首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Transformation of iron and manganese under three different moisture regimes,viz continuous waterlogged (W1), continuous saturated (W2) and alternate waterlogged and saturated (W3) and three levels of organic matterviz 0, 0.5 and 1.0% in all possible combinations was studied in four soils. The results showed that under waterlogged moisture regime there was a sharp increase in the content of water soluble plus exchangeable manganese accompanied by significant decrease in the content of reducible manganese in all the soils excepting the acidic soil which was very poor in active manganese content. The increase in respect of iron in similar form was, however, very small. The increase in the content of water soluble plus exchangeable manganese as well as iron under the continuous saturated and alternate waterlogged and saturated moisture regimes was always much lower as compared to that under the continuous waterlogged condition. Application of organic matter brought about an increase in the content of water soluble plus exchangeable manganese in all the soils excepting the lateritic one irrespective of moisture regimes but did not cause any change in the content of iron and manganese in insoluble complex. The content of water soluble plus exchangeable iron and of insoluble ferrous iron although recorded some increase due to organic matter application, the increase was not so marked in any of the soils.  相似文献   

2.
Summary Laboratory incubation experiment was conducted with a clay loam alluvial lowland rice soil to study the relative effectiveness of two sources of Zn (ZnEDTA and ZnSO4) in maintaining Zn availability in soil under two moisture regimes (saturated and waterlogged) both in presence as well as absence of added organic matter. The results showed that ZnEDTA was always more effective than ZnSO4 in maintaining higher amount of zinc in available form in soil for a longer perid. Results of greenhouse experiment conducted with rice showed that concentration and uptake of Zn by roots were generally higher with ZnEDTA than with ZnSO4 both in presence and absence of added organic matter, whereas in respect of shoot this was true only in absence of added organic matter.  相似文献   

3.
Dynamics of organic matter in soils   总被引:11,自引:0,他引:11  
E. A. Paul 《Plant and Soil》1984,76(1-3):275-285
Summary Dynamics of C, N, S, and to some extent P are expressed by a knowledge of the size and turnover rates of plant constituents such as soluble C and N components, cellulose and hemicellulose, and lignin. Soil organic matter constituents include: the microbial biomass as determined chemically or microscopically, non-biomass active components determined by isotopic dilution, stabilized N constituents for which good techniques are not yet available, and resistant or old C and associated N determined by carbon dating. The processes involved in the nutrient transformations and transfers are reasonably well understood. The control mechanisms require further elucidation to be able to extrapolate from the laboratory to the field, and between field sites. Major control mechanisms requiring further insight include the effects of C availability on transformations of C and N. The other control for which every little is known is that of spatial compartmentalization. Compartmentalization ranges from landscape or management sequences to pedogenic layers, rhizosphere-mycorrhizal effects, clay-sesquioxide surfaces, aggregation, localized enzymes, and microbial effects such as membrane boundaries. Control mechanisms for concurrent mineralization-immobilization, the stabilization of microbial products, and the relative role of the biomass as a catalyst rather than as a source-sink for nutrients, must be understood. There is potential for combining a knowledge of microbial production and turnover with that of the roles of the soil organic active fraction as a temporary storehouse for nutrients. This, in conjunction with management techniques such as zero tillage and crop rotation, should make it possible to better utilize soil and fertilizer N, especially in areas of the world where the cost of nutrients is high relative to the value of the crop grown.Introductory lecture  相似文献   

4.
侵蚀泥沙、有机质和全氮富集规律研究   总被引:34,自引:1,他引:34  
在自然降雨下,研究降雨,坡度,耕作和施肥对侵蚀泥沙,有机质和全N富集率的影响,分析土壤和泥沙颗粒组成,富集与泥沙有机质和全N富集的关系,揭示土壤有机质和全N在泥沙中的富集规律,结果表明,泥沙粘粒的富集导致有机质和全N的富集,泥沙粘粒,有机质和全N富集率分别平均为1.77,2.09和1.61,土壤侵蚀模数与泥沙有机质和全N富集率呈显著的负相关关系,降雨,坡度,施肥和耕作措施对泥沙有机质富集作用的影响通过减少土壤侵蚀模数来实现的,减少土壤侵蚀的措施可增加泥沙有机质和全N的富集。  相似文献   

