首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mutations of the receptor tyrosine kinase, Kit, or its ligand, mast growth factor (Mgf), affect three unrelated cell populations: melanocytes, germ cells, and mast cells. Kit signaling is required initially to prevent cell death in these lineages both in vitro and in vivo. Mgf appears to play a role in the survival of some hematopoietic cells in vitro by modulating the activity of p53. Signaling by Mgf inhibits p53-induced apoptosis of erythroleukemia cell lines and suppresses p53-dependent radiation-induced apoptosis of bone marrow cells. We tested the hypothesis that cell survival in Kit mutant mice would be enhanced by p53 deficiency in vivo. Double-mutant mice, which have greatly reduced Kit receptor tyrosine kinase activity and also lack Trp53, were generated and the affected cell lineages examined. Mast cell, melanoblast, and melanocyte survival in the double Kit(W-v/W-v):Trp53(-/-) mutants was not increased compared to the single Kit(W-v/W-v):Trp53(+/+) mutants. However, double-mutant males showed an increase in sperm viability and could father litters, in contrast to their homozygous Kit mutant, wild-type p53 littermates. This germ cell rescue appears to be male specific, as female ovaries were similar in mice homozygous for the Kit mutant allele with or without p53. We conclude that defective Kit signaling in vivo results in apoptosis by a p53-independent pathway in melanocyte and mast cell lineages but that in male germ cells apoptosis in the absence of Kit is p53-dependent.  相似文献   

2.
ADAMTS20 (Adisintegrin-like and metalloprotease domain with thrombospondin type-1 motifs) is a member of a family of secreted metalloproteases that can process a variety of extracellular matrix (ECM) components and secreted molecules. Adamts20 mutations in belted (bt) mice cause white spotting of the dorsal and ventral torso, indicative of defective neural crest (NC)-derived melanoblast development. The expression pattern of Adamts20 in dermal mesenchymal cells adjacent to migrating melanoblasts led us to initially propose that Adamts20 regulated melanoblast migration. However, using a Dct-LacZ transgene to track melanoblast development, we determined that melanoblasts were distributed normally in whole mount E12.5 bt/bt embryos, but were specifically reduced in the trunk of E13.5 bt/bt embryos due to a seven-fold higher rate of apoptosis. The melanoblast defect was exacerbated in newborn skin and embryos from bt/bt animals that were also haploinsufficient for Adamts9, a close homolog of Adamts20, indicating that these metalloproteases functionally overlap in melanoblast development. We identified two potential mechanisms by which Adamts20 may regulate melanoblast survival. First, skin explant cultures demonstrated that Adamts20 was required for melanoblasts to respond to soluble Kit ligand (sKitl). In support of this requirement, bt/bt;Kit(tm1Alf)/+ and bt/bt;Kitl(Sl)/+ mice exhibited synergistically increased spotting. Second, ADAMTS20 cleaved the aggregating proteoglycan versican in vitro and was necessary for versican processing in vivo, raising the possibility that versican can participate in melanoblast development. These findings reveal previously unrecognized roles for Adamts proteases in cell survival and in mediating Kit signaling during melanoblast colonization of the skin. Our results have implications not only for understanding mechanisms of NC-derived melanoblast development but also provide insights on novel biological functions of secreted metalloproteases.  相似文献   

3.
4.
5.
Genetic analysis of melanophore development in zebrafish embryos   总被引:10,自引:0,他引:10  
Vertebrate pigment cells are derived from neural crest, a tissue that also forms most of the peripheral nervous system and a variety of ectomesenchymal cell types. Formation of pigment cells from multipotential neural crest cells involves a number of common developmental processes. Pigment cells must be specified; their migration, proliferation, and survival must be controlled and they must differentiate to the final pigment cell type. We previously reported a large set of embryonic mutations that affect pigment cell development from neural crest (R. N. Kelsh et al., 1996, Development 123, 369-389). Based on distinctions in pigment cell appearance between mutants, we proposed hypotheses as to the process of pigment cell development affected by each mutation. Here we describe the cloning and expression of an early zebrafish melanoblast marker, dopachrome tautomerase. We used this marker to test predictions about melanoblast number and pattern in mutant embryos, including embryos homozygous for mutations in the colourless, sparse, touchdown, sunbleached, punkt, blurred, fade out, weiss, sandy, and albino genes. We showed that in homozygous mutants for all loci except colourless and sparse, melanoblast number and pattern are normal. colourless mutants have a pronounced decrease in melanoblast cell number from the earliest stages and also show poor melanoblast differentiation and migration. Although sparse mutants show normal numbers of melanoblasts initially, their number is reduced later. Furthermore, their distribution indicates a defect in melanoblast dispersal. These observations permit us to refine our model of the genetic control of melanophore development in zebrafish embryos.  相似文献   

