首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
Proton pumping of the vacuolar-type H(+)-ATPase into the lumen of the central plant organelle generates a proton gradient of often 1-2 pH units or more. Although structural aspects of the V-type ATPase have been studied in great detail, the question of whether and how the proton pump action is controlled by the proton concentration on both sides of the membrane is not understood. Applying the patch clamp technique to isolated vacuoles from Arabidopsis mesophyll cells in the whole-vacuole mode, we studied the response of the V-ATPase to protons, voltage, and ATP. Current-voltage relationships at different luminal pH values indicated decreasing coupling ratios with acidification. A detailed study of ATP-dependent H(+)-pump currents at a variety of different pH conditions showed a complex regulation of V-ATPase activity by both cytosolic and vacuolar pH. At cytosolic pH 7.5, vacuolar pH changes had relative little effects. Yet, at cytosolic pH 5.5, a 100-fold increase in vacuolar proton concentration resulted in a 70-fold increase of the affinity for ATP binding on the cytosolic side. Changes in pH on either side of the membrane seem to be transferred by the V-ATPase to the other side. A mathematical model was developed that indicates a feedback of proton concentration on peak H(+) current amplitude (v(max)) and ATP consumption (K(m)) of the V-ATPase. It proposes that for efficient V-ATPase function dissociation of transported protons from the pump protein might become higher with increasing pH. This feature results in an optimization of H(+) pumping by the V-ATPase according to existing H(+) concentrations.  相似文献   

2.
The intra-luminal acidic pH of endomembrane organelles is established by a proton pump, vacuolar H(+)-ATPase (V-ATPase), in combination with other ion transporter(s). The proton gradient (DeltapH) established in yeast vacuolar vesicles decreased and reached the lower value after the addition of alkaline cations including Na(+). As expected, the uptake of (22)Na(+) was coupled with DeltapH generated by V-ATPase. Disruption of NHX1 or NHA1, encoding known Na(+)/H(+) antiporters, did not result in the loss of (22)Na(+) uptake or the alkaline cation-dependent DeltapH decrease. Upon the addition of sulfate ions, the V-ATPase-dependent DeltapH in the vacuolar vesicles increased, but the membrane potential (DeltaPsi) decreased. Consistent with this observation, radioactive sulfate was transported into the vesicles with a K(m) value of 0.07 mM. The transport activity was unaffected upon disruption of the putative genes coding for homologues of plasma membrane sulfate transporters. These results indicate that the vacuoles exhibit unique Na(+)/H(+) antiport and sulfate transport, which regulate the luminal pH and ion homeostasis in yeast.  相似文献   

3.
Several major proteins of synaptic vesicles from rat or cow brain sediment as a large complex on sucrose density gradients when solubilized in nonionic detergents. A vacuolar H(+)-ATPase identified by sensitivity to bafilomycin A1 appears to be associated with this oligomeric protein complex. Two subunits of this complex, synaptic vesicle proteins S and U, correspond to the 57-kDa (B) and 39-kDa accessory (Ac39) subunits, respectively, of bovine chromaffin granule vacuolar H(+)-ATPase as shown by Western immunoblot analysis. The five subunits of the oligomeric complex constitute approximately 20% of the total protein of rat brain synaptic vesicles. Taken together, these results strongly suggest that the abundant, multisubunit complex partially purified from brain synaptic vesicles by density gradient centrifugation is a vacuolar H(+)-ATPase. Bafilomycin A1 completely blocks proton pumping in rat brain synaptic vesicles as measured by [14C]methylamine uptake and also blocks catecholamine accumulation measured by [3H]dopamine uptake. Moreover, ATPase activity, [14C]methylamine uptake, and [3H]dopamine uptake are inhibited by bafilomycin A1 at similar I50 values of approximately 1.7 nmol/mg of protein. These findings indicate that the vacuolar H(+)-ATPase is essential for proton pumping as well as catecholamine uptake by mammalian synaptic vesicles.  相似文献   