5.
Soil organic matter and yield of forest and tree crops   总被引:2,自引:0,他引:2  
Summary Three hundred and sixty eight soil samples collected from the surface layers of plantations of coffee (Coffea robusta) andGmelina arborea (a forest tree crop) were analyzed for organic carbon, total nitrogen and loss-on-ignition as the case might be. The aim was to investigate the direct influence of soil organic matter on the yield of tree crops in different ecological zones of Nigeria. Coffee yield collected at different harvests and total coffee yield were seperately regressed on soil organic carbon content. In most cases, positive regressions of coffee yield on soil organic carbon were recorded. Consistent positive correlations between each of indicators of soil organic matter and girth ofGmelina arborea were recorded in the order of organic carbon, nitrogen and loss-on-ignition. The relationship between C: N ratio and the performance of Gmelina depended on which of organic carbon and soil nitrogen was more influential at a particular location.  相似文献   

6.
7.
溶解性有机质对土壤中有机污染物环境行为的影响   总被引:28,自引:4,他引:28  
土壤中溶解性有机质(DOM)是生物活性和物理化学反应活性都很活跃的有机组分,主要通过疏水吸附、分配、氢键、电荷转移、共价键、范德华力等多种作用与有机污染物结合,提高溶液中有机污染物的溶解度,改变土壤中有机污染物的吸附-解吸、迁移-转化等环境行为.DOM对有机污染物的吸附-解吸、迁移-转化过程的影响有双重性:一方面,DOM与有机污染物在土壤表面的共吸附可增加土壤对有机污染物的吸附容量,促进有机污染物在土壤中的吸持;另一方面,DOM对有机污染物的增溶作用,有利于土壤中有机污染物的解吸,提高移动性.作为光敏剂,DOM能提高土壤中有机物的光解反应速率.在一定条件下,DOM也可影响土壤中有机污染物的水解过程.DOM对土壤中有机污染物环境行为的影响与DOM和有机污染物的性质及其相互作用的介质条件密切相关.  相似文献   

8.
Inland dunes in northwestern Europe support a number of dry vegetation types. These ecosystems are poor in nutrients and it has been suggested that accumulation of nutrients triggers succession in such systems.We studied the accumulation of organic matter and N and P over a 30 months period in two adjacent ecosystems, the Spergulo-Corynephoretum and the Genisto-Callunetum. Amounts of plant matter and soil organic matter significantly accumulated during the sampling period in the Genisto-Callunetum but not in the Spergulo-Corynephoretum. While nutrient concentrations of live and dead phytomass in the Spergulo-Corynephoretum were significantly higher than in the Genisto-Callunetum, total nutrient contents in the systems showed the opposite pattern. N and P concentrations in litter were relatively high compared with the other fractions of plant matter and the amount of N significantly increased in both ecosystems during the sampling period. Soil moisture contents showed a seasonal pattern. It was highest in the top soil layer and higher in the Genisto-Callunetum than in the Spergulo-Corynephoretum.The estimated annual increase of total N in these two ecosystems was consistent with rates of atmospheric N deposition (wet fall + dry fall) measured in comparable Dutch sites.  相似文献   

9.
Allochthonous inputs of detritus represent an important energy source for streams in forested regions, but dynamics of these materials are not well studied in neotropical headwater streams. As part of the tropical amphibian declines in streams (TADS) project, we quantified benthic organic matter standing stocks and organic seston dynamics in four Panamanian headwater streams, two with (pre-amphibian decline) and two without (post-decline) healthy amphibian assemblages. We also measured direct litterfall and lateral litter inputs in two of these streams. Continuous litterfall and monthly benthic samples were collected for 1 year, and seston was collected 1–3 times/month for 1 year at or near baseflow. Direct litterfall was similar between the two streams examined, ranging from 934–1,137 g DM m−2 y−1. Lateral inputs were lower, ranging from 140–187 g DM m−1 y−1. Dead leaves (57–60%), wood (24–29%), and green leaves (8–9%) contributed most to inputs, and total inputs were generally higher during the rainy season. Annual habitat-weighted benthic organic matter standing stocks ranged from 101–171 g AFDM m−2 across the four study reaches, with ∼4 × higher values in pools compared to erosional habitats. Total benthic organic matter (BOM) values did not change appreciably with season, but coarse particulate organic matter (CPOM, >1 mm) generally decreased and very fine particulate organic matter (VFPOM, 1.6–250 μm) generally increased during the dry season. Average annual seston concentrations ranged from 0.2–0.6 mg AFDM l−1 (fine seston, <754 μm >250 μm) and 2.0–4.7 mg AFDM l−1 (very fine, <250 μm >1.6 μm), with very fine particles composing 85–92% of total seston. Quality of fine seston particles in the two reaches where tadpoles were present was significantly higher (lower C/N) than the two where tadpoles had been severely reduced (P = 0.0028), suggesting that ongoing amphibian declines in this region are negatively influencing the quality of particles exported from headwaters. Compared to forested streams in other regions, these systems receive relatively high amounts of allochthonous litter inputs but have low in-stream storage. Handling editor: J. Padisak  相似文献   

