首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
We evaluated chloroplast DNA (cpDNA), isozymes, single to low-copy nuclear DNA (RFLPs), and random amplified polymorphic DNAs (RAPDs) in terms of concordance for genetic distance of 15 accessions each of Solanum etuberosum and S. palustre, and 4 accessions of S. fernandezianum. These self-compatible, diploid (2n=24), and morphologically very similar taxa constitute all species in Solanum sect. Etuberosum, a group of non-tuber-bearing species closely related to Solanum sect. Petota (the potato and its wild relatives). Genetic distance and multidimentional scaling results show general concordance of isozymes, RFLPs and RAPDs between all three taxa; cpDNA shows S. etuberosum and S. palustre to be more similar to each other than to S. fernandezianum. Interspecific sampling variance shows a gradation of resolution from allozyme (low) to RAPD to RFLP (high); while intraspecific comparisons graded from RFLPs (low) to RAPDs (high; lack of sufficient allozyme variability within species precluded comparisons for allozymes). Experimental error was low in RFLPs and RAPDs.Names are necessary to report factually and available data; however, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by USDA implies no approval of the product to the exclusion of others that may also be suitable  相似文献   

2.
Phenakospermum guyannense is a monotypic, arborescent, long-lived monocot that is widespread in Amazonian South America. This outcrossing species is pollinated primarily by phyllostomid bats. Given these life-history characteristics,P. guyannense is expected to exhibit high levels of genetic variation and gene flow. We used isozyme electrophoresis and randomly amplified polymorphic DNA (RAPD) to characterize genetic variation in populations ofP. guyannense from French Guiana. Both measures detected a surprisingly low level of genetic variation, with only five out of twenty (25%) allozyme loci polymorphic (P), 1.35 alleles per locus (A), and an expected heterozygosity (He) of 0.090 at the species level. Isozymic genetic variation was even lower within populations (P = 17.5, A = 1.24, He = 0.074), and was corroborated by a RAPD assay that used 26 arbitrary primers (P = 3.61, A = 1.04, He = 0.014). Although overall levels of variation were low, the detectable variation was distributed as would be expected for an outcrossing species with extensive gene flow (mean GST = 0.230). We suspect thatP. guyannense is depauperate in genetic variation because of a series of bottlenecks that affected the species over this portion of its range.  相似文献   

3.
Genetic similarity among 45 Brassica Oleracea genotypes was compared using two molecular markers, random amplified polymorphic DNA (RAPD) and restriction fragment length polymorphisms (RFLPs). The genotypes included 37 broccolis (var. italica), five cauliflowers (var. botrytis) and three cabbages (var. capitata) which represented a wide range of commercially-available germplasm, and included open-pollinated cultivars, commercial hybrids, and inbred parents of hybrid cultivars. Fifty-six polymorphic RFLP bands and 181 polymorphic RAPD bands were generated using 15 random cDNA probes and 62 10-mer primers, respectively. The objectives were to compare RFLP and RAPD markers with regard to their (1) sampling variance, (2) rank correlations of genetic distance among sub-samples, and (3) inheritance. A bootstrap procedure was used to generate 200 random samples of size n (n=2,3,5,... 55) independently from the RAPD and RFLP data sets. The coefficient of variance (CV) was estimated for each sample. Pooled regressions of the coefficient of variance on bootstrap sample size indicated that the rate of decrease in CV with increasing sample size was the same for RFLPs and RAPDs. The rank correlation between the Nei-Li genetic similarity values for all pairs of genotypes (990) based on RFLP and RAPD data was 0.745. Differences were observed between the RFLP and RAPD dendrograms of the 45 genotypes. Overlap in the distributions of rank correlations between independent sub-samples from the RAPD data set, compared to correlations between RFLP and RAPD sub-samples, suggest that observed differences in estimation of genetic similarity between RAPDs and RFLPs is largely due to sampling error rather than due to DNA-based differences in how RAPDs and RFLPs reveal polymorphisms. A crossing algorithm was used to generate hypothetical banding patterns of hybrids based on the genotypes of the parents. The results of this study indicate that RAPDs provide a level of resolution equivalent to RFLPs for detemination of the genetic relationships among genotypes.  相似文献   

4.
Buffalograss, Buchloë dactyloides, is widely distributed throughout the Great Plains of North America, where it is an important species for rangeland forage and soil conservation. The species consists of two widespread polyploid races, with narrowly endemic diploid populations known from two regions: central Mexico and Gulf Coast Texas. We describe and compare the patterns of allozyme and RAPD variation in the two diploid races, using a set of 48 individuals from Texas and Mexico (four population samples of 12 individuals each). Twelve of 22 allozyme loci were polymorphic, exhibiting 35 alleles, while seven 10-mer RAPD primers revealed 98 polymorphic bands. Strong regional differences were detected in the extent of allozyme polymorphism: Mexican populations exhibited more internal gene diversity (He= 0.20, 0.19) than did the Texan populations (He= 0.08, 0.06), although the number of RAPD bands in Texas (n= 62) was only marginally smaller than in Mexico (n= 68). F-statistics for the allozyme data, averaged over loci, revealed strong regional differentiation (mean FRT=+ 0.30), as well as some differentiation among populations within regions (mean FPR=+ 0.09). In order to describe and compare the partitioning of genetic variation for multiple allozyme and RAPD loci, we performed an Analysis of Molecular Variance (AMOVA). AMOVA for both allozyme and RAPD data revealed similar qualitative patterns: large regional differences and smaller (but significant) population differences within regions. RAPDs revealed greater variation among regions (58.4% of total variance) than allozymes (45.2%), but less variation among individuals within populations (31.9% for RAPDs vs. 45.2% for allozymes); the proportion of genetic variance among populations within regions was similar (9.7% for RAPDs vs. 9.6% for allozymes). Despite this large-scale concordance of allozyme and RAPD variation patterns, multiple correlation Mantel techniques revealed that the correlations were low on an individual by individual basis. Our findings of strong regional differences among the diploid races will facilitate further study of polyploid evolution in buffalograss.  相似文献   

5.
The levels of genetic diversity were compared by means of 35 allozyme, 60 RAPD, and 25 microsatellite (SSR) markers for 75–175 individuals of tetraploid wild emmer wheat (Triticum dicoccoides) collected in 1993 from a microgeographic microsite, Ammiad, north of the Sea of Galilee, Israel. This microsite included four major habitats, which showed highly significant differentiation in ecological factors, in particular with respect to rock cover, proximity and height, and surface soil moisture in the early growing season of T. dicoccoides. Higher within-subpopulation genetic diversity was found in the primarily non-coding DNA regions (RAPD and SSR) rather than in the protein-coding (allozymes) regions. However, much larger gene differentiation (G ST) among the subpopulations was observed in the protein-coding allozymes than in the RAPDs and SSRs. Larger genetic distance was found at SSR loci, followed by allozyme and RAPD loci. The subpopulations in drier habitats tend to have higher allozyme, RAPD and SSR diversities (He), the relatively wet Karst subpopulation showed only about half He of the other relatively drier habitats. The subpopulations with larger difference of soil moisture between habitats tend to show larger genetic distances at allozyme, RAPD and SSR loci. These results suggest that climatic selection through aridity stress may be an important factor acting on both structural protein-coding and presumably partly regulatory non-coding DNA regions, resulting in microscale adaptive patterns, although hitchhiking and random drift may also intervene. These results have profound implications for genetic conservation both in situ and ex situ.  相似文献   

6.
Summary On 27 September 1985, Hurricane Gloria intersected the Rhode Island land mass and disrupted normal autumnal element resorption in 20 ramets of a trembling aspen clone (Populus tremuloides). No mechanical injury to the plants was observed, but in contrast to undamaged aspens, the wind/salt-damaged aspens did not withdraw nitrogen (N) or phosphorus (P) from senescing leaves. There was actually 17% more N in abscising leaves than in presenescent, pre-hurricane leaves.  相似文献   

7.
Random amplified polymorphic DNA (RAPD) markers were used to determine the levels and pattern of molecular variation in four populations of Elymus trachycaulus, and to estimate genetic similarity among different populations of E. trachycaulus from British Columbia and the Northwest Territories and one population of Elymus alaskanus from the Northwest Territories. Based on 124 RAPD bands (loci), mean percent polymorphic loci for E. trachycaulus (PP) was 67.4% (a range 41.2% to 86.3%), and mean gene diversity (He) for E. trachycaulus species was 0.23 (range 0.18 to 0.27). The total genetic diversity was 0.32. Differentiation among populations was 31% (FST = 0.31) with most of the genetic variation found within populations (69%). This pattern of genetic variation was different from that reported for inbred species in general.The authors are very grateful to Michael Bond for excellent Laboratory assistance, to Dr. Mary Barkworth for her encouragement. This study was supported by a Natural Science and Engineering Research Council (NSERC) discovery grant and by a Saint Marys University Internal grant to G.S.  相似文献   

8.
Randomly amplified polymorphic DNA (RAPD) was used to examine genomic diversity in taxa of the neotropical legume genusLeucaena. Data were analysed using both similarity- and parsimony-based approaches and the data compared to a parsimonybased analysis of chloroplast DNA restriction fragment length polymorphisms (RFLP). Distance-based methods of RAPD analysis produced groups inconsistent with those identified by RFLP analysis. Parsimony-based analysis of the data produced groupings largely consistent with those identified using RFLPs. The major differences were grouping of the two subspecies ofLeucaena diversifolia (subsp.diversifolia and subsp.stenocarpa) in the RAPD tree, but their separation in the RFLP tree. The value of RAPD data in systematics as a result of these data and our understanding of the molecular basis of RAPDs are discussed.  相似文献   

9.
Summary Estimates were made of the above-ground biomass and contents of N, P, K, Ca, Mg, Mn, Na, Fe, Zn, Al, and Cu in fertilized (N 448 kg/ha, P 112 kg/ha, lime 4480 kg/ha) and unfertilized white birch (Betula papyrifera Marsh.) and bigtooth aspen (Populus grandidentata Michx.). For individuals of both species, fertilization increased the average above-ground biomass increment and the N and P content increment by 150 per cent and 300 per cent, respectively, but decreased uptake of Mn and Zn. The allocation of biomass and elements differs not only between species, but within species under untreated and fertilized conditions.  相似文献   

10.
Zhang ZY  Chen LY  Li DZ 《Biochemical genetics》2005,43(5-6):239-249
With only 32 individuals in the northeastern corner of Yunnan Province, China, Pinus squamata is one of the most endangered conifers in the world. Using two classes of molecular markers, RAPD and ISSR, its very low genetic variation was revealed. Shannon's index of phenotypic diversity (I) was 0.030, the mean effective number of alleles per locus (Ae) was 1.032, the percentage of polymorphic loci (P) was 6.45, and the expected heterozygosity (He) was 0.019 at the species level based on RAPD markers. The results of ISSR were consistent with those detected by RAPD but somewhat higher (I = 0.048, Ae = 1.042, P = 12.3, He = 0.029). The genetic variation of the subpopulation on the southwest-facing slope was much higher than that of the subpopulation on the northeast-facing slope, which may be attributed to the more diverse environment on the southwest-facing slope. The genetic differentiation between the two subpopulations was very low. The between-subpopulation variabilities, ΦST, calculated from RAPD and ISSR data were 0.011 and 0.024. Because of the lack of fossil records and geological historical data, it was difficult to explain the extremely low genetic diversity of the species. We postulate that this ancient pine might have experienced strong bottlenecks during its long evolutionary history, which caused the loss of genetic variation. Genetic drift and inbreeding in post-bottlenecked small populations may be the major forces that contribute to low genetic diversity. Human activities such as logging may have accelerated the loss of genetic diversity in P. squamata.  相似文献   