6.
Interstitial cells of Cajal (ICC) are the pacemaker cells in gastrointestinal (GI) muscles. They also mediate or transduce inputs from enteric motor nerves to the smooth muscle syncytium. What is known about functional roles of ICC comes from developmental studies based on the discovery that ICC express c-kit. Functional development of ICC networks depends on signaling via the Kit receptor pathway. Immunohistochemical studies using Kit antibodies have expanded our knowledge about the ICC phenotype, the structure of ICC networks, the interactions of ICC with other cells within the tunica muscularis, and the loss of ICC in some motility disorders. Manipulating Kit signaling with reagents to block the receptor or downstream signaling pathways or by using mutant mice in which Kit or its ligand, stem cell factor, are defective has allowed novel studies of the development of these cells within the tunica muscularis and also allowed the study of specific functions of different classes of ICC in several regions of the GI tract. This article examines the role of ICC in GI motility, focusing on the functional development and maintenance of ICC networks in the GI tract and the phenotypic changes that can occur when the Kit signaling pathway is disrupted.  相似文献   

7.
Gastrointestinal stromal tumours (GIST) are thought to derive from the interstitial cells of Cajal (ICC) or an ICC precursor. Oncogenic mutations of the receptor tyrosine kinase KIT are present in most GIST. KIT K642E was originally identified in sporadic GIST and later found in the germ line of a familial GIST cohort. A mouse model harbouring a germline Kit K641E mutant was created to model familial GIST. The expression profile was investigated in the gastric antrum of the Kit K641E murine GIST model by microarray, quantitative PCR and immunofluorescence. Gja1/Cx43 , Gpc6 , Gpr133 , Pacrg , Pde3a , Prkar2b , Prkcq/Pkce , Rasd2 , Spry4 and Tpbg/5T4 were found to be up-regulated. The proteins encoded by Gja1/Cx43 , Pde3a , Prkcq/Pkce were localized in Kit-ir ICC in wild-type and Kit K641E animals while Spry4 and Tpbg/5T4 were detected in Kit-ir cells only in Kit K641E, but not in Kit WT/WT animals. Most up-regulated genes in this mouse model belong to the gene expression profile of human GIST but also to the profile of normal Kit+ ICC in the mouse small intestine. Spry4 and Tpbg/5T4 may represent candidates for targeted therapeutic approaches in GIST with oncogenic KIT mutations.  相似文献   

8.
Mutations at the Steel (St) locus produce pleiotropic effects on viability as well as hematopoiesis, pigmentation and fertility. Several homozygous viable Sl alleles have previously been shown to contain either structural alterations in mast cell growth factor (Mgf) or regulatory mutations that affect expression of the Mgf gene. More severe Sl alleles cause lethality to homozygous embryos and all lethal Sl alleles examined to data contain deletions that remove the entire Mgf coding region. As the timing of the lethality varies from early to late in gestation, it is possible that some deletions may affect other closely linked genes in addition to Mgf. We have analyzed the extent of deleted sequences in seven homozygous lethal Sl alleles. The results of this analysis suggest that late gestation lethality represents the Sl null phenotype and that peri-implantation lethality results from the deletion of at least one essential gene that maps proximal to Sl. We have also examined gene dosage effects of Sl by comparing the phenotypes of mice homozygous and hemizygous for each of four viable Sl alleles. Lastly, we show that certain combinations of the viable Sl alleles exhibit interallelic complementation. Possible mechanisms by which such complementation could occur are discussed.  相似文献   