10.
van de Geijn  S. C.  van Veen  J. A. 《Plant Ecology》1993,104(1):283-292
The complexity of the plant-soil system in its interaction with the changing climate is discussed. It is shown that processes at the level of organic matter inputs into the soil and the fluxes and pools involved in the global cycle are not known in sufficient detail to allow an estimation of the future quantitative shifts. Even the direction in which the level of stored carbon in the soil organic matter pool will develop is not clear. The importance of the nitrogen cycle, which is intimately coupled to the carbon cycle through the turnover of soil organic matter is underlined. In its turn, the mineralisation of soil organic matter takes place at a rate which is highly dependent on the nature of inputs and the availability of mineral nutrients.Aspects of shifts in temperature, changes in cultivation practices (reduced tillage) and unintended spreading of inputs in chemical N-fertilizers are of great importance at a regional and global scale.The complexity of the interactions in the process of mineralisation do require further studies to clarify the point whether a substantial and durable additional storage of carbon in soil organic matter is likely, or that shifts in temperature will cause an overriding acceleration of the mineralisation, and trigger a corresponding net release of carbon.  相似文献   

11.
Application of organic manure (OM) and crop residues in agricultural soils can potentially influence positively or negatively the availability of soil phosphorus (P) through soil mineralization, sorption, or desorption of soil-bound P. Traditionally, the addition of OM can reduce the capacity of the soil colloids to adsorb P, thus increasing the release of P in soil solution, but also added OM can increase the adsorption site and increase the fixation or sorption of P to soil colloids, thus reducing the availability of P in soil solution and loss to the environment. The highly weathered tropical soils (HWTS) are susceptible to P insufficiency because HWTS have high P adsorption and fixation; this is mainly due to high concentration of P adsorbent. The main P adsorbents in HWTS include Al, Fe, Ca, and clay minerals, which are principally the same binding or adsorbent for OM compounds, but in excess, are toxic (Al and Fe) to crops. Thus, the presence of OM in HWTS can compromise the adsorption and availability of P in agricultural soils following phosphatic fertilizer applications. In this study, the influence of OM on P adsorption and availability was characterized to have a clear understanding of how OM influences P availability in agricultural soils, especially in highly weathered tropical soil. It is clearly outlined that the application of OM and crop residues can positively or negatively influence the availability of P in agricultural soils for plant uptake and dictate the P that is available for loss to the environment. Thus, the addition of organic matter as a strategy to increase P bioavailability for plant uptake must be treated with care because their contribution is not strait forward to be positive in many agricultural soils.  相似文献   

12.
The objective of this study was to estimate the water repellency of post-boggy soils in north-eastern Poland. Potential water repellency was determined based on the water drop penetration time (WDPT) test and the molarity of an ethanol droplet (MED) test. A total of 276 soil samples with a varied organic carbon (OC) content, ranging from trace amounts in sandy subsoils to 44.4% in organic soils, were analyzed. The investigated material represents peat-muck soils (Eutri-Sapric Histsols) and muck-like soils (Arenic Gleysols, Areni-Humic Gleysols, Gleyic Arenosols). The mineral matter of the analyzed soils comprised loose sand. The obtained results indicate that peat soil formations are marked by higher potential water repellency than muck soil formations. The highest WDPT values (16 390 s) were reported in respect of an alder peat sample with 41.9% OC content, collected at a depth of 55–60 cm. In the group of muck soils, a sample with 36.7% OC content, collected at a depth of 15–20 cm, was marked by the highest water repellency (WDPT 10 492 s). The water repellency of the studied soils is dependent on organic matter content, and it is manifested only when organic matter content is higher than 20%. Soils with OC content of up to 12% show low water repellency or are hydrophilic. Organic soil formations (>12% OC) are characterized by a varied degree of water repellency, but WDPT values in excess of 2000 s are reported only in respect of soils containing more than 35% OC. A significant positive correlation between the content of organic matter, organic carbon, total nitrogen and water repellency was observed in the entire studied population (n = 276). A significant positive correlation was also found between WDPT values and the C:N ratio, while a significant negative correlation was reported in respect of .  相似文献   

