首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Never-dried and once-dried hardwood celluloses were oxidized by a 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)-mediated system, and highly crystalline and individualized cellulose nanofibers, dispersed in water, were prepared by mechanical treatment of the oxidized cellulose/water slurries. When carboxylate contents formed from the primary hydroxyl groups of the celluloses reached approximately 1.5 mmol/g, the oxidized cellulose/water slurries were mostly converted to transparent and highly viscous dispersions by mechanical treatment. Transmission electron microscopic observation showed that the dispersions consisted of individualized cellulose nanofibers 3-4 nm in width and a few microns in length. No intrinsic differences between never-dried and once-dried celluloses were found for preparing the dispersion, as long as carboxylate contents in the TEMPO-oxidized celluloses reached approximately 1.5 mmol/g. Changes in viscosity of the dispersions during the mechanical treatment corresponded with those in the dispersed states of the cellulose nanofibers in water.  相似文献   

2.
Intelligent dual-responsive cellulose surfaces via surface-initiated ATRP   总被引:1,自引:0,他引:1  
Novel thermo-responsive cellulose (filter paper) surfaces of N-isopropylacrylamide (NIPAAm) and pH-responsive cellulose surfaces of 4-vinylpyridine (4VP) have been achieved via surface-initiated ATRP. Dual-responsive (pH and temperature) cellulose surfaces were also obtained through the synthesis of block-copolymer brushes of PNIPAAm and P4VP. With changes in pH and temperature, these "intelligent" surfaces showed a reversible response to both individual triggers, as indicated by the changes in wettability from highly hydrophilic to highly hydrophobic observed by water contact angle measurements. Adjusting the composition of the grafted block-copolymer brushes allowed for further tuning of the wettability of these "intelligent" cellulose surfaces.  相似文献   

3.
Aqueous blends of microcrystalline cellulose (MCC) or methyl cellulose (MC) and corn starch with or without polyols were extruded, hot pressed and studied, after their conditioning at different relative humidities, in terms of their thermal, mechanical and water and gas permeability properties. An increase in water or polyol content showed a considerable increase in percentage elongation but also a decrease in the tensile strength of films. The presence of high cellulose contents increased the tensile strength and decreased the water vapour transmission of films. The development of crystallinity with time resulted in a decrease of both gas and water permeability. Several semiempirical models for calculation of gas permeability and tensile strength and tensile and flexural moduli were applied. The obtained values were compared to those experimentally determined and with the ones reported in the literature. On several occasions, quite significant discrepancies were found which were attributed to differences in molecular weight, percentage crystallinity and polymorphism.  相似文献   

4.
The goal of this paper is a systematic investigation of changes in the supramolecular structure of cellulose during its water uptake. The main attention is concentrated on the analysis of the mechanism of dispersion of microfibrils by proton NMR relaxation techniques. Spin diffusion NMR experiments made it possible to estimate the linear dimensions of the surface thickness of cellulose crystallites and the average depth of micropores that are formed between elementary fibrils, as well as the character of the filling of micropores during adsorption. It has been shown that when the relative water content gradually increases to 7–8%, water molecules occupy the space between cellulose microfibrils, which is accompanied by an increase in the pore sizes and their specific surface area and a simultaneous decrease in the degree of crystallinity. Upon acquiring a free induction decay signal, a magic sandwich echo sequence was used, due to which the accuracy and information value of the results were considerably improved.  相似文献   

5.
High quality antique sheets of paper have been characterized by 1H NMR relaxations and 13C CP MAS spectra. Paper can be regarded as a bicomponent material made of cellulose and water plus a small amount of organic and inorganic impurities. Semicrystalline fibrous cellulose, rich in water, is present in the I and Iβ forms. The amorphous cellulose, with a low water content, contains a higher amount of paramagnetic impurities and it is characterized by quite short 1H spin-lattice relaxations and by 113C resonances with noticeable chemical shifts. Ad hoc tailored pulse sequences are able to produce 13C CP MAS spectra in which only the amorphous content of paper is clearly observed. It is shown that water is fully bound to the cellulose lattice. It also seems reasonable to formulate the hypothesis that a larger concentration of paramagnetic ions is located in the amorphous fraction of highly degraded paper compared with paper in good condition.  相似文献   