9.
The W/c-kit and Steel loci respectively encode a receptor tyrosine kinase (Kit) and its extracellular ligand, Steel factor, which are essential for the development of hematopoietic, melanocyte, and germ cell lineages in the mouse. To determine the biochemical basis of the Steel/W developmental pathway, we have investigated the response of the Kit tyrosine kinase and several potential cytoplasmic targets to stimulation with Steel in mast cells derived from normal and mutant W mice. In normal mast cells, Steel induces Kit to autophosphorylate on tyrosine and bind to phosphatidylinositol 3'-kinase (PI3K) and phospholipase C-gamma 1 but not detectably to Ras GTPase-activating protein. Additionally, we present evidence that Kit tyrosine phosphorylation acts as a switch to promote complex formation with PI3K. In mast cells from mice homozygous for the W42 mutant allele, Kit is not tyrosine phosphorylated and fails to bind PI3K following Steel stimulation. In contrast, in the transformed mast cell line P815, Kit is constitutively phosphorylated and binds to PI3K in the absence of ligand. These results suggest that Kit autophosphorylation and its physical association with a unique subset of cytoplasmic signaling proteins are critical for mammalian development.  相似文献   

10.
We aim to evaluate environmental and genetic effects on the expansion/proliferation of committed single cells during embryonic development, using melanoblasts as a paradigm to model this phenomenon. Melanoblasts are a specific type of cell that display extensive cellular proliferation during development. However, the events controlling melanoblast expansion are still poorly understood due to insufficient knowledge concerning their number and distribution in the various skin compartments. We show that melanoblast expansion is tightly controlled both spatially and temporally, with little variation between embryos. We established a mathematical model reflecting the main cellular mechanisms involved in melanoblast expansion, including proliferation and migration from the dermis to epidermis. In association with biological information, the model allows the calculation of doubling times for melanoblasts, revealing that dermal and epidermal melanoblasts have short but different doubling times. Moreover, the number of trunk founder melanoblasts at E8.5 was estimated to be 16, a population impossible to count by classical biological approaches. We also assessed the importance of the genetic background by studying gain- and loss-of-function β-catenin mutants in the melanocyte lineage. We found that any alteration of β-catenin activity, whether positive or negative, reduced both dermal and epidermal melanoblast proliferation. Finally, we determined that the pool of dermal melanoblasts remains constant in wild-type and mutant embryos during development, implying that specific control mechanisms associated with cell division ensure half of the cells at each cell division to migrate from the dermis to the epidermis. Modeling melanoblast expansion revealed novel links between cell division, cell localization within the embryo and appropriate feedback control through β-catenin.  相似文献   

11.
Germline mutations at the Dominant White Spotting (W) and Steel (Sl) loci have provided conclusive genetic evidence that c-kit mediated signal transduction pathways are essential for normal mouse development. We have analysed the interactions of normal and mutant W/c-kit gene products with cytoplasmic signalling proteins, using transient c-kit expression assays in COS cells. In addition to the previously identified c-kit gene product (Kit+), a second normal Kit isoform (KitA+) containing an in-frame insertion, Gly-Asn-Asn-Lys, within the extracellular domain, was detected in murine mast cell cultures and mid-gestation placenta. Both Kit+ and KitA+ isoforms showed increased autophosphorylation and enhanced association with phosphatidylinositol (PI) 3' kinase and PLC gamma 1, when stimulated with recombinant soluble Steel factor. No association or increase in phosphorylation of GAP and two GAP-associated proteins, p62 and p190, was observed. The two isoforms had distinct activities in the absence of exogenous soluble Steel factor; Kit+, but not KitA+, showed constitutive tyrosine phosphorylation that was accompanied by a low constitutive level of association with PI-3' kinase and PLC gamma 1. Introduction of the point substitutions associated with W37 (Glu582----Lys) or W41 (Val831----Met) mutant alleles into c-kit expression constructs abolished (W37) or reduced (W41) the Steel factor-induced association of the Kit receptor with signalling proteins in a manner proportional to the overall severity of the corresponding W mutant phenotype. These data suggest a diversity of normal Kit signalling pathways and indicate that W mutant phenotypes result from primary defects in the Kit receptor that affect its interaction with cytoplasmic signalling proteins.  相似文献   

