首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The photosynthetic membranes of spinach (Spinacia oleracea L.) chloroplasts were incubated with [gamma-32P] ATP. When the thylakoid membrane kinase was activated with light, the 25- and 27-kDa forms of the light-harvesting chlorophyll a/b protein (LHC II) were phosphorylated on their amino termini. Treatment of the membranes with proteinase K or thermolysin released phosphopeptides which were purified by ferric ion affinity chromatography and reverse phase high performance liquid chromatography. Sequencing of the phosphopeptides was performed with tandem quadrupole mass spectrometry. Three different phosphopeptides Ac-RKTAGKPKT, Ac-RKTAGKPKN, and Ac-RKSAGKPKN originating from class I LHC II were examined after release by thermolysin. One phosphopeptide, Ac-RRTVKSAPQ, originating from class II LHC II was examined after release by proteinase K. Each of the four LHC II phosphopeptides was derived from the amino terminus of a distinct protein. Peptides were acetylated at their amino-terminal arginine and were phosphorylated on either threonine or serine in the third position. We conclude that proteolytic processing of pre-LHC II occurs at a conserved methionyl-arginyl bond and is followed by amino-terminal acetylation of the arginine and nearby phosphorylation of the mature LHC II. Eight different peptides were synthesized in acetylated and nonacetylated forms as substrates for the thylakoid membrane kinase. From a comparison of the kinetics of phosphate incorporation into the peptides, we conclude that basic residues on both sides of the phosphorylation site are important for enzyme recognition. Acetylation of the amino terminus is not required for phosphorylation.  相似文献   

2.
Redox dependent protein phosphorylation in chloroplast thylakoids regulates distribution of excitation energy between the two photosystems of photosynthesis, PS I and PS II. Several thylakoid phosphoproteins are known to be phosphorylated on N-terminal threonine residues exposed to the chloroplast stroma. Phosphorylation of light harvesting complex II (LHC II) on Thr-6 is thought to account for redistribution of light energy from PS II to PS I during the transition to light state 2. Here, we present evidence that a protein tyrosine kinase activity is required for the transition to light state 2. With an immunological approach using antibodies directed specifically towards either phospho-tyrosine or phospho-threonine, we observed that LHC II became phosphorylated on both tyrosine and threonine residues. The specific protein tyrosine kinase inhibitor genistein, at concentrations causing no direct effect on threonine kinase activity, was found to prevent tyrosine phosphorylation of LHC II, the transition to light state 2, and associated threonine phosphorylation of LHC II. Possible reasons for an involvement of tyrosine phosphorylation in light state transitions are proposed and discussed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
Thylakoid membranes of pea were used to study competition between extra-membrane fragments and their parental membrane-bound proteins. Phosphorylated and unphosphorylated fragments of light harvesting complex II (LHC II) from higher plants were used to compete with LHC II for interactions with itself and with other thylakoid protein complexes. Effects of these peptide fragments of LHC II and of control peptides were followed by 80 K chlorophyll fluorescence spectroscopy of isolated thylakoids. The phosphorylated LHC II fragment competes with membrane-bound phosphoproteins in the phosphatase reaction. The same fragment accelerates the process of dark-to-light adaptation and decreases the rate of the light-to-dark adaptation when these are followed by fluorescence spectroscopy. In contrast, the non-phosphorylated LHC II peptide does not affect the rate of adaptation but produces results consistent with inhibition of formation of a quenching complex. In this quenching complex we propose that LHC II remains inaccessible to the LHC II kinase, explaining an observed decrease in LHC II phosphorylation in the later stages of the time-course of phosphorylation. The most conspicuous protein which is steadily phosphorylated during the time-course of phosphorylation is the 9 kDa (psbH) protein. The participation of the phosphorylated form of psbH in the quenching complex, where it is inaccessible to the phosphatase, may explain its anomalously slow dephosphorylation. The significance of the proposed complex of LHC II with phospho-psbH is discussed.Abbreviations LHC II light harvesting complex II - PS II Photosystem II - PS I Photosystem I  相似文献   