4.
Tonoplast vesicles were isolated from leaf mesophyll tissue of the inducible Crassulacean acid metabolism plant Mesembryanthemum crystallinum to investigate the mechanism of vacuolar Na+ accumulation in this halophilic species. In 8-week-old plants exposed to 200 mM NaCl for 2 weeks, tonoplast H+-ATPase activity was approximately doubled compared with control plants of the same age, as determined by rates of both ATP hydrolysis and ATP-dependent H+ transport. Evidence was also obtained for the presence of an electroneutral Na+/H+ antiporter at the tonoplast that is constitutively expressed, since extravesicular Na+ was able to dissipate a pre-existing transmembrane pH gradient. Initial rates of H+ efflux showed saturation kinetics with respect to extravesicular Na+ concentration and were 2.1-fold higher from vesicles of salt-treated plants compared with the controls. Na+-dependent H+ efflux also showed a high selectivity for Na+ over K+, was insensitive to the transmembrane electrical potential difference, and was more than 50% inhibited by 200 [mu]M N-amidino-3,5-diamino-6-chloropyrazinecarboxamide hydrochloride. The close correlation between increased Na+/H+ antiport and H+-ATPase activities in response to salt treatment suggests that accumulation of the very high concentrations of vacuolar Na+ found in M. crystallinum is energized by the H+ electrochemical gradient across the tonoplast.  相似文献   

5.
Intracellular pH (pH(i)), a major modulator of cell function, is regulated by acid/base transport across membranes. Excess intracellular H(+) ions (e.g. produced by respiration) are extruded by transporters such as Na(+)/H(+) exchange, or neutralized by HCO(3)(-) taken up by carriers such as Na(+)-HCO(3)(-) cotransport. Using fluorescence pH(i) imaging, we show that cancer-derived cell lines (colorectal HCT116 and HT29, breast MDA-MB-468, pancreatic MiaPaca2, and cervical HeLa) extrude acid by H(+) efflux and HCO(3)(-) influx, largely sensitive to dimethylamiloride and 4,4'-diisothiocyanatostilbene-2,2'-disulfonate (DIDS), respectively. The magnitude of HCO(3)(-) influx was comparable among the cell lines and may represent a constitutive element of tumor pH(i) regulation. In contrast, H(+) efflux varied considerably (MDA-MB-468 > HCT116 > HT29 > MiaPaca2 > HeLa). When HCO(3)(-) flux was pharmacologically inhibited, acid extrusion in multicellular HT29 and HCT116 spheroids (~10,000 cells) was highly non-uniform and produced low pH(i) at the core. With depth, acid extrusion became relatively more DIDS-sensitive because the low extracellular pH at the spheroid core inhibits H(+) flux more than HCO(3)(-) flux. HCO(3)(-) flux inhibition also decelerated HCT116 spheroid growth. In the absence of CO(2)/HCO(3)(-), acid extrusion by H(+) flux in HCT116 and MDA-MB-468 spheroids became highly non-uniform and inadequate at the core. This is because H(+) transporters require extracellular mobile pH buffers, such as CO(2)/HCO(3)(-), to overcome low H(+) ion mobility and chaperone H(+) ions away from cells. CO(2)/HCO(3)(-) exerts a dual effect: as substrate for membrane-bound HCO(3)(-) transporters and as a mobile buffer for facilitating extracellular diffusion of H(+) ions extruded from cells. These processes can be augmented by carbonic anhydrase activity. We conclude that CO(2)/HCO(3)(-) is important for maintaining uniformly alkaline pH(i) in small, non-vascularized tumor growths and may be important for cancer disease progression.  相似文献   

