L15 sensor can provide a larger dynamic range of lifetime readout than the mTFP-TnC-Cit sensor but the CFP donor is significantly more sensitive to changes in temperature and emission wavelength compared to mTFP and, while the mTFP-TnC-Cit solution phase data broadly agreed with measurements in live cells, this was not the case for the TN-L15 sensor. Our titration experiment also indicates that a similar precision in determination of calcium concentration can be achieved with both FRET biosensors when fitting a single exponential donor fluorescence decay model to the fluorescence decay profiles. We therefore suggest that mTFP-based probes are more suitable for FLIM experiments than CFP-based probes.  相似文献   

12.
V S Malinin  M E Haque  B R Lentz 《Biochemistry》2001,40(28):8292-8299
A number of fluorescent probes have been used to follow membrane fusion events, particularly intermixing of lipids. None of them is ideal. The most popular pair of probes is NBD-PE and Rh-PE, in which the fluorescent groups are attached to the lipid headgroups, making them sensitive to changes in the surrounding medium. Here we present a new assay for monitoring lipid transfer during membrane fusion using the acyl chain tagged fluorescent probes BODIPY500-PC and BODIPY530-PE. Like the NBD-PE/Rh-PE assay, this assay is based on fluorescence resonance energy transfer (FRET) between the donor, BODIPY500, and the acceptor, BODIPY530. The magnitude of FRET is sensitive to the probe surface concentration, allowing one to detect movement of probes from labeled to unlabeled vesicles during fusion. The high quantum yield of fluorescence, high efficiency of FRET (R(o) is estimated to be approximately 60 A), photostability, and localization in the central hydrophobic region of a bilayer all make this pair of probes quite promising for detecting fusion. We have compared this and two other lipid mixing assays for their abilities to detect the initial events of poly(ethylene glycol) (PEG)-mediated fusion of small unilamellar vesicles (SUVs). We found that the BODIPY500/530 assay showed lipid transfer rates consistent with those obtained using the DPHpPC self-quenching assay, while lipid mixing rates measured with the NBD-PE/Rh-PE RET assay were significantly slower. We speculate that the bulky labeled headgroups of NBD-PE and especially Rh-PE molecules hamper movement of probes through the stalk between fusing vesicles, and thus reduce the apparent rate of lipid mixing.  相似文献   

13.
Peripheral tethering factors bind to small GTPases in order to obtain their correct location within the Golgi apparatus. Using fluorescence resonance energy transfer (FRET) and fluorescence lifetime imaging microscopy (FLIM) we visualized interactions between Arabidopsis homologues of tethering factors and small GTPases at the Golgi stacks in planta . Co-expression of the coiled-coil proteins AtGRIP and golgin candidate 5 (GC5) [TATA element modulatory factor (TMF)] and the putative post-Golgi tethering factor AtVPS52 fused to green fluorescent protein (GFP) with mRFP (monomeric red fluorescent protein) fusions to the small GTPases AtRab-H1b, AtRab-H1c and AtARL1 resulted in reduced GFP lifetimes compared to the control proteins. Interestingly, we observed differences in GFP quenching between the different protein combinations as well as selective quenching of GFP-AtVPS52-labelled structures. The data presented here indicate that the FRET-FLIM technique should prove invaluable in assessing protein interactions in living plant cells at the organelle level.  相似文献   

14.
A set of fluorescently-labeled DNA probes that hybridize with the target RNA and produce fluorescence resonance energy transfer (FRET) signals can be utilized for the detection of specific RNA. We have developed probe sets to detect and discriminate single-strand RNA molecules of plant viral genome, and sought a method to improve the FRET signals to handle in vivo applications. Consequently, we found that a double-labeled donor probe labeled with Bodipy dye yielded a remarkable increase in fluorescence intensity compared to a single-labeled donor probe used in an ordinary FRET. This double-labeled donor system can be easily applied to improve various FRET probes since the dependence upon sequence and label position in enhancement is not as strict. Furthermore this method could be applied to other nucleic acid substances, such as oligo RNA and phosphorothioate oligonucleotides (S-oligos) to enhance FRET signal. Although the double-labeled donor probes labeled with a variety of fluorophores had unexpected properties (strange UV-visible absorption spectra, decrease of intensity and decay of donor fluorescence) compared with single-labeled ones, they had no relation to FRET enhancement. This signal amplification mechanism cannot be explained simply based on our current results and knowledge of FRET. Yet it is possible to utilize this double-labeled donor system in various applications of FRET as a simple signal-enhancement method.  相似文献   

15.
The current advances in fluorescence microscopy, coupled with the development of new fluorescent probes, make fluorescence resonance energy transfer (FRET) a powerful technique for studying molecular interactions inside living cells with improved spatial (angstrom) and temporal (nanosecond) resolution, distance range, and sensitivity and a broader range of biological applications.  相似文献   