4.
《BBA》1985,809(1):17-26
Treatment of spinach thylakoids with the adenosine affinity inhibitor 5′-p-fluorosulfonylbenzoyl adenosine (FSBA) resulted in at least 95% inhibition of phosphorylation of the light-harvesting protein complex of Photosystem II (LHC II), while the Mr 10 000 polypeptide showed a 35% decrease in phosphorylation. This residual kinase activity after FSBA treatment appears to have the same properties as the control, since phosphorylation of the Mr 10 000 polypeptide subsequent to FSBA treatment could be achieved with either light or reducing conditions in the dark. [14C]FSBA labelled several polypeptides, but only the Mr 50 000 band was protected against the label by prior addition of ADP or adenosine, making it a possible candidate for the LHC II kinase. FSBA had no effect on electron transport, and [14C]FSBA did not label LHC II or the Mr 10 000 polypeptide, indicating that the FSBA was not interfering with activation of the kinase or modifying the substrates, but rather acting at the level of the LHC II protein kinase. Inhibition of LHC II phosphorylation by FSBA resulted in the elimination of the slow ATP-induced decrease in variable fluorescence, a parameter believed to be associated with phosphorylation of the LHC II. The half-times and time-course for inhibition of LHC II phosphorylation and inhibition of the ATP-induced decrease of fluorescence yield were identical, consistent with the concept that LHC II phosphorylation plays a major role in this fluorescence change.  相似文献   

5.
Human cytomegalovirus UL97 is an unusual protein kinase that can phosphorylate nucleoside analogs such as ganciclovir but whose specificity for exogenous protein substrates has remained unknown. We found that purified, recombinant glutathione S-transferase-UL97 fusion protein can phosphorylate histone H2B. Phosphorylation was abrogated by substitution of glutamine for a conserved lysine in subdomain II and inhibited by a new antiviral drug, maribavir. Sequencing and mass spectrometric analyses of purified (32)P-labeled tryptic peptides of H2B revealed that the sites of phosphorylation were, in order of extent, Ser-38, Ser-87, Ser-6, Ser-112, and Ser-124. Phosphorylation of synthetic peptides containing these sites, analyzed using a new, chimeric gel system, correlated with their phosphorylation in H2B. Phosphorylation of the Ser-38 peptide by UL97 occurred on Ser-38 and was specifically sensitive to maribavir, whereas phosphorylation of this peptide by cAMP-dependent protein kinase occurred on Ser-36. The extent of phosphorylation was greatest with peptides containing an Arg or Lys residue 5 positions downstream (P+5) from the Ser. Substitution with Ala at this position essentially eliminated activity. These results identify exogenous protein and peptide substrates of UL97, reveal an unusual dependence on the P+5 position, and may abet discovery of new inhibitors of UL97 and human cytomegalovirus replication.  相似文献   

6.
Abstract: Light activation of rhodopsin in the Drosophila photoreceptor induces a G protein-coupled signaling cascade that results in the influx of Ca2+ into the photoreceptor cells. Immediately following light activation, phosphorylation of a photoreceptor-specific protein, phosrestin I, is detected. Strong sequence similarity to mammalian arrestin and electroretinograms of phosrestin mutants suggest that phosrestin I is involved in light inactivation. We are interested in identifying the protein kinase responsible for the phosphorylation of phosrestin I to link the transmembrane signaling to the light-adaptive response. Type II Ca2+/calmodulin-dependent kinase is one of the major classes of protein kinases that regulate cellular responses to transmembrane signals. We show here that partially purified phosrestin I kinase activity can be immunodepleted and immunodetected with antibodies to Ca2+/calmodulin-dependent kinase II and that the kinase activity exhibits regulatory properties that are unique to Ca2+/calmodulin-dependent kinase II such as Ca2+ independence after autophosphorylation and inhibition by synthetic peptides containing the Ca2+/calmodulin-dependent kinase II autoinhibitory domain. We also show that Ca2+/calmodulin-dependent kinase II activity is present in Drosophila eye preparations. These results are consistent with our hypothesis that Ca2+/calmodulin-dependent kinase II phosphorylates phosrestin I. We suggest that Ca2+/calmodulin-dependent kinase II plays a regulatory role in Drosophila photoreceptor light adaptation.  相似文献   