6.
We prepared highly crystalline samples of a cellulose I-ethylenediamine (EDA) complex by immersing oriented films of algal (Cladophora) cellulose microcrystals in EDA at room temperature for a few days. The unit-cell parameters were determined to be a = 0.455, b = 1.133, and c = 1.037 nm (fiber repeat) and gamma = 94.02 degrees. The space group was P2(1). On the basis of unit cell, density, and thermogravimetry analyses, the asymmetric unit is composed of one anhydrous glucose residue and one EDA molecule. The chemical and thermal stabilities of the cellulose I-EDA complex were also investigated by the use of X-ray diffraction. When the cellulose I-EDA complex was immersed in methanol or water at room temperature, cellulose III I or I beta was obtained, respectively. However, immersion in a nonpolar solvent such as toluene did not affect the crystal structure of the complex. The cellulose I-EDA complex was stable up to a temperature of approximately 130 degrees C, whereas the boiling point of EDA is 117 degrees C. This thermal stability of the complex is probably caused by intermolecular hydrogen bonds between EDA molecules and cellulose. When heated above 150 degrees C, the cellulose I-EDA complex decomposed into cellulose I beta.  相似文献   

7.
Pressurized low polarity water (PLPW) fractionation of triticale straw was optimized to maximize hemicellulose and lignin yield, and to produce a cellulose rich fraction for biofuels production. The optimum PLPW conditions for hemicellulose yield was determined to be 165 °C, with a flow rate of 115 mL/min, and a solvent-to-solid ratio of 60 mL/g. Hemicellulose and lignin yield generally increased with increasing temperature and solvent-to-solid ratio. There was a small decrease in hemicellulose yield with an increase in flow rate. Minimum lignin content of the triticale straw residue after extraction was predicted to occur at a processing condition of 206 °C, 160 mL/min, and 67 mL/g. PLPW was successful in removing 73-78% of the hemicellulose, leaving a cellulose rich fraction (65% glucose concentration). Lignin was equally distributed between the solid residues and the extracts and most of the hemicellulose was extracted in oligomer form. Remaining solid residues after fractionation were highly digestible by cellulase enzymes.  相似文献   

8.
Seeds of Bixa orellana (L.) have a sclerified palisade cell layer, which constitutes a natural barrier to water uptake. In fact, newly fully developed B. orellana seeds are highly impermeable to water and thereby dormant. The purpose of this work is to investigate, from a developmental point of view, the histochemical and physical changes in the cell walls of the seed coat that are associated with the water impermeability. Seed coat samples were analyzed by histochemical and polarization microscopy techniques, as well as by fractionation/HPAEC-PAD. For histochemical analysis the tissue samples were fixed, dehydrated, embedded in paraffin and the slides were dewaxed and tested with appropriate stains for different cell wall components. Throughout the development of B. orellana seeds, there was a gradual thickening of the seed coat at the palisade region. This thickening was due to the deposition of cellulose and hemicelluloses in the palisade layer cell walls, which resulted in a highly water impermeable seed coat. The carbohydrate composition of the cell walls changed dramatically at the late developmental stages due to the intense deposition of hemicelluloses. Hemicelluloses were mainly deposited in the outer region of the palisade layer cell walls and altered the birefringent pattern of the walls. Xylans were by far the most abundant hemicellulosic component of the cell walls. Deposition of cellulose and hemicelluloses, especially xylans, could be responsible for the impermeability to water observed in fully developed B. orellana seeds.  相似文献   

9.
Eight-month-old Sprague-Dawley rats were fed on diets containing dietary fiber at the 5% level for 3 weeks to examine the effect on the lipid metabolism and immune function. Among cellulose, guar gum, partially hydrolyzed guar gum (PHGG), glucomannan and highly methoxylated pectin, guar gum induced a significant decrease in the food intake and weight gain, as well as a significant increase in the liver weight. In addition, the epidydimal adipose tissue weight of the rats fed on PHGG was significantly higher than that of the rats fed on cellulose. There was no significant effect on the serum lipid levels, but the serum IgG level of the rats fed on guar gum was significantly lower than that of the rats fed on cellulose. The IgA and IgG productivity in mesenteric lymph node (MLN) lymphocytes was significantly higher in the rats fed on guar gum, glucomannan and pectin than in those fed on cellulose, while the effect on Ig productivity in spleen lymphocytes was not as marked. In addition, only guar gum induced a significant increase of IgM productivity in MLN lymphocytes when compared to the cellulose group. These results suggest that enhancement of the immune function by dietary fiber is mainly expressed in the gut immune system.  相似文献   