12.
Neural crest-derived melanoblasts are the progenitors of melanocytes, the pigment cells of the skin, hair and choroid. Previous studies of adult chimaeric mice carrying different coat colour markers have suggested that the total melanocyte population is derived from a small number of melanoblast progenitors, each of which generates a discrete unilateral transverse band of colour. This work also suggested minimal mixing of cells between clones. We have used two complementary approaches to assess the behaviour of migrating clones of melanoblasts directly in the developing embryo. First, we made aggregation chimaeras between transgenic Dct-lacZ and non-transgenic embryos, in which lacZ is a marker for melanoblasts. Second, we generated transgenic mice carrying a modified lacZ reporter construct containing a 289 base pair duplication (laacZ) under the control of the Dct promoter. The laacZ transgene is normally inactive, but reverts to wild-type lacZ at low frequency, labelling a cell and all of its progeny at random. Mosaic embryos containing labelled melanoblast clones were generated. In contrast to previous data, chimaeric and mosaic embryonic melanoblast patterns suggest that: (1) there is a large number of melanoblast progenitors; (2) there is a pool of melanoblasts in the cervical region; (3) different cell dispersion mechanisms may operate in the head and trunk regions; and (4) there is extensive axial mixing between clones.  相似文献   

13.
Kit receptor tyrosine kinase and erythropoietin receptor (Epo-R) cooperate in regulating blood cell development. Mice that lack the expression of Kit or Epo-R die in utero of severe anemia. Stimulation of Kit by its ligand, stem cell factor activates several distinct early signaling pathways, including phospholipase C gamma, phosphatidylinositol 3-kinase, Src kinase, Grb2, and Grb7. The role of these pathways in Kit-induced growth, proliferation, or cooperation with Epo-R is not known. We demonstrate that inactivation of any one of these early signaling pathways in Kit significantly impairs growth and proliferation. However, inactivation of the Src pathway demonstrated the most profound defect. Combined stimulation with Epo also resulted in impaired cooperation between Src-defective Kit mutant and Epo-R and, to a lesser extent, with Kit mutants defective in the activation of phosphatidylinositol 3-kinase or Grb2. The impaired cooperation between the Src-defective Kit mutant and Epo-R was associated with reduced transphosphorylation of Epo-R and expression of c-Myc. Remarkably, restoration of only the Src pathway in a Kit receptor defective in the activation of all early signaling pathways demonstrated a 50% correction in proliferation in response to Kit stimulation and completely restored the cooperation with Epo-R. These data demonstrate an essential role for Src pathway in regulating growth, proliferation, and cooperation with Epo-R downstream from Kit.  相似文献   

14.
Kit and its ligand, Kitl, function in hematopoiesis, melanogenesis, and gametogenesis. In the testis, Kitl is expressed by Sertoli cells and Kit is expressed by spermatogonia and Leydig cells. Kit functions are mediated by receptor autophosphorylation and subsequent association with signaling molecules, including phosphoinositide (PI) 3-kinase. We previously characterized the reproductive consequences of blocking Kit-mediated PI 3-kinase activation in KitY(719F)/Kit(Y719F) knockin mutant male mice. Only gametogenesis was affected in these mice, and males are sterile because of a block in spermatogenesis during the spermatogonial stages. In the present study, we investigated effects of the Kit(Y719F) mutation on Leydig cell development and steroidogenic function. Although the seminiferous tubules in testes of mutant animals are depleted of germ cells, the testes contain normal numbers of Leydig cells and the Leydig cells in these animals appear to have undergone normal differentiation. Evaluation of steroidogenesis in mutant animals indicates that testosterone levels are not significantly reduced in the periphery but that LH levels are increased 5-fold, implying an impairment of steroidogenesis in the mutant animals. Therefore, a role for Kit signaling in steroidogenesis in Leydig cells was sought in vitro. Purified Leydig cells from C57Bl6/J male mice were incubated with Kitl, and testosterone production was measured. Kitl-stimulated testosterone production was 2-fold higher than that in untreated controls. The Kitl-mediated testosterone biosynthesis in Leydig cells is PI 3-kinase dependent. In vitro, Leydig cells from mutant mice were steroidogenically more competent in response to LH than were normal Leydig cells. In contrast, Kitl-mediated testosterone production in these cells was comparable to that in normal cells. Because LH levels in mutant males are elevated and LH is known to stimulate testosterone biosynthesis, we proposed a model in which serum testosterone levels are controlled by elevated LH secretion. Leydig cells of mutant males, unable to respond effectively to Kitl stimulation, initially produce lower levels of testosterone, reducing testosterone negative feedback on the hypothalamic-pituitary axis. The consequent secretion of additional LH, under this hypothesis, causes a restoration of normal levels of serum testosterone. Kitl, acting via PI 3-kinase, is a paracrine regulator of Leydig cell steroidogenic function in vivo.  相似文献   