6.
Tonoplast-enriched vesicles were prepared from suspension-cultured Populus euphratica Oliv. cells by differential centrifugation and discontinuous sucrose density gradient centrifugation. The properties of the proton pumping activity of H+-ATPases in tonoplast vesicles were studied by acridine orange fluorescent quenching measured at 22 ℃. The proton pumping activity of ATPase was ATP-dependent with apparent Michaelis-Menten Constant (Km) for ATP about 0.65 mmol/L. The optimal pH for H+-ATPases activity was 7.5. The proton pumping activity of H+-ATPase could be initiated by some divalent cations, Mg2+ being highly efficient, much more than Fe2+; and Ca2+, Cu2+ and Zn2+ were inefficient under the experimental condition. The proton translocation could be stimulated by halide anions, with potencies decreasing in the order Cl-> Br->I->F-. The proton pumping activity was greatly inhibited by N-ethylmaleimide (NEM), N,N′-dicyclohexylcarbodiimide (DCCD), NO-3 and Bafilomycin A1, but not by orthovanadate and azide. These results demonstrated that the H+-ATPase in the tonoplast of Populus euphratica belonged to vacuolar type ATPase. This work was the first time that tonoplast-enriched vesicles were isolated from Populus euphratica cells.  相似文献   

7.
The effects of imposed proton motive force on the kinetic properties of the alkalophilic Bacillus sp. strain N-6 Na+/H+ antiport system have been studied by looking at the effect of delta psi (membrane potential, interior negative) and/or delta pH (proton gradient, interior alkaline) on Na+ efflux or H+ influx in right-side-out membrane vesicles. Imposed delta psi increased the Na+ efflux rate (V) linearly, and the slope of V versus delta psi was higher at pH 9 than at pH 8. Kinetic experiments indicated that the delta psi caused a pronounced increase in the Vmax for Na+ efflux, whereas the Km values for Na+ were unaffected by the delta psi. As the internal H+ concentration increased, the Na+ efflux reaction was inhibited. This inhibition resulted in an increase in the apparent Km of the Na+ efflux reaction. These results have also been observed in delta pH-driven Na+ efflux experiments. When Na(+)-loaded membrane vesicles were energized by means of a valinomycin-induced inside-negative K+ diffusion potential, the generated acidic-interior pH gradients could be detected by changes in 9-aminoacridine fluorescence. The results of H+ influx experiments showed a good coincidence with those of Na+ efflux. H+ influx was enhanced by an increase of delta psi or internal Na+ concentration and inhibited by high internal H+ concentration. These results are consistent with our previous contentions that the Na+/H+ antiport system of this strain operates electrogenically and plays a central role in pH homeostasis at the alkaline pH range.  相似文献   

8.
Sodium accumulation by the Na+-ATPase in the plasma membrane (PM) vesicles isolated from the marine alga Tetraselmis (Platymonas) viridis was shown to be accompanied by deltapsi generation across the vesicle membrane (positive inside) and H+ efflux from the vesicle lumen. Na+ accumulation was assayed with 22Na+; deltapsi generation was detected by recording absorption changes of oxonol VI; H+ efflux was monitored as an increase in fluorescence intensity of the pH indicator pyranine loaded into the vesicles. Both ATP-dependent Na+ uptake and H+ ejection were increased by the H+ ionophore carbonyl cyanide m-chlorophenylhydrazone (CICCP) while deltapsi was collapsed. The lipophilic anion tetraphenylboron ion (TPB-) inhibited H+ ejection from the vesicles and abolished deltapsi. Based on the effects of CICCP and TPB- on H+ ejection and deltapsi generation, the conclusion was drawn that H+ countertransport observed during Na+-ATPase operation is a secondary event energized by the electric potential which is generated in the course of Na+ translocation across the vesicle membrane. Increasing Na+ concentrations stimulated H+ efflux and caused the decrease in the deltapsi observed, thus indicating that Na+ is likely a factor controlling H+ permeability of the vesicle membrane.  相似文献   