13.
The retention of organic matter in soils   总被引:27,自引:8,他引:27  
The turnover of C in soils is controlled mainly by water regimes and temperature, but is modified by factors such as size and physicochemical properties of C additions in litter or root systems, distribution of C throughout the soil as root systems, or addition as litter, distribution of C within the soil matrix and its interaction with clay surfaces.Soil factors which retard mineralization of C in soils are identified from correlations of C contents of soils with other properties such as clay content and base status. The rate and extent of C mineralization depends on the chemistry of the added organic matter and interaction with clays of the microbial biomass and metabolites.The organomineral interactions are shown to depend on cation bridges involving mainly Ca in neutral to alkaline soils, Al in acid soils and adsorption of organic materials on iron oxide surfaces. The various organomineral interactions lead to aggregations of clay particles and organic materials, which stabilizes both soil structure and the carbon compounds within the aggregates.  相似文献   

14.
Recent research has dramatically advanced our understanding of soil organic matter chemistry and the role of N in some organic matter transformations, but the effects of N deposition on soil C dynamics remain difficult to anticipate. We examined soil organic matter chemistry and enzyme kinetics in three size fractions (>250 μm, 63–250 μm, and <63 μm) following 6 years of simulated atmospheric N deposition in two ecosystems with contrasting litter biochemistry (sugar maple, Acer saccharum—basswood, Tilia americana and black oak, Quercus velutina—white oak, Q. alba). Ambient and simulated (80-kg NO3 –N ha−1 year−1) atmospheric N deposition were studied in three replicate stands in each ecosystem. We found striking, ecosystem-specific effects of N deposition on soil organic matter chemistry using pyrolysis gas chromatography/mass spectrometry. First, furfural, the dominant pyrolysis product of polysaccharides, was significantly decreased by simulated N deposition in the sugar maple–basswood ecosystem (15.9 vs. 5.0%) but was increased by N deposition in the black oak–white oak ecosystem (8.8 vs. 24.0%). Second, simulated atmospheric N deposition increased the ratio of total lignin derivatives to total polysaccharides in the >250 μm fraction of the sugar maple–basswood ecosystem from 0.9 to 3.3 but there were no changes in other size classes or in the black oak–white oak ecosystem. Third, simulated N deposition increased the ratio of lignin derivatives to N-bearing compounds in the 63–250 and >250 μm fractions in both ecosystems but not in the <63 μm fraction. Relationships between enzyme kinetics and organic matter chemistry were strongest in the particulate fractions (>63 μm) where there were multiple correlations between oxidative enzyme activities and concentrations of lignin derivatives and between glycanolytic enzyme activities and concentrations of carbohydrates. Within silt-clay fractions (<63 μm), these enzyme-substrate correlations were attenuated by interactions with particle surfaces. Our results demonstrate that variation in enzyme activity resulting from atmospheric N deposition is directly linked to changes in soil organic matter chemistry, particularly those that occur within coarse soil size fractions. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
Incubation experiments on nitrogen mineralization in loess and sandy soils   总被引:4,自引:0,他引:4  
Summary In aerobic incubation experiments, nitrogen mineralization was investigated in agricultural loess and sandy soils. Fresh, fieldmoist samples were used for incubation. Using an optimization procedure the N-mineralization was split into two nitrogen fractions: A resistant, slowly decomposable organic N-fraction (index rpm) and a fast decomposable N-fraction (index dpm).Loess- and sandy soils showed similar mean reaction coefficients for N-mineralization. The results also indicated that the amount of mineralizable nitrogen in the resistant N-fraction depended directly on clay content.Soil sampling at different times during crop growing period gave different mineralization amounts and courses.Effect of added plant residues on N-mineralization, was also studied by incubation. Variation of type and quantity of added residues changed the net N-mineralization in a characteristic way: Sugar beet leaves, added in minced form, caused an increase in mineralization; while straw caused a temporary immobilization, followed by remineralization.Incubation experiments on undisturbed soil columns showed nearly linear mineralization with time.This paper was presented in part at the 1983 Congress of the German Soil Science Society held at Trier.  相似文献   