15.
The transactivator protein Tax of human T-cell leukemia virus type I plays an important role in the development of adult T-cell leukemia probably through modulation of growth regulatory molecules including p16(INK4a). The molecular mechanism of leukemogenesis induced by Tax has yet to be elucidated. We analyzed Tax function in the cell cycle using an interleukin-2 (IL-2)-dependent human T-cell line (Kit 225) that can undergo cell cycle arrest at G(0)/G(1) phase by deprivation of IL-2. Tax activated endogenous E2F activity in IL-2-starved Kit 225 cells, resulting in activation of E2F site-carrying promoters of genes involved in G(1) to S phase transition in a cell type-dependent and p16(INK4a)-independent manner. The ability of Tax mutants to activate E2F coincided with that to activate nuclear factors kappaB and AT, sole expression of which, however, did not activate E2F, suggesting involvement of another pathway in activation of E2F. Introduction of Tax by a recombinant adenovirus induced cell cycle progression to G(2)/M phase in resting Kit 225 cells accompanied by endogenous cyclin D2 gene expression. Similarly, Tax-induced cell cycle progression was seen with peripheral blood lymphocytes prestimulated with phytohemagglutinin. Analyses with Tax mutants did not allow Tax-induced cell cycle progression to be differentiated from Tax-dependent activation of E2F, suggesting that Tax induces cell cycle progression presumably through activation of E2F. Nevertheless, infection with an E2F1-expressing virus, which is sufficient for induction of S phase in serum-starved fibroblasts, was not sufficient for either E2F activation or cell cycle progression in IL-2-starved Kit 225 cells, implying differential regulation of E2F activation and cell cycle progression in T-cells that is activated by Tax.  相似文献   

16.
R Qamar  M Y Yoon  P F Cook 《Biochemistry》1992,31(41):9986-9992
In order to define the overall kinetic mechanism of adenosine 3',5'-monophosphate dependent protein kinase catalytic subunit and also to elaborate the kinetic mechanism in the direction of peptide phosphorylation, we have determined its kinetic mechanism in the direction of MgADP phosphorylation. Studies of initial velocity as a function of uncomplexed Mg2+ (Mgf) in the absence and presence of dead-end inhibitors were used to define the kinetic mechanism. Data are consistent with the overall kinetic mechanism in the direction of MgADP phosphorylation being random with both the pathways allowed, i.e., the pathway in which MgADP binds to the enzyme prior to phosphorylated peptide and the pathway in which phosphorylated peptide binds to enzyme prior to MgADP. In addition, depending on the concentration of Mgf, one or the other pathway predominates. At low (0.5 mM) Mgf, the mechanism is steady-state ordered with the pathway in which phosphorylated peptide binds first being preferred; at high (10 mM) Mgf, the kinetic mechanism is equilibrium ordered, and the pathway in which MgADP binds first is preferred. This change in mechanism to equilibrium ordered at higher concentration of Mgf is due to an increase in affinity of the enzyme for MgADP and a decrease in affinity for the phosphorylated peptide. The Haldane relationship gives a Keq of 2 +/- 1 x 10(3) at pH 7.2, in agreement with the values obtained from 31P NMR (1.6 +/- 0.8 x 10(3)) and direct determination of reactant concentrations at equilibrium (3.5 +/- 0.6 x 10(3)).  相似文献   