9.
Yeast vacuolar acidification-defective (vph) mutants were identified using the pH-sensitive fluorescence of 6-carboxyfluorescein diacetate (Preston, R. A., Murphy, R. F., and Jones, E. W. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 7027-7031). Vacuoles purified from yeast bearing the vph1-1 mutation had no detectable bafilomycin-sensitive ATPase activity or ATP-dependent proton pumping. The peripherally bound nucleotide-binding subunits of the vacuolar H(+)-ATPase (60 and 69 kDa) were no longer associated with vacuolar membranes yet were present in wild type levels in yeast whole cell extracts. The VPH1 gene was cloned by complementation of the vph1-1 mutation and independently cloned by screening a lambda gt11 expression library with antibodies directed against a 95-kDa vacuolar integral membrane protein. Deletion disruption of the VPH1 gene revealed that the VPH1 gene is not essential for viability but is required for vacuolar H(+)-ATPase assembly and vacuolar acidification. VPH1 encodes a predicted polypeptide of 840 amino acid residues (molecular mass 95.6 kDa) and contains six putative membrane-spanning regions. Cell fractionation and immunodetection demonstrate that Vph1p is a vacuolar integral membrane protein that co-purifies with vacuolar H(+)-ATPase activity. Multiple sequence alignments show extensive homology over the entire lengths of the following four polypeptides: Vph1p, the 116-kDa polypeptide of the rat clathrin-coated vesicles/synaptic vesicle proton pump, the predicted polypeptide encoded by the yeast gene STV1 (Similar To VPH1, identified as an open reading frame next to the BUB2 gene), and the TJ6 mouse immune suppressor factor.  相似文献   

10.
Arabidopsis thaliana vacuolar H(+)-translocating pyrophosphatase (V-PPase) was expressed functionally in yeast vacuoles with endogenous vacuolar H(+)-ATPase (V-ATPase), and the regulation and reversibility of V-ATPase were studied using these vacuoles. Analysis of electrochemical proton gradient (DeltamuH) formation with ATP and pyrophosphate indicated that the proton transport by V-ATPase or V-PPase is not regulated strictly by the proton chemical gradient (DeltapH). On the other hand, vacuolar membranes may have a regulatory mechanism for maintaining a constant membrane potential (DeltaPsi). Chimeric vacuolar membranes showed ATP synthesis coupled with DeltamuH established by V-PPase. The ATP synthesis was sensitive to bafilomycin A(1) and exhibited two apparent K(m) values for ADP. These results indicate that V-ATPase is a reversible enzyme. The ATP synthesis was not observed in the presence of nigericin, which dissipates DeltapH but not DeltaPsi, suggesting that DeltapH is essential for ATP synthesis.  相似文献   

11.
Chloroplast Inner-Envelope ATPase Acts as a Primary H+ Pump   总被引:6,自引:5,他引:1       下载免费PDF全文
The stromal pH of the chloroplast must be maintained higher than that of the surrounding cytosol for photosynthetic carbon assimilation to occur. Experimental evidence demonstrating how this is accomplished in the plant cell is lacking. In the experiments reported here, we studied H+ and K+ flux across membranes of purified chloroplast inner-envelope vesicles. We were able to demonstrate ATP-dependent transport of both cations across the membranes of these vesicles. The data presented document the presence of an H+-pump ATPase in the chloroplast envelope. Energy-dependent K+ flux across these membranes occurs as a consequence of primary H+ pumping. The H+-pumping activity demonstrated in this report is consistent with a model involving the activity of this envelope ATPase as a primary mechanism facilitating a stroma:cytosol [delta]pH.  相似文献   

12.
Hellmer J  Pätzold R  Zeilinger C 《FEBS letters》2002,527(1-3):245-249
The genome of the hyperthermophilic archaeon Methanococcus jannaschii contains three Na(+)/H(+) antiporter related genes Mj0057, Mj1521 and Mj1275. Comparative sequence alignments revealed that Mj0057 and Mj1521 belong to the NhaP family whereas Mj1275 is a member of the NapA family. The genes were cloned and expressed in the double mutant Escherichia coli strain Frag144 (DeltanhaA, DeltanhaB) to analyze their capability of mediating DeltapH driven Na(+) flux in everted vesicles. From the tested clones only Mj0057 displayed Na(+) (Li(+))/H(+) antiporter activity. The transport was pH dependent and occurred at pH 7.0 and below. At pH 6.0 the apparent K(m) values for Na(+) and Li(+) were approximately 10 and 2.5 mM, respectively.  相似文献   