11.
12.
RAPDs were employed as genetic markers to detect interspecific hybridization between the closely related oak speciesQuercus robur andQ. petraea. Fourteen primers were used in order to check the genetic status (pure or hybrid) of individuals classified morphologically. Among the 147 PCR fragments obtained 11 appear to be species-specific. In the phenotypically intermediate individuals different combinations of these species-specific bands were obtained. The patterns in these putative hybrids were not additive, which may be either the result of repeated backcrossing and introgression between the two species or of heterozygosity within the parental species. The results of the RAPD study are consistent with morphological analyses and allozyme data obtained for theGot-2 locus. Thus the RAPD markers used in this study may provide a powerful genetic tool for the identification of hybrids and the discrimination between the two pure species.  相似文献   

13.
Allozyme variation at eleven loci encoding seven enzyme systems were examined in 20 populations of diploid (genome AA, 2n = 16)Scilla scilloides in China. In comparison with the average species of seed plants studied, populations of this species display a high amount of genetic variation (A = 2.0, P = 58.6%, Ho = 0.172, and He = 0.185). Allozyme variation pattern revealed predominant outcrossing within populations and considerable differentiation (FST = 0.314) among populations as well as between the subtropic and temperate regions. The wide distribution, long existence and outcrossing are presumably the main factors responsible for the high genetic diversity within populations. But the gravity dispersal of seeds and pollination by small insects set limits to the increase of genetic variation within populations and promote differentiation between populations and regions. In addition, allozyme variation does not distinguishS. scilloides var.albo-viridis and suggests that subtropic populations may be considered as a genetic entity.  相似文献   

14.
One hundred and ten markers were analysed for linkage in 218 F2 plants derived from two divergent cultivars (Védrantais and Songwhan Charmi) of Cucumis melo (L.). Thirty-four RFLPs, 64 RAPDs, one isozyme, four disease resistance markers and one morphological marker were used to construct a genetic map spanning 14 linkage groups covering 1390 cM of the melon genome. RAPD and RFLP markers detected similar polymorphism levels. RFLPs were largely due to base substitutions rather than insertion/deletions. Twelve percent of markers showed distorted segregation. Phenotypic markers consisted of two resistance genes against Fusarium wilt (Fom-1 and Fom-2), one gene (nsv) controlling the resistance to melon necrotic spot virus, one gene (Vat) conferring resistance to Aphis gossypii, and a recessive gene for carpel numbers (3 vs 5 carpels: p).  相似文献   

15.
We have evaluated three DNA-based marker types for linkage map construction in Populus: RFLPs detected by Southern blot hybridization, STSs detected by a combination of PCR and RFLP analysis, and RAPDs. The mapping pedigree consists of three generations, with the F1 produced by interspecific hybridization between a P. trichocarpa female and a P. deltoides male. The F2 generation was made by inbreeding to the maximum degree permitted by the dioecious mating system of Populus. The applicability of STSs and RAPDs outside the mapping pedigree has been investigated, showing that these PCR-based marker systems are well-suited to breeding designs involving interspecific hybridization. A Populus genome map (343 markers) has been constructed from a combination of all three types. The length of the Populus genome is estimated to be 2400–2800 cM.Abbreviations RFLP restriction fragment length polymorphism - STS sequence-tagged site - PCR polymerase chain reaction - RAPD random amplified polymorphic DNA  相似文献   

16.
Twenty-six accessions of wildArachis species and domesticated peanuts,A. hypogaea, introduced from South America were analyzed for random amplified polymorphic DNA (RAPD). The objective of the study was to investigate inter- and intraspecific variation and affinities among species of sect.Arachis which have been proposed as possible progenitors for the domesticated peanut. Ten primers resolved 132 DNA bands which were useful for separating species and accessions. The most variation was observed among accessions ofA. cardenasii andA. glandulifera whereas the least amount of variation was observed inA. hypogaea andA. monticola. The two tetraploid species could not be separated by using RAPDs.Arachis duranensis was most closely related to the domesticated peanut and is believed to be the donor of the A genome. The data indicated thatA. batizocoi, a species previously hypothesized to contribute the B genome toA. hypogaea, was not involved in its evolution. The investigation showed that RAPDs can be used to analyze both inter- and intraspecific variation in peanut species. Southern hybridization of RAPD probes to blots containing RAPD of theArachis species provided information on genomic relationships and revealed the repetitive nature of the amplified DNA.  相似文献   