16.
Xia Z  Liu Y 《Biophysical journal》2001,81(4):2395-2402
Green fluorescence protein (GFP)-based fluorescence resonance energy transfer (FRET) is increasingly used in investigation of inter- and intramolecular interactions in living cells. In this report, we present a modified method for FRET quantification in cultured cells using conventional fluorescence microscopy. To reliably measure FRET, three positive control constructs in which a cyan fluorescence protein and a yellow fluorescence protein were linked by peptides of 15, 24, or 37 amino acid residues were prepared. FRET was detected using a spectrofluorometer, a laser scanning confocal microscope, and an inverted fluorescence microscope. Three calculation methods for FRET quantification using fluorescence microscopes were compared. By normalization against expression levels of GFP fusion proteins, the modified method gave consistent FRET values that could be compared among different cells with varying protein expression levels. Whole-cell global analysis using this method allowed FRET measurement with high spatial resolutions. Using such a procedure, the interaction of synaptic proteins syntaxin and the synaptosomal associated protein of 25 kDa (SNAP-25) was examined in PC12 cells, which showed strong FRET on plasma membranes. These results demonstrate the effectiveness of the modified method for FRET measurement in live cell systems.  相似文献   

17.
A major challenge in cell biology is to elucidate molecular mechanisms that underlie the spatio-temporal control of cellular processes. These studies require microscope imaging techniques and associated optical probes that provide high-contrast and high-resolution images of specific proteins and their complexes. Auto-fluorescence however, can severely compromise image contrast and represents a fundamental limitation for imaging proteins within living cells. We have previously shown that optical switch probes and optical lock-in detection (OLID) image microscopy improve image contrast in high background environments. Here, we present the design, synthesis, and characterization of amino-reactive and cell permeable optical switches that integrate the highly fluorescent fluorophore, tetramethylrhodamine (TMR) and spironaphthoxazine (NISO), a highly efficient optical switch. The NISO moiety in TMR-NISO undergoes rapid and reversible, excited-state driven transitions between a colorless spiro (SP)-state and a colored merocyanine (MC)-state in response to irradiation with 365 and >530 nm light. In the MC-state, the TMR (donor) emission is almost completely extinguished by Förster resonance energy transfer (FRET) to the MC probe (acceptor), whereas in the colorless SP-state, the quantum yield for TMR fluorescence is maximal. Irradiation of TMR-NISO with a defined sequence of 365 and 546 nm manipulates the levels of SP and MC with concomitant modulation of FRET efficiency and the TMR fluorescence signal. High fidelity optical switching of TMR fluorescence is shown for TMR-NISO probes in vitro and for membrane permeable TMR-NISO within living cells.  相似文献   

18.
Förster resonance energy transfer (FRET) is a powerful method for obtaining information about small-scale lengths between biomacromolecules. Visible fluorescent proteins (VFPs) are widely used as spectrally different FRET pairs, where one VFP acts as a donor and another VFP as an acceptor. The VFPs are usually fused to the proteins of interest, and this fusion product is genetically encoded in cells. FRET between VFPs can be determined by analysis of either the fluorescence decay properties of the donor molecule or the rise time of acceptor fluorescence. Time-resolved fluorescence spectroscopy is the technique of choice to perform these measurements. FRET can be measured not only in solution, but also in living cells by the technique of fluorescence lifetime imaging microscopy (FLIM), where fluorescence lifetimes are determined with the spatial resolution of an optical microscope. Here we focus attention on time-resolved fluorescence spectroscopy of purified, selected VFPs (both single VFPs and FRET pairs of VFPs) in cuvette-type experiments. For quantitative interpretation of FRET–FLIM experiments in cellular systems, details of the molecular fluorescence are needed that can be obtained from experiments with isolated VFPs. For analysis of the time-resolved fluorescence experiments of VFPs, we have utilised the maximum entropy method procedure to obtain a distribution of fluorescence lifetimes. Distributed lifetime patterns turn out to have diagnostic value, for instance, in observing populations of VFP pairs that are FRET-inactive.  相似文献   

19.
A method based on two-tiered fluorescence resonant energy transfer (FRET) has been developed for selective and sensitive detection of species involved in a multivalent interaction. Pentavalent binding between cholera toxin and ganglioside GM1 is used as a model system to demonstrate the advantage of the two-tiered FRET over one-stage FRET in both conventional fluorimeter and flow cytometer. In the system, three fluorescent probes (namely, fluorescence donor, acceptor, and intermediate) are covalently tagged to receptors, and the intermediate is used to bridge the energy transfer between the donor and acceptor even though the donor's fluorescence spectrum does not overlap with absorption spectrum of the acceptor. One of the most significant improvements of the scheme over one-stage FRET is a dramatic decrease in the background fluorescence of the acceptor fluorescence, which, theoretically and practically, increases the detection sensitivity.  相似文献   

20.
A FRET-based analysis of SNPs without fluorescent probes   总被引:2,自引:0,他引:2  
Fluorescence resonance energy transfer (FRET) is a simple procedure for detecting specific DNA sequences, and is therefore used in many fields. However, the cost is relatively high, because FRET-based methods usually require fluorescent probes. We have designed a cost-effective way of using FRET, and developed a novel approach for the genotyping of single nucleotide polymorphisms (SNPs) and allele frequency estimation. The key feature of this method is that it uses a DNA-binding fluorogenic molecule, SYBR Green I, as an energy donor for FRET. In this method, single base extension is performed with dideoxynucleotides labeled with an orange dye and a red dye in the presence of SYBR Green I. The dyes incorporated into the extended products accept energy from SYBR Green I and emit fluorescence. We have validated the method with ten SNPs, which were successfully discriminated by end-point measurements of orange and red fluorescence intensity in a microplate fluorescence reader. Using a mixture of homozygous samples, we also confirmed the potential of this method for estimation of allele frequency. Application of this strategy to large-scale studies will reduce the time and cost of genotyping a vast number of SNPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号