13.
Energy coupling of L-glutamate transport in brain synaptic vesicles has been studied. ATP-dependent acidification of the bovine brain synaptic vesicles was shown to require CI-, to be accelerated by valinomycin and to be abolished by ammonium sulfate, nigericin or CCCP plus valinomycin, and K+. On the other hand, ATP-driven formation of a membrane potential (positive inside) was found to be stimulated by ammonium sulfate, not to be affected by nigericin and to be abolished by CCCP plus valinomycin and K+. Like formation of a membrane potential, ATP-dependent L-[3H]glutamate uptake into vesicles was stimulated by ammonium sulfate, not affected by nigericin and abolished by CCCP plus valinomycin and K+. The L-[3H]glutamate uptake differed in specificity from the transport system in synaptic plasma membranes. Both ATP-dependent H+ pump activity and L-glutamate uptake were inhibited by bafilomycin and cold treatment (common properties of vacuolar H(+)-ATPase). ATP-dependent acidification in the presence of L-glutamate was also observed, suggesting that L-glutamate uptake lowered the membrane potential to drive further entry of H+. These results were consistent with the notion that the vacuolar H(+)-ATPase of synpatic vesicles formed a membrane potential to drive L-glutamate uptake. ATPase activity of the vesicles was not affected by the addition of Cl-, glutamate or nigericin, indicating that an electrochemical H+ gradient had no effect on the ATPase activity.  相似文献   

14.
To prevent sodium toxicity in plants, Na(+) is excluded from the cytosol to the apoplast or the vacuole by Na(+)/H(+) antiporters. The secondary active transport of Na(+) to apoplast against its electrochemical gradient is driven by plasma membrane H(+)-ATPases that hydrolyze ATP and pump H(+) across the plasma membrane. Current methods to determine Na(+) flux rely either on the use of Na-isotopes ((22)Na) which require special working permission or sophisticated equipment or on indirect methods estimating changes in the H(+) gradient due to H(+)-ATPase in the presence or absence of Na(+) by pH-sensitive probes. To date, there are no methods that can directly quantify H(+)-ATPase-dependent Na(+) transport in plasma membrane vesicles. We developed a method to measure bidirectional H(+)-ATPase-dependent Na(+) transport in isolated membrane vesicle systems using atomic absorption spectrometry (AAS). The experiments were performed using plasma membrane-enriched vesicles isolated by aqueous two-phase partitioning from leaves of Populus tomentosa. Since most of the plasma membrane vesicles have a sealed right-side-out orientation after repeated aqueous two-phase partitioning, the ATP-binding sites of H(+)-ATPases are exposed towards inner side. Leaky vesicles were preloaded with Na(+) sealed for the study of H(+)-ATPase-dependent Na(+) transport. Our data implicate that Na(+) movement across vesicle membranes is highly dependent on H(+)-ATPase activity requiring ATP and Mg(2+) and displays optimum rates of 2.50 microM Na(+) mg(-1) membrane protein min(-1) at pH 6.5 and 25 degrees C. In this study, for the first time, we establish new protocols for the preparation of sealed preloaded right-side-out vesicles for the study of H(+)-ATPase-dependent Na(+) transport. The results demonstrate that the Na(+) content of various types of plasma membrane vesicle can be directly quantified by AAS, and the results measured using AAS method were consistent with those determined by the previous established fluorescence probe method. The method is a convenient system for the study of bidirectional H(+)-ATPase-dependent Na(+) transport with membrane vesicles.  相似文献   

15.
In saline environments, plants accumulate Na(+) in vacuoles through the activity of tonoplast Na(+)/H(+) antiporters. The first gene for a putative plant vacuolar Na(+)/H(+) antiporter, AtNHX1, was isolated from Arabidopsis and shown to increase plant tolerance to NaCl. However, AtNHX1 mRNA was up-regulated by Na(+) or K(+) salts in plants and substituted for the homologous protein of yeast to restore tolerance to several toxic cations. To study the ion selectivity of the AtNHX1 protein, we have purified a histidine-tagged version of the protein from yeast microsomes by Ni(2+) affinity chromatography, reconstituted the protein into lipid vesicles, and measured cation-dependent H(+) exchange with the fluorescent pH indicator pyranine. The protein catalyzed Na(+) and K(+) transport with similar affinity in the presence of a pH gradient. Li(+) and Cs(+) ions were also transported with lower affinity. Ion exchange by AtNHX1 was inhibited 70% by the amiloride analog ethylisopropyl-amiloride. Our data indicate a role for intracellular antiporters in organelle pH control and osmoregulation.  相似文献   

16.
We examined the effects of external H+ on the kinetics of Na+-H+ exchange in microvillus membrane vesicles isolated from the rabbit renal cortex. The initial rate of Na+ influx into vesicles with internal pH 6.0 was optimal at external pH 8.5 and was progressively inhibited as external pH was reduced to 6.0. A plot of 1/V versus [H+]o was linear and yielded apparent KH = 35 nM (apparent pK 7.5). In vesicles with internal pH 6.0 studied at external pH 7.5 or 6.6, apparent KNa was 13 or 54 mM, Ki for inhibition of Na+ influx by external Li+ was 1.2 or 5.2 mM, Ki for inhibition by external NH4+ was 11 or 50 mM, and Ki for inhibition by external amiloride was 7 or 25 microM, respectively. These findings were consistent with competition between each cation and H+ at a site with apparent pK 7.3-7.5. Lastly, stimulation of 22Na efflux by external Na+ (i.e. Na+-Na+ exchange) was inhibited as external pH was reduced from 7.5 to 6.0, also consistent with competition between external H+ and external Na+. Thus, in contrast with internal H+, which interacts at both transport and activator sites, external H+ interacts with the renal microvillus membrane Na+-H+ exchanger at a single site, namely the external transport site, where H+, Na+, Li+, NH4+, and amiloride all compete for binding.  相似文献   

17.
Nitrate transport across the tonoplast has been studied using vacuole membranes isolated from cucumber roots grown in nitrate. The addition of NO3- ions into the tonoplast with ATP-generated transmembrane proton gradient caused the dissipation of delta pH, indicating the NO3(-)-induced proton efflux from vesicles. NO3(-)-dependent H+ efflux was almost insensitive to the transmembrane electrical potential difference, suggesting the presence of an electroneutral NO3-/H+ antiporter in the tonoplast. Apart from saturation kinetics, with respect to nitrate ions, NO3(-)-linked H+ efflux from the tonoplast of cucumber roots showed other characteristics expected of substrate-specific transporters. Experiments employing protein modifying reagents (NEM, pCMBS, PGO and SITS) indicated that a crucial role in the activity of tonoplast nitrate/proton antiporter is played by lysine residues (strong inhibition of NO3-/H+ antiport by SITS). None of the ion-channel inhibitors (NIF, ZnSO4 and TEA-Cl) used in the experiments had a direct effect on the nitrate transport into tonoplast membranes. On the other hand, every protein reagent, as well as NIF and ZnSO4, significantly affected the ATP-dependent proton transport in vesicles. Only TEA-Cl, the potassium channel blocker, had no effect on the vacuolar proton pumping activity.  相似文献   

18.
G Rudnick  S C Wall 《Biochemistry》1992,31(29):6710-6718
p-Chloroamphetamine (PCA) interacts with serotonin transporters in two membrane vesicle model systems by competing with serotonin for transport and stimulating efflux of accumulated serotonin. In plasma membrane vesicles isolated from human platelets, PCA competes with [3H]imipramine for binding to the serotonin transporter with a KD of 310 nM and competitively inhibits serotonin transport with a KI of 4.8 nM. [3H]Serotonin efflux from plasma membrane vesicles is stimulated by PCA in a Na(+)-dependent and imipramine-sensitive manner characteristic of transporter-mediated exchange. In membrane vesicles isolated from bovine adrenal chromaffin granules, PCA competitively inhibits ATP-dependent [3H]serotonin accumulation with a KI of 1.7 microM and, at higher concentrations, stimulates efflux of accumulated [3H]serotonin. Stimulation of vesicular [3H]serotonin efflux is due in part to dissipation of the transmembrane pH difference (delta pH) generated by ATP hydrolysis. Part of PCA's ability to stimulate efflux may be due to its transport by the vesicular amine transporter. Flow dialysis experiments demonstrated uptake of [3H]PCA into chromaffin granule membrane vesicles in response to the delta pH generated in the presence of Mg2+ and ATP. In plasma membrane vesicles, no accumulation was observed using an NaCl gradient as the driving force. We conclude that rapid nonmediated efflux of transported PCA prevents accumulation unless PCA is trapped inside by a low internal pH.  相似文献   

19.
Transport of the amino acids L-valine, L-lysine, and L-glutamic acid and of sucrose was studied in plasma membrane vesicles isolated from developing cotyledons of pea (Pisum sativum L. cv. Marzia). The vesicles were obtained by aqueous polymer two-phase partitioning of a microsomal fraction and the uptake was determined after the imposition of a H(+)-gradient (DeltapH, inside alkaline) and/or an electrical gradient (Deltapsi, inside negative) across the vesicle membrane. In the absence of gradients, a distinct, time-dependent uptake of L-valine was measured, which could be enhanced about 2-fold by the imposition of DeltapH. The imposition of Deltapsi stimulated the influx of valine by 20%, both in the absence and in the presence of DeltapH. Uptake of L-lysine was more strongly stimulated by Deltapsi than by DeltapH, and its DeltapH-dependent uptake was enhanced about 6-fold by the simultaneous imposition of Deltapsi. In the absence of gradients the uptake of L-glutamic acid was about 2-fold higher than that of L-valine, but it was not detectably affected by DeltapH or Deltapsi. Although the transport of sucrose was very low, a stimulating effect of DeltapH could be clearly demonstrated. The results lend further support to the contention that during seed development cotyledonary cells employ H(+)-symporters for the active uptake of sucrose and amino acids.  相似文献   

20.
Culham DE  Romantsov T  Wood JM 《Biochemistry》2008,47(31):8176-8185
H (+)-solute symporters ProP and LacY are members of the major facilitator superfamily. ProP mediates osmoprotectant (e.g., proline) accumulation, whereas LacY transports the nutrient lactose. The roles of K (+), H (+), H 2O, and DeltaPsi in H (+)-proline and H (+)-lactose symport were compared using right-side-out cytoplasmic membrane vesicles (MVs) from bacteria expressing both transporters and proteoliposomes (PRLs) reconstituted with pure ProP-His 6. ProP activity increased as LacY activity decreased when osmotic stress (increasing osmolality) was imposed on MVs. The activities of both transporters decreased to similar extents when Na (+) replaced K (+) in MV preparations. Thus, K (+) did not specifically control ProP activity. As with LacY, an increasing extravesicular pH stimulated ProP-mediated proline efflux much more than ProP-mediated proline exchange from de-energized MVs. In contrast to that of LacY, ProP-mediated exchange was only 2-fold faster than ProP-mediated efflux and was inhibited by respiration. In the absence of the protonmotive force (Deltamu H (+) ), efflux of lactose from MVs was much more sensitive to increasing osmolality than lactose exchange. Thus, H 2O may be directly involved in proton transport via LacY. In the absence of Deltamu H (+) , proline efflux and exchange from MVs were osmolality-independent. In PRLs with a DeltapH of 1 (lumen alkaline), ProP-His 6 was inactive when the membrane potential (DeltaPsi) was zero, was active but insensitive to osmolality when DeltaPsi was -100 mV, and became osmolality-sensitive as DeltaPsi increased further to -137 mV. ProP-His 6 had the same membrane orientation in PRLs as in cells and MVs. ProP switches among "off", "on", and "osmolality-sensitive" states as the membrane potential increases. Kinetic parameters determined in the absence of Deltamu H (+) represent a ProP population that is predominantly off.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号