17.
Cladistic analyses of 17 wild and cultivated pea taxa were performed using morphological characters, and allozyme and RAPD (random amplified polymorphic DNA) markers. Both branch-and-bound and bootstrap searches produced cladograms that confirmed the close relationships among the wild species and cultivars of Pisum proposed by a variety of systematic studies. Intraspecific rankings were supported for northern P. humile, southern P. humile, P. elatius and P. sativum, which together comprise a single-species complex. P. fulvum, while clearly the most divergent of the pea taxa, could also be assigned to the same species complex without violating the hierarchial logic of the cladogram. Its inclusion or exclusion depends on whether the level of interfertility it displays with other pea taxa or its overall morphological and chromosomal distinction are emphasized. As suggested by previous studies, northern P. humile was the most likely sister taxon to cultivated P. sativum; although, rigorous phylogenetic evaluation revealed a close genealogical affinity among P. elatius, northern P. humile and P. sativum. Despite their limited number, the 16 morphological characters and allozyme markers used precisely organized the pea taxa into established taxonomic groupings, perhaps in part reflecting the role morphology has played historically in pea classification. The RAPD data also generally supported these same groupings and provided additional information regarding the relationships among the taxa. Given that RAPDs are relatively quick and easy to use, are refractory to many environmental influences, can be generated in large numbers, and can complement traditional characters that may be limited in availability, they provide a valuable new resource for phylogenetic studies.  相似文献   

18.
A genetic linkage map for radiata pine (Pinus radiata D. Don) has been constructed using segregation data from a three-generation outbred pedigree. A total of 208 loci were analyzed including 165 restriction fragment length polymorphism (RFLP), 41 random amplified polymorphic DNA (RAPD) and 2 microsatellite markers. The markers were assembled into 22 linkage groups of 2 or more loci and covered a total distance of 1382 cM. Thirteen loci were unlinked to any other marker. Of the RFLP loci that were mapped, 93 were detected by loblolly pine (P. taeda L.) cDNA probes that had been previously mapped or evaluated in that species. The remaining 72 RFLP loci were detected by radiata pine probes from a PstI genomic DNA library. Two hundred and eighty RAPD primers were evaluated, and 41 loci which were segregating in a 11 ratio were mapped. Two microsatellite markers were also placed on the map. This map and the markers derived from it will have wide applicability to genetic studies in P. radiata and other pine species.  相似文献   

19.
A preliminary genetic map of the dioecious species Asparagus officinalis L. (2n = 20) has been constructed on the basis of restriction fragment length polymorphism (RFLP) and isozyme marker data. With DNA samples digested with either EcoRI or HindIII 61 out of 148 probes (41%) identified RFLPs in six families of doubled haploid lines obtained through anther culture. A higher level of polymorphism (65%) was observed when a single family was screened for RFLPs using six distinct restriction enzymes. Segregation analysis of the BC progenies (40–80 individuals) resulted in a 418-cM extended map comprising 43 markers: 39 RFLPs, three isozymes and one morphological (sex). These markers are clustered in 12 linkage groups and four of them exhibited significant deviations from the expected 11 ratio. One isozyme and three RFLP markers were assigned to the sex chromosome.  相似文献   

20.
The F2 generations from two maize crosses were used to compare the ability of RAPD and RFLP marker systems to create a genetic linkage map. Both RFLPs and RAPDs were shown to provide Mendelian-type markers. Most of the RFLPs (80%) could be placed with a good level of certainty (LOD>4) on the genetic linkage map. However, because of their dominant nature, only between 37% and 59% of the RAPDs could be placed with such a LOD score. The use of combined data from RFLPs and RAPDs increases the level of information provided by RAPDs and allows the creation of a combined RFLP/RAPD genetic linkage map. Thus, the RAPD technique was found to be a powerful method to provide improved probes coverage on a previously created RFLP map and to locate markers linked to chromosomal regions of interest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号