16.
Summary Changes in the composition of organo-mineral particle size fractions as a result of cultivation of a grassland soil are discussed with reference to models of soil organic matter formation and turnover. The data presented indicated that physically stabilized organic matter is an important reservoir, with an intermediate turnover time, which is responsible for nutrient supply in agricultural soils. Possible mechanisms of stabilization and mobilization of organic matter are presented in the light of the arrangement of organic and inorganic components of the soil.  相似文献   

17.
Water-soluble organic matter in forest soils   总被引:16,自引:0,他引:16  
By applying a modified gel permeation technique, the molecular-size distribution (MSD) and complexing properties of water-soluble organic matter (WSOM), isolated from the Ah horizon under stands with either Douglas-fir, European beech or Scots pine were established. Both with respect to MSD and complexing properties, the dissolved organic matter was highly similar. WSOM was comprised of compounds apparently high in molecular weight (>1 kDa) and with a complexing capacity of 1.0±0.1 mol mg–1 carbon as determined for Cu(II) at pH 5.5 and 0.01 M ionic strength. The effect of WSOM on the partitioning of cations between soil solid phase and soil solution was evaluated in several soil batch experiments using loamy sand or sandy soil material. Although a large part of WSOM was sorbed to the soil matrix, Al, Cu, Fe and Pb were solubilized in considerable amounts by complexation. The Mn concentration in the soil solution was also significantly increased but this probably resulted from a redox reaction, with certain constituents of WSOM serving as electron donor. With a decrease in soil pH, cation mobilization by WSOM was significantly lower as a result of increased sorption and a decrease in complexing capacity of the soluble organics. Application of several low MW aliphatic and phenolic acids gave results similar to the results obtained with WSOM.  相似文献   

18.
Sahrawat  K. L. 《Plant and Soil》1980,57(1):143-146
Summary Mineralization of soil nitrogen studies with two acid sulfate soils under anaerobic and aerobic incubation at 30°C for 2 weeks showed that the mineral N was released and accumulated entirely as NH 4 + in both soils. Nitrification did not occur in either of the soils under conditions that stimulate nitrification. The acid sulfate soils studied release good amounts of mineralizable N, and, because of lack of nitrifying activity, denitrification may not be a serious problem in these soils.  相似文献   

19.
A microstructure characterization study using transmission electron microscopy (TEM) was conducted to specify organic matter dynamics during the co-composting process of sewage sludge, green waste and barks. TEM results showed that ligneous and polyphenolic compounds brought by barks were not biodegraded during composting. Green waste brought more or less biodegraded ligneous constituents and also an active microbial potential. Chloroplasts and sludge flocs appeared to be relevant indicators of green waste and sewage sludge in composted products, as they were still viewable at the end of the process. TEM characterization of the final product highlighted two main fractions of organic matter, one easily available and a more recalcitrant one, and also a remaining microbial activity. Thus microstructure characterization appeared to be an appropriate way of taking the heterogeneity of the organic constituents' size and composition into account when attempting to specify such compost quality parameters as maturity and stability.  相似文献   

20.
Decomposition of organic matter from 36 soils in a long-term pot experiment   总被引:5,自引:0,他引:5  
Wadman  W.P.  de Haan  S. 《Plant and Soil》1997,189(2):289-301
The organic matter contents of thirty-six soils were measured annually for twenty years in a pot experiment. The soils originated mainly from arable land and varied in initial organic matter content, texture and pH. The soils were stored at an average air temperature of around 13 °C and every year each soil was mixed thoroughly. Throughout the experiment, soil moisture was kept between 50-70% of its water holding capacity. No organic matter was added during the experiment, so that gross soil organic matter decomposition could be assessed. Relative decomposition rates of soil organic matter decreased as time proceeded. Despite the wide range of soils studied, it was found that during the initial decades, the pattern of soil organic matter degradation was strongly correlated with the organic matter content of the soils at the start of the experiment. This means that during this period the time course of the organic matter content of the soils in our experiment can be estimated from the initial soil organic matter content alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号