10.
Liquid hot water, steam explosion, and dilute acid pretreatments of lignocellulose generate soluble inhibitors which hamper enzymatic hydrolysis as well as fermentation of sugars to ethanol. Toxic and inhibitory compounds will vary with pretreatment and include soluble sugars, furan derivatives (hydroxymethyl fulfural, furfural), organic acids (acetic, formic and, levulinic acid), and phenolic compounds. Their effect is seen when an increase in the concentration of pretreated biomass in a hydrolysis slurry results in decreased cellulose conversion, even though the ratio of enzyme to cellulose is kept constant. We used lignin-free cellulose, Solka Floc, combined with mixtures of soluble components released during pretreatment of wood, to prove that the decrease in the rate and extent of cellulose hydrolysis is due to a combination of enzyme inhibition and deactivation. The causative agents were extracted from wood pretreatment liquid using PEG surfactant, activated charcoal or ethyl acetate and then desorbed, recovered, and added back to a mixture of enzyme and cellulose. At enzyme loadings of either 1 or 25mg protein/g glucan, the most inhibitory components, later identified as phenolics, decreased the rate and extent of cellulose hydrolysis by half due to both inhibition and precipitation of the enzymes. Full enzyme activity occurred when the phenols were removed. Hence detoxification of pretreated woods through phenol removal is expected to reduce enzyme loadings, and therefore reduce enzyme costs, for a given level of cellulose conversion.  相似文献   

11.
The ionic liquids 1-ethyl-3-methylimidazolium acetate [emim]OAc, N,N,N,N-tetramethylguanidium propionate [TMGH]EtCO(2), and N,N,N,N-tetramethylguanidium acetate [TMGH]OAc, and the traditional cellulose solvent N-methylmorpholine N-oxide NMMO were characterized for their Kamlet-Taft (KT) values at several water contents and temperatures. For the ionic liquids and NMMO, thresholds of regeneration of cellulose solutions by water were determined using nephelometry and rheometry. Regeneration from wet IL was found to be asymmetric compared to dissolution into wet IL. KT parameters were found to remain almost constant at temperatures, between 20-100 °C, even at different water contents. Among the KT parameters, the β value was found to change most drastically, with an almost linear decrease upon addition of water. The ability of the mixtures to dissolve cellulose was best explained by the difference β-α (net basicity), rather than β alone. Regeneration of cellulose starts at thresholds values of approximately β < 0.8 (β-α < 0.35) and displayed four phases.  相似文献   

12.
FTIR analysis of cellulose treated with sodium hydroxide and carbon dioxide   总被引:10,自引:0,他引:10  
Oh SY  Yoo DI  Shin Y  Seo G 《Carbohydrate research》2005,340(3):417-428
Cellulose samples treated with sodium hydroxide (NaOH) and carbon dioxide in dimethylacetamide (DMAc) were analyzed by FTIR spectroscopy. Absorbance of hydrogen-bonded OH stretching was considerably decreased by the treatment of NaOH and carbon dioxide. The relative absorbance ratio (A(4000-2995)/A(993)) represented the decrease of absorbance as a criterion of hydrogen-bond intensity (HBI). The absorbance of the band at 1430cm(-1) due to a crystalline absorption was also decreased by NaOH treatment. The absorbance ratio of the bands at 1430 and 987-893cm(-1) (A(1430)/A(900)), adopted as crystallinity index (CI), was closely related to the portion of cellulose I structure. With the help of FTIR equipped with an on-line evacuation apparatus, broad OH bending due to bound water could be eliminated. FTIR spectra of the carbon dioxide-treated cellulose samples at 1700-1525cm(-1) were divided into some bands including 1663, 1635, 1616, and 1593cm(-1). The broad OH bending due to bound water at 1641-1645cm(-1) was resolved to two bands at 1663 and 1635cm(-1). As a trace of DMAc, the band at 1616cm(-1) is disappeared by washing for the cellulose treated with carbon dioxide (Cell 1-C and Cell 2/60-C). The decrease of HBI, the easy removal of DMAc, and the band at 1593cm(-1) supported the introduction of new chemical structure in cellulose. The bands shown at 1593 and 1470cm(-1) was assigned as hydrogen-bonded carbonyl stretching and O-C-O stretching of the carbonate ion.  相似文献   

13.
Investigation of the effect of disintegrants on the disintegration time and hardness of rapidly disintegrating tablets (RDTs) was carried out using a quality by design (QbD) paradigm. Ascorbic acid, aspirin, and ibuprofen, which have different water solubilities, were chosen as the drug models. Disintegration time and hardness of RDTs were determined and modeled by executing combined optimal design. The generated models were validated and used for further analysis. Sodium starch glycolate, croscarmellose sodium, and crospovidone were found to lengthen disintegration time when utilized at high concentrations. Sodium starch glycolate and crospovidone worked synergistically in aspirin RDTs to decrease disintegration time. Sodium starch glycolate-crospovidone mixtures, as well as croscarmellose sodium-crospovidone mixtures, also decreased disintegration time in ibuprofen RDTs at high compression pressures as compared to the disintegrants used alone. The use of sodium starch glycolate in RDTs with highly water soluble active ingredients like ascorbic acid slowed disintegration, while microcrystalline cellulose and crospovidone drew water into the tablet rapidly and quickened disintegration. Graphical optimization analysis demonstrated that the RDTs with desired disintegration times and hardness can be formulated with a larger area of design space by combining disintegrants at difference compression pressures. QbD was an efficient and effective paradigm in understanding formulation and process parameters and building quality in to RDT formulated systems.KEY WORDS: disintegrants, quality by design, rapidly disintegrating tablets  相似文献   

14.
Biocomposites were subject to exposure to a mixture of fungi and algae in a microenvironment chamber. Surface and bulk property changes of polypropylene/wood flour, recycled polypropylene/cellulose and polylactide/wood flour were monitored by tensile testing, Differential Scanning Calorimetry (DSC), Thermal Gravimetric Analysis (TGA) and Field Emission Scanning Electron Microscope (FE-SEM).All the biocomposites showed a substantial decrease in toughness after 28 and 56 days of hydrolysis. The ductility increased after 28 and 56 days, but deteriorated after 84 days of hydrolysis. Biofilm formation occurred on all biocomposites even if the polymer itself was inert to biodegradation. The microbial colonization affected mainly the surface properties of polypropylene biocomposites while changes were monitored also in the bulk properties of polylactide biocomposites.The cellulose fibres in the composites gave a more easily colonized surface mainly attributed to water uptake. In the short term perspective, the water uptake offered better conditions for biofilm adhesion, and in the longer perspective the exposure to microorganisms also resulted in mechanical degradation, followed by biodegradation of cellulose. With time this will leave a porous matrix of polypropylene, while biodegradable polymers such as polylactide will degrade in parallel with the fibre part.  相似文献   

15.
New highly hydrophobic/lipophobic biopolymers were prepared by the controlled heterogeneous pentafluorobenzoylation of cellulose substrates, i.e., plant and bacterial cellulose fibers. The characterization of the modified fibers was performed by elemental analysis, FTIR spectroscopy, X-ray diffraction, thermogravimetry, and surface analysis (XPS, ToF-SIMS, and contact angle measurements). The degree of substitution of the ensuing pentafluorobenzoylated fibers ranged from 0.014 to 0.39. The hydrolytic stability of these perfluorinated cellulose derivatives was also evaluated and showed that they were quite water stable, although of course the fluorinated moieties could readily be removed by hydrolysis in an aqueous alkaline medium.  相似文献   

16.
In order to expand its utility and understand how to carry it out most efficiently, the scope of the highly regioselective, tetrabutylammonium fluoride (TBAF) catalyzed deacylation of cellulose acetates has been investigated, including the influence of key process parameters: solvent, temperature, and water content. Reactions in DMSO, THF, MEK and acetone afforded similar extents of deacylation and regioselectivity. Reaction with TBAF in DMSO at 50 °C for 18 h was the most efficient process providing regioselective deacylation at O-2/3. All results were consistent with our previous mechanistic proposals. Furthermore, we demonstrate that TBAF-catalyzed deacylation is also effective and regioselective with cellulose acetate, butyrate, and hexanoate triesters, and even with a cellulose ester devoid of alpha protons, cellulose tribenzoate. These reactions displayed regioselectivity for deacylation at O-2/3 similar to that observed earlier with cellulose acetate (DS 2.4).  相似文献   

17.
The purpose of this research was to develop and optimize a controlled-release multiunit floating system of a highly water soluble drug, ranitidine HCl, using Compritol, Gelucire 50/13, and Gelucire 43/01 as lipid carriers. Ranitidine HCl-lipid granules were prepared by the melt granulation technique and evaluated for in vitro floating and drug release. ethyl cellulose, methylcellulose, and hydroxypropyl methylcellulose were evaluated as release rate modifiers. A 32 full factorial design was used for optimization by taking the amounts of Gelucire 43/01 (X 1) and ethyl cellulose (X 2) as independent variables, and the percentage drug released in 1(Q1), 5(Q5), and 10 (Q10) hours as dependent variables. The results revealed that the moderate amount of Gelucire 43/01 and ethyl cellulose provides desired release of ranitidine hydrochloride from a floating system. Batch F4 was considered optimum since it contained less Gelucire and was more similar to the theoretically predicted dissolution profile (f2=62.43). The temperature sensitivity studies for the prepared formulations at 40°C/75% relative humidity for 3 months showed no significant change in in vitro drug release pattern. These studies indicate that the hydrophobic lipid Gelucire 43/01 can be considered an effective carrier for design of a multiunit floating drug delivery system for highly water soluble drugs such as ranitidine HCl. Published: April 13, 2007  相似文献   

18.
Self organization of the kinesin-microtubule system was implemented as a novel template to create percolated nanofiber networks. Asters of microtubule seeds were immobilized on glass surfaces and their growth was recorded over time. The individual aster islands became interconnected as microtubules grew and overlapped, resulting in a highly percolated network. Cellulose nanowhiskers were used to demonstrate the application of this system to nanomaterials organization. The size distribution of the cellulose nanowhiskers was comparable to that of microtubules. To link cellulose nanowhiskers to microtubules, the nanowhiskers were functionalized by biotin using cellulose binding domains. Fluorescence studies confirmed biotinylation of cellulose nanowhiskers and binding of cellulose nanowhiskers to biotinylated microtubules.  相似文献   

19.
Energies of freezing and frost desiccation   总被引:4,自引:3,他引:1       下载免费PDF全文
Olien CR 《Plant physiology》1974,53(5):764-767
A stable cellulose paper system was studied to relate water distribution data, as obtained previously from plant tissues, to the analysis of freezing energy. Water distribution data for the cellulose system were obtained by several techniques and were coordinated with calorimetric data. The effect of the cellulose system on the latent heat of freezing was evaluated to estimate activation energies as functions of the amount of associated liquid water. Similar activation energies of water phase transitions in critical plant tissue systems may be heritable characteristics that affect freezing stress. Adhesion energy, that develops between ice and hydrophilic polymer systems as they compete for liquid water in a complex interface, was suggested as one possible source of freezing stress. This does not occur in frost desiccation.  相似文献   

20.
A highly absorbent cellulose fiber from recycled paper was tested and compared with a polyacrylate gelling agent, Aquatain, normally used for bulking and solidifying larval rearing medium of screwworm, Cochliomyia hominivorax (Coquerel) (Diptera: Calliphoridae). The absorbent fiber, when mixed with water and dietary ingredients, produced a diet medium of homogeneous texture that supported larval growth and development comparable with the standard gelled diet. Larval and pupal weights from two concentrations of cellulose fiber-based diet were significantly higher than those obtained using gelled diet. The number of pupae per tray, percentage of adult emergence, oviposition, percentage of egg hatch, and adult longevity obtained from the insects reared in the cellulose fiber-based diet were comparable or slightly better than the biological parameters recorded from flies reared in the gelled diet. Moreover, results indicate that a lesser amount of the cellulose fiber-based diet than the normal amount of gelled diet per tray would support normal larval growth. Physical properties and texture of the new diet seem to allow the larvae to move and feed more freely than they do on the semisolid gelled diet, resulting in less wasted diet. The cellulose fiber is biodegradable and inexpensive, whereas the polyacrylate gel polymer is not biodegradable and is relatively expensive. Replacing gel with cellulose fiber in the screwworm larval diet for mass rearing should result in substantial cost savings in material and labor as well as eliminating concern of environmental pollution due to diet waste disposal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号