7.
The activation of six target enzymes by calmodulin phosphorylated on Tyr99 (PCaM) and the binding affinities of their respective calmodulin binding domains were tested. The six enzymes were: myosin light chain kinase (MLCK), 3'-5'-cyclic nucleotide phosphodiesterase (PDE), plasma membrane (PM) Ca2+-ATPase, Ca2+-CaM dependent protein phosphatase 2B (calcineurin), neuronal nitric oxide synthase (NOS) and type II Ca2+-calmodulin dependent protein kinase (CaM kinase II). In general, tyrosine phosphorylation led to an increase in the activatory properties of calmodulin (CaM). For plasma membrane (PM) Ca2+-ATPase, PDE and CaM kinase II, the primary effect was a decrease in the concentration at which half maximal velocity was attained (Kact). In contrast, for calcineurin and NOS phosphorylation of CaM significantly increased the Vmax. For MLCK, however, neither Vmax nor Kact were affected by tyrosine phosphorylation. Direct determination by fluorescence techniques of the dissociation constants with synthetic peptides corresponding to the CaM-binding domain of the six analysed enzymes revealed that phosphorylation of Tyr99 on CaM generally increased its affinity for the peptides.  相似文献   

8.
Angiotensin II, catecholamines, and vasopressin are thought to stimulate hepatic glycogenolysis and gluconeogenesis via a cyclic AMP-independent mechanism that requires calcium ion. The present study explores the possibility that angiotensin II and vasopressin control the activity of regulatory enzymes in carbohydrate metabolism through Ca2+-dependent changes in their state of phosphorylation. Intact hepatocytes labeled with [32P]PO43- were stimulated with angiotensin II, glucagon, or vasopressin and 30 to 33 phosphorylated proteins resolved from the cytoplasmic fraction of the cell by electrophoresis in sodium dodecyl sulfate polyacrylamide slab gels. Treatment of the cells with angiotensin II or vasopressin increased the phosphorylation of 10 to 12 of these cytosolic proteins without causing measurable changes in cyclic AMP-dependent protein kinase activity. Glucagon stimulated the phosphorylation of the same set of 11 to 12 proteins through a marked increase in cyclic AMP-dependent protein kinase activity. The molecular weights of three of the protein bands whose phosphorylation was increased by these hormones correspond to the subunit molecular weights of phosphorylase (Mr = 93,000), glycogen synthase (Mr = 85,000), and pyruvate kinase (Mr = 61,000). Two of these phosphoprotein bands were positively identified as phosphorylase and pyruvate kinase by affinity chromatography and immunoprecipitation, respectively. Incubation of hepatocytes in a Ca2+-free medium completely abolished the effects of angiotensin II and vasopressin on protein phosphorylation but did not alter those of glucagon. Treatment of hepatocytes with angiotensin II, glucagon, or vasopressin stimulated phosphorylase activity by 250 to 260%, inhibited glycogen synthase activity by 50%, and inhibited pyruvate kinase activity by 30 to 35% (peptides) to 70% (glucagon). The effects of angiotensin II and vasopressin on the activity of all three enzymes were completely abolished if the cells were incubated in a Ca2+-free medium while those of glucagon were not altered. The results imply that angiotensin II, catecholamines, and vasopressin control hepatic carbohydrate metabolism through a Ca2+-requiring, cyclic AMP-independent pathway that leads to the phosphorylation of important regulatory enzymes.  相似文献   

9.
Phosphorylation of the light-harvesting chlorophyll a/b complex II (LHC II) proteins is induced in light via activation of the LHC II kinase by reduction of cytochrome b6f complex in thylakoid membranes. We have recently shown that, besides this activation, the LHC II kinase can be regulated in vitro by a thioredoxin-like component, and H2O2 that inserts an inhibitory loop in the regulation of LHC II protein phosphorylation in the chloroplast. In order to disclose the complex network for LHC II protein phosphorylation in vivo, we studied phosphorylation of LHC II proteins in the leaves of npq1-2 and npq4-1 mutants of Arabidopis thaliana. In comparison to wild-type, these mutants showed reduced non-photochemical quenching and increased excitation pressure of Photosystem II (PS II) under physiological light intensities. Peculiar regulation of LHC II protein phosphorylation was observed in mutant leaves under illumination. The npq4-1 mutant was able to maintain a high amount of phosphorylated LHC II proteins in thylakoid membranes at light intensities that induced inhibition of phosphorylation in wild-type leaves. Light intensity-dependent changes in the level of LHC II protein phosphorylation were smaller in the npq1-2 mutant compared to the wild-type. No significant differences in leaf thickness, dry weight, chlorophyll content, or the amount of LHC II proteins were observed between the two mutant and wild-type lines. We propose that the reduced capacity of the mutant lines to dissipate excess excitation energy induces changes in the production of reactive oxygen species in chloroplasts, which consequently affects the regulation of LHC II protein phosphorylation.  相似文献   

10.
A protein kinase activity was identified in pig brain that co-purified with microtubules through repeated cycles of temperature-dependent assembly and disassembly. The microtubule-associated protein kinase (MTAK) phosphorylated histone H1; this activity was not stimulated by cyclic nucleotides. Ca2+ plus calmodulin, phospholipids or polyamines. MTAK did not phosphorylate synthetic peptides which are substrates for cyclic AMP-dependent protein kinase, cyclic GMP-dependent protein kinase. Ca2+/calmodulin-dependent protein kinase II, protein kinase C or casein kinase II. MTAK activity was inhibited by trifluoperazine [IC50 (median inhibitory concn.) = 600 microM] in a Ca2+-independent fashion. Ca2+ alone was inhibitory [IC50 = 4 mM). MTAK was not inhibited by heparin, a potent inhibitor of casein kinase II, nor a synthetic peptide inhibitor of cyclic AMP-dependent protein kinase. MTAK demonstrated a broad pH maximum (7.5-8.5) and an apparent Km for ATP of 45 microM. Mg2+ was required for enzyme activity and could not be replaced by Mn2+. MTAK phosphorylated serine and threonine residues on histone H1. MTAK is a unique cofactor-independent protein kinase that binds to microtubule structures.  相似文献   

11.
12.
The cytosolic fraction of insulin-treated adipocytes exhibits a 2-fold increase in protein kinase activity when Kemptide is used as a substrate. The detection of insulin-stimulated kinase activity is critically dependent on the presence of phosphatase inhibitors such as fluoride and vanadate in the cell homogenization buffer. The cytosolic protein kinase activity exhibits high sensitivity (ED50 = 2 X 10(-10) M) and a rapid response (maximal after 2 min) to insulin. Kinetic analyses of the cytosolic kinase indicate that insulin increases the Vmax of Kemptide phosphorylation and ATP utilization without affecting the affinities of this enzyme toward the substrate or nucleotide. Upon chromatography on anion-exchange and gel filtration columns, the insulin-stimulated cytosolic kinase activity is resolved from the cAMP-dependent protein kinase and migrates as a single peak with an apparent Mr = 50,000-60,000. The partially purified kinase preferentially utilizes histones, Kemptide, multifunctional calmodulin-dependent protein kinase substrate peptide, ATP citrate-lyase, and acetyl-coenzyme A carboxylase as substrates but does not catalyze phosphorylation of ribosomal protein S6, casein, phosvitin, phosphorylase b, glycogen synthase, inhibitor II, and substrate peptides for casein kinase II, protein kinase C, and cGMP-dependent protein kinase. Phosphoamino acid analyses of the 32P-labeled substrates reveal that the insulin-stimulated cytosolic kinase is primarily serine-specific. The insulin-activated cytosolic kinase prefers Mn2+ to Mg2+ and is independent of Ca2+. Unlike ribosomal protein S6 kinase and protease-activated kinase II, the insulin-sensitive cytosolic kinase is fluoride-insensitive. Taken together, these results indicate that a novel cytosolic protein kinase activity is activated by insulin.  相似文献   

13.
A 50 kDa, calcium-dependent protein kinase (CDPK) was purified about 1000-fold from cultured cells of alfalfa (Medicago varia) on the basis of its histone H1 phosphorylation activity. The major polypeptide from bovine histone H1 phosphorylated by either animal protein kinase C (PK-C) or by the alfalfa CDPK gave an identical phosphopeptide pattern. The phosphoamino acid determination showed phosphorylation of serine residues in histone H1 by the plant enzyme. Histone-related oligopeptides known to be substrates for animal histone kinases also served as substrates for the alfalfa kinase. Both of the studied peptides (GKKRKRSRKA; AAASFKAKK) inhibited phosphorylation of H1 histones by bovine and alfalfa kinases. The results of competition studies with the nonapeptide (AAASFKAKK), which is a PK-C specific substrate, suggest common features in target recognition between the plant Ca2+-dependent kinase and animal protein kinase C. We also propose that synthetic peptides like AAASFKAKK can be used as a tool to study substrates of plant kinases in crude cell extracts.  相似文献   

14.
V Simanis  P Nurse 《Cell》1986,45(2):261-268
The cdc2+ gene function has an important role in controlling the commitment of the fission yeast cell to the mitotic cycle and the timing of mitosis. We have raised antibodies against the cdc2+ protein using synthetic peptides and have demonstrated that it is a 34 kd phosphoprotein with protein kinase activity. The protein level and phosphorylation state remain unchanged during the mitotic cycle of rapidly growing cells. When cells cease to proliferate and arrest in G1 the protein becomes dephosphorylated and loses protein kinase activity. Exit from the mitotic cycle and entry into stationary phase may be controlled in part by modulation of the cdc2 protein kinase activity by changes in its phosphorylation state.  相似文献   

15.
Rat tissue levels of Ca2+ . calmodulin-dependent protein kinase II (protein kinase II) and Ca2+ . phospholipid-dependent protein kinase (protein kinase C) were selectively assayed using the synthetic peptide syntide-2 as substrate. The sequence of syntide-2 (pro-leu-ala-arg-thr-leu-ser-val-ala-gly-leu-pro-gly-lys-lys) is homologous to phosphorylation site 2 in glycogen synthase. The relative Vmax/Km ratios of the known Ca2+-dependent protein kinases for syntide-2 were determined to be as follows: protein kinase II, 100; protein kinase C, 22; phosphorylase kinase, 2; myosin light chain kinase, 0.005. Levels of protein kinase II were highest in cerebrum (3.36 units/g tissue) and spleen (0.85 units/g) and lowest in testis (0.05 units/g) and kidney (0.04 units/g). Protein kinase II activity was localized predominantly in the 100,000g particulate fraction of cerebrum and testis, in the supernatant fraction of heart, liver, adrenal, and kidney, and about equally distributed between particulate and supernatant in spleen and lung. Likewise, protein kinase C activity was highest in cerebrum (0.56 units/g) and spleen (0.47 units/g), and the majority of activity was present in the cytosolic fraction for all tissues measured except for cerebrum and testis in which the kinase activity was equal in both fractions. Finally, the ratios of protein kinase II to protein kinase C were different in various rat tissues and between particulate and supernatant fractions. These results suggest somewhat different functions for these two Ca2+-regulated, multifunctional protein kinases.  相似文献   

16.
The phosphorylation of the intermediate filament protein vimentin was examined under in vitro conditions. Cell cytosol and Triton-insoluble cytoskeleton preparations from nonmitotic and mitotically selected mouse L-929 cells exhibited vimentin kinase activity that is apparently cAMP and Ca2+ independent. The level of vimentin kinase activity was greater in preparations from mitotically selected cells than nonmitotic cells. Addition of Ca2+ to mitotic cytosol decreased net vimentin phosphorylation. Dephosphorylation experiments indicated that there is phosphatase activity in these preparations which is stimulated by addition of Ca2+. Fractionation of cytosol from nonmitotic cells on DEAE-Sephacel and phosphocellulose revealed a single major vimentin kinase activity (peak I). Fractionation of cytosol from mitotically selected cells yielded a similar activity (peak I) and an additional vimentin kinase activity (peak II) that was not found in nonmitotic preparations. Based on substrate specificity and lack of inhibition to characteristic inhibitors, the semipurified peak I and II vimentin kinase activities appear to be cAMP-independent enzymes that are distinct from casein kinases I and II. Phosphopeptide mapping studