首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
正The classic method for gene knockout (KO) is based on homologous recombination (HR) and embryonic stem cell technique (Gerlai,1996).Actually,the procedure of homologous replacement is complicated and time consuming,although it has been popular during the past decades.Recent years,genome editing which can cause DNA sequence-specific mutations in the genomes of cellular  相似文献   

2.
To construct strains of the filamentous fungus Trichoderma reesei with low cellobiohydrolases while high endoglucanase activity, the Pcbh1-eg3-Tcbh1 cassette was constructed and the coding sequence of the cellobiohydrolase I (CBHI) gene was replaced with the coding sequence of the eg3 gene by homologous recombination. Disruption of the cbhl gene was confirmed by PCR, Southern dot blot and Western hybridization analysis in two transforments denoted as L 13 and L29. The filter paper-hydrolyzing activity of strain L29 was 60% of the parent strain Rut C30, and the CMCase activity was increased by 33%. This relatively modest increase suggested that the eg3 cDNA under the control of the cbhl promoter was not efficiently transcribed as the wild type cbhl gene. However our results confirmed that homologous recombination could be used to construct strains of the filamentous fungus Trichoderma reesei with novel cellulase profile. Such strains are of interest from the basic science perspective and also have potential industrial applications.  相似文献   

3.
Meiosis is a key event in gametogenesis that generates new combinations of genetic information and is required to reduce the chro- mosome content of the gametes. Meiotic chromosomes undergo a number of specialised events during prophase to allow meiotic recombination, homologous chromosome synapsis and reductional chromosome segregation to occur. In mammalian cells, DNA phys- ically associates with histones to form chromatin, which can be modified by methylation, phosphorylation, ubiquitination and acetylation to help regulate higher order chromatin structure, gene expression, and chromosome organisation. Recent studies have identified some of the enzymes responsible for generating chromatin modifications in meiotic mammalian cells, and shown that these chromatin modifying enzymes are required for key meiosis-specific events that occur during meiotic prophase. This review will discuss the role of chromatin modifications in meiotic recombination, homologous chromosome synapsis and regulation of meiotic gene expression in mammals.  相似文献   

4.
正Dear Editor,DNA double-strand breaks caused by ionizing radiation are the most severe DNA damage types.If not being timely or correctly repaired,cells will undergo apoptosis or gene mutation and subsequent genomic instability~([1-2]).For double-strand breaks,there are two main repair pathway in cells,namely homologous recombination and non-homologous  相似文献   

5.
Meiotic recombination is a deeply conserved process within eukaryotes that has a profound effect on patterns of natural genetic variation. During meiosis homologous chromosomes pair and undergo DNA double strand breaks generated by the Spo11 endonuclease. These breaks can be repaired as crossovers that result in reciprocal exchange between chromosomes. The frequency of recombination along chromosomes is highly variable, for example, crossovers are rarely observed in heterochromatin and the centromeric regions. Recent work in plants has shown that crossover hotspots occur in gene promoters and are associated with specific chromatin modifications, including H2 A.Z. Meiotic chromosomes are also organized in loop-base arrays connected to an underlying chromosome axis, which likely interacts with chromatin to organize patterns of recombination.Therefore, epigenetic information exerts a major influence on patterns of meiotic recombination along chromosomes, genetic variation within populations and evolution of plant genomes.  相似文献   

6.
基因打靶技术的研究进展   总被引:12,自引:2,他引:10  
刘红全  戴继勋  于文功  杨堃峰 《遗传》2002,24(6):707-711
基因打靶技术是一项新兴的分子生物学技术,是利用外源DNA与受体细胞染色体DNA上的同源序列之间发生重组,并整合在预定位点上,从而改变细胞遗传特性的方法。它的产生是遗传工程领域的一次革命,为发育生物学、分子遗传学、免疫学及医学等学科提供了一个全新的、强有力的研究手段。目前基因打靶技术在研究基因的结构和功能、表达与调控,转基因及基因治疗等方面均取得了进展。但基因打靶技术仍存在一些问题,主要是打靶的效率太低。本文综述了基因打靶技术的原理、操作程序并对提高基因打靶效率的可能途径进行了探讨。 Progress on Gene Targeting LIU Hong-quan1,DAI Ji-xun1,YU Wen-gong2,YANG Kun-feng1 1.Ocean University of Qingdao,College of Marine Life Sciences,Qingdao 266003,China; 2.Institute of Marine Drugs and Foods,Qingdao 266003,China Abstract:Gene targeting is a rising technology in molecular biology,which is defined as the introduction of exogeneous DNA to specific site in genome by homologous recombination,and consequently change the hereditary character of the cell.This technology provides a new and powerful means for research in developmental biology,molecular genetics,immunology and medicine.Progresses have been made in exploring gene structure and function,gene expression and regulation,transgene and gene therapy with the application of gene targeting.But there are some problems in gene targeting,especially for the low efficiency.This article just provided a review of the principle and program of gene targeting,and discussed the possible approaches to increase the efficiency of gene targeting. Key words:gene targeting;homologous recombination;targeting vector;targeting efficiency  相似文献   

7.
Recombinant adeno-associated virus(rAAV) vectors have been extensively used for experimental gene therapy of inherited human diseases.Several advantages,such as simple vector construction,high targeting frequency by homologous recombination,and applicability to many cell types,make rAAV an attractive approach for targeted genome editing.Combined with cloning by somatic cell nuclear transfer(SCNT),this technology has recently been successfully adapted to generate gene-targeted pigs as models for cystic fibrosis, hereditary tyrosinemia type 1,and breast cancer.This review summarizes the development of rAAV for targeted genome editing in mammalian cells and provides strategies for enhancing the rAAV-mediated targeting frequency by homologous recombination.We discuss current development and application of the rAAV vectors for targeted genome editing in porcine primary fibroblasts,which are subsequently used as donor cells for SCNT to generate cloned genetically designed pigs and provide positive perspectives for the generation of gene-targeted pigs with rAAV in the future.  相似文献   

8.
Tong C  Huang G  Ashton C  Wu H  Yan H  Ying QL 《遗传学报》2012,39(6):275-280
  相似文献   

9.
Li W  Ma H 《Cell research》2006,16(5):402-412
Meiotic prophase I is a long and complex phase. Homologous recombination is an important process that occurs between homologous chromosomes during meiotic prophase I. Formation of chiasmata, which hold homologous chromosomes together until the metaphase I to anaphase I transition, is critical for proper chromosome segregation. Recent studies have suggested that the SPO 11 proteins have conserved functions in a number of organisms in generating sites of double-stranded DNA breaks (DSBs) that are thought to be the starting points of homologous recombination. Processing of these sites of DSBs requires the function of RecA homologs, such as RAD5 1, DMC 1, and others, as suggested by mutant studies; thus the failure to repair these meiotic DSBs results in abnormal chromosomal alternations, leading to disrupted meiosis. Recent discoveries on the functions of these RecA homologs have improved the understanding of the mechanisms underlying meiotic homologous recombination.  相似文献   

10.
This article uses a real-life example to illustrate the concept and methodology of recombineering,a revolutionary genetic engineering technique based on phage-mediated homologous recombination.A step-b...  相似文献   

11.
In the present study, we report the first characterization of gene conversion tract length, continuity and fidelity for pathways of gene targeting, ectopic and intrachromosomal homologous recombination using the same locus and mammalian somatic cell type. In this isogenic cell system, the vast majority of recombinants (> 97%) are generated by homologous recombination and display a high degree of fidelity in the gene conversion process. Individual gene conversion tracts are highly likely to involve single, independent recombination events and proceed through a heteroduplex DNA intermediate. In all recombination pathways, gene conversion tracts are long, extending up to ∼ 2 kb. Most gene conversion tracts are continuous in favor of donor region sequences, but in a small fraction of recombinants (15%), discontinuous gene conversion tracts are observed. In most cases, the recombination donor sequence is unaltered, although in two cases of intrachromosomal recombination, both recombination donor and recipient sequences bear gene conversion tracts. Overall, gene conversion events are similar, both qualitatively and quantitatively, for homologous recombination within and between mammalian chromosomes.  相似文献   

12.
Homologous recombination accomplishes the exchange of genetic information between two similar or identical DNA duplexes. It can occur either by gene conversion, a process of unidirectional genetic exchange, or by reciprocal crossing over. Homologous recombination is well known for its role in generating genetic diversity in meiosis and, in mitosis, as a DNA repair mechanism. In the immune system, the evidence suggests a role for homologous recombination in Ig gene evolution and in the diversification of Ab function. Previously, we reported the occurrence of homologous recombination between repeated, donor and recipient alleles of the Ig H chain mu gene C (Cmu) region residing at the Ig mu locus in mouse hybridoma cells. In this study, we constructed mouse hybridoma cell lines bearing Cmu region heteroalleles to learn more about the intrachromosomal homologous recombination process. A high frequency of homologous recombination (gene conversion) was observed for markers spanning the entire recipient Cmu region, suggesting that recombination might initiate at random sites within the Cmu region. The Cmu region heteroalleles were equally proficient as either conversion donors or recipients. Remarkably, when the same Cmu heteroalleles were tested for recombination in ectopic genomic positions, the mean frequency of gene conversion was reduced by at least 65-fold. These results are consistent with the murine IgH mu locus behaving as a hot spot for intrachromosomal homologous recombination.  相似文献   

13.
Summary Nonreciprocal recombination (gene conversion) between homologous sequences at nonhomologous locations in the genome occurs readily in the yeast Saccharomyces cerevisiae. In order to test whether the rate of gene conversion is dependent on the number of homologous copies available in the cell to act as donors of information, the level of conversion of a defined allele was measured in strains carrying plasmids containing homologous sequences. The level of recombination was elevated in a strain carrying multiple copies of the plasmid, compared with the same strain carrying a single copy of the homologous sequences either on a plasmid or integrated in the genome. Thus, the level of conversion is proportional to the number of copies of donor sequences present in the cell. We discuss these results within the framework of currently favoured models of recombination.  相似文献   

14.
Meiotic crossover (CO) recombination involves a reciprocal exchange between homologous chromosomes. COs are often associated with gene conversion at the exchange site where genetic information is unidirectionally transferred from one chromosome to the other. COs and independent assortment of homologous chromosomes contribute significantly to the promotion of genomic diversity. What has not been appreciated is the contribution of another product of meiotic recombination, noncrossovers (NCOs), which result in gene conversion without exchange of flanking markers. Here, we review our comprehensive analysis of recombination at a highly polymorphic mouse hotspot. We found that NCOs make up ~90% of recombination events. Preferential recombination initiation on one chromosome allowed us to estimate the contribution of CO and NCO gene conversion to transmission distortion, a deviation from Mendelian inheritance in the population. While NCO gene conversion tracts are shorter, and thus have a more punctate effect, their higher frequency translates into an approximately two-fold greater contribution than COs to gene conversion-based allelic shuffling and transmission distortion. We discuss the potential impact of mammalian NCO characteristics on evolution and genomic diversity.  相似文献   

15.

Background  

Gene conversion depends upon the same factors that carry out more general process of homologous recombination, including homologous gene targeting and recombinational repair. Among these are the RAD51 paralogs, conserved factors related to the key recombination factor, RAD51. In chicken and other fowl, gene conversion (templated mutation) diversifies immunoglobulin variable region sequences. This allows gene conversion and recombinational repair to be studied using the chicken DT40 B cell line, which carries out constitutive gene conversion and provides a robust and physiological model for homology-directed repair in vertebrate cells.  相似文献   

16.
Mammalian RAD51 protein plays essential roles in DNA homologous recombination, DNA repair and cell proliferation. RAD51 activities are regulated by its associated proteins. It was previously reported that a ubiquitin-like protein, UBL1, associates with RAD51 in the yeast two-hybrid system. One function of UBL1 is to covalently conjugate with target proteins and thus modify their function. In the present study we found that non-conjugated UBL1 forms a complex with RAD51 and RAD52 proteins in human cells. Overexpression of UBL1 down-regulates DNA double-strand break-induced homologous recombination in CHO cells and reduces cellular resistance to ionizing radiation in HT1080 cells. With or without overexpressed UBL1, most homologous recombination products arise by gene conversion. However, overexpression of UBL1 reduces the fraction of bidirectional gene conversion tracts. Overexpression of a mutant UBL1 that is incapable of being conjugated retains the ability to inhibit homologous recombination. These results suggest a regulatory role for UBL1 in homologous recombination.  相似文献   

17.
Extrachromosomal and chromosomal gene conversion in mammalian cells.   总被引:17,自引:5,他引:12       下载免费PDF全文
We constructed substrates to study gene conversion in mammalian cells specifically without the complication of reciprocal recombination events. These substrates contain both an insertion mutation of the neomycin resistance gene (neoX) and an internal, homologous fragment of the neo gene (neo-526), such that gene conversion from neo-526 to neoX restores a functional neo gene. Although two reciprocal recombination events can also produce an intact neo gene, these double recombination events occur much less frequently that gene conversion in mammalian cells, We used our substrates to characterize extrachromosomal gene conversion in recombination-deficient bacteria and in monkey COS cells. Chromosomal recombination was also studied after stable integration of these substrates into the genome of mouse 3T6 cells. All extrachromosomal and chromosomal recombination events analyzed in mammalian cells resulted from gene conversion. Chromosomal gene conversion events occurred at frequencies of about 10(-6) per cell generation and restored a functional neo gene without overall effects on sequence organization.  相似文献   

18.
Morrell PL  Toleno DM  Lundy KE  Clegg MT 《Genetics》2006,173(3):1705-1723
Recombination occurs through both homologous crossing over and homologous gene conversion during meiosis. The contribution of recombination relative to mutation is expected to be dramatically reduced in inbreeding organisms. We report coalescent-based estimates of the recombination parameter (rho) relative to estimates of the mutation parameter (theta) for 18 genes from the highly self-fertilizing grass, wild barley, Hordeum vulgare ssp. spontaneum. Estimates of rho/theta are much greater than expected, with a mean rho/theta approximately 1.5, similar to estimates from outcrossing species. We also estimate rho with and without the contribution of gene conversion. Genotyping errors can mimic the effect of gene conversion, upwardly biasing estimates of the role of conversion. Thus we report a novel method for identifying genotyping errors in nucleotide sequence data sets. We show that there is evidence for gene conversion in many large nucleotide sequence data sets including our data that have been purged of all detectable sequencing errors and in data sets from Drosophila melanogaster, D. simulans, and Zea mays. In total, 13 of 27 loci show evidence of gene conversion. For these loci, gene conversion is estimated to contribute an average of twice as much as crossing over to total recombination.  相似文献   

19.
We tested the role of histone deacetylases (HDACs) in the homologous recombination process. A tissue-culture based homology-directed repair assay was used in which repair of a double-stranded break by homologous recombination results in gene conversion of an inactive GFP allele to an active GFP gene. Our rationale was that hyperacetylation caused by HDAC inhibitor treatment would increase chromatin accessibility to repair factors, thereby increasing homologous recombination. Contrary to expectation, treatment of cells with the inhibitors significantly reduced homologous recombination activity. Using RNA interference to deplete each HDAC, we found that depletion of either HDAC9 or HDAC10 specifically inhibited homologous recombination. By assaying for sensitivity of cells to the interstrand cross-linker mitomycin C, we found that treatment of cells with HDAC inhibitors or depletion of HDAC9 or HDAC10 resulted in increased sensitivity to mitomycin C. Our data reveal an unanticipated function of HDAC9 and HDAC10 in the homologous recombination process.  相似文献   

20.
Gene conversion during vector insertion in embryonic stem cells.   总被引:1,自引:0,他引:1       下载免费PDF全文
Recombination of an insertion vector into its chromosomal homologue is a conservative event in that both the chromosomal and the vector sequences are preserved. However, gene conversion may accompany homologous recombination of an insertion vector. To examine gene conversion in more detail we have determined the targeting frequencies and the structure of the recombinant alleles generated with a series of vectors which target the hprt gene in embryonic stem cells. We demonstrate that gene conversion of the introduced mutation does not significantly limit homologous recombination and that gene conversion occurs without a sequence specific bias for five different mutations. The frequency of the loss of a vector mutation and the gain of a chromosomal sequence is inversely proportional to the distance between the vector mutation and the double-strand break. The loss of a chromosomal sequence and the gain of a vector mutation occurs at a low frequency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号