17.
The pigment cells of the skin are derived from melanoblasts which originate in the neural crest. The dorsoventral migration of melanoblasts has been visualized in pigment stripes seen in aggregation chimeras, and the width of these bands has suggested that the entire pigmentation of the coat is derived from a small number of founder cells. We have generated mosaic mice by marking single melanoblasts in utero to gain information on the clonal history of pigment-forming cells. A retroviral vector carrying the human tyrosinase gene was constructed and microinjected into neurulating albino mouse embryos. Albino mice are devoid of pigmentation due to deficiency of tyrosinase. Thus, transduction of the wild-type gene into the otherwise normal melanoblasts should rescue the mutant phenotype, giving rise to patches of pigmentation, which correspond to the area colonized by the mitotic progeny of a marked clone. Mosaic animals derived from the injected embryos indeed showed pigmented bands with a width strikingly similar to the 'standard' stripes seen in aggregation chimeras. These results are consistent with the notion that the unit width bands seen in aggregation chimeras represent the clonal progeny of a single melanoblast and verify Mintz's (1967) conclusion that a few founder melanoblasts give rise to coat pigmentation. The pigment cells of the eye are of dual origin: the melanocytes in choroid and outer layer of the iris are derived from the neural crest and those in the pigment layer of the retina from the neuroepithelium of the optic cup. Marked clones in both lineages were observed in the eyes of many mosaic animals.  相似文献   

18.
19.
The Kit receptor tyrosine kinase functions in hemato- poiesis, melanogenesis and gametogenesis. Kit receptor-mediated cellular responses include proliferation, survival, adhesion, secretion and differentiation. In mast cells, Kit-mediated recruitment and activation of phosphatidylinositol 3'-kinase (PI 3-kinase) produces phosphatidylinositol 3'-phosphates, plays a critical role in mediating cell adhesion and secretion and has contributory roles in mediating cell survival and proliferation. To investigate the consequences in vivo of blocking Kit-mediated PI 3-kinase activation we have mutated the binding site for the p85 subunit of PI 3-kinase in the Kit gene, using a knock-in strategy. Mutant mice have no pigment deficiency or impairment of steady-state hematopoiesis. However, gametogenesis is affected in several ways and tissue mast cell numbers are affected differentially. While primordial germ cells during embryonic development are not affected, Kit(Y719F)/Kit(Y719F) males are sterile due to a block at the premeiotic stages in spermatogenesis. Furthermore, adult males develop Leydig cell hyperplasia. The Leydig cell hyperplasia implies a role for Kit in Leydig cell differentiation and/or steroidogenesis. In mutant females follicle development is impaired at the cuboidal stages resulting in reduced fertility. Also, adult mutant females develop ovarian cysts and ovarian tubular hyperplasia. Therefore, a block in Kit receptor-mediated PI 3-kinase signaling may be compensated for in hematopoiesis, melanogenesis and primordial germ cell development, but is critical in spermatogenesis and oogenesis.  相似文献   

20.
Broudy VC  Lin NL  Sabath DF 《Cytokine》2001,15(4):188-195
Stem cell factor (SCF) initiates its biological effects by binding to its receptor Kit. Cell surface Kit is proteolytically cleaved to generate soluble Kit. Structure-function analysis of the extracellular region of Kit has implicated the first three immunoglobulin-like domains in SCF binding, and the fourth immunoglobulin-like domain in receptor dimerization. However, the role of the fifth immunoglobulin-like domain is unknown. To test the hypothesis that the fifth immunoglobulin-like domain is important for proteolytic cleavage of Kit from the cell surface, we constructed a mutant form of Kit in which the first four immunoglobulin-like domains are linked to the transmembrane and cytoplasmic domains (designated Kit-Del5). Kit-wild type (Kit-WT) and Kit-Del5 were expressed in the murine mast cell line IC2. Flow cytometry demonstrated that both Kit-WT and Kit-Del5 are displayed on the IC2 cell surface, and immunoblotting confirmed the presence of Kit proteins of the expected molecular weights, 154 kDa and 134 kDa, respectively. Although IC2-Kit-WT cells proteolytically cleave cell surface Kit, generating a 98 kDa soluble form of Kit, IC2-Kit-Del5 cells do not. These findings demonstrate that the fifth immunoglobulin-like domain of Kit is required for proteolytic cleavage of Kit from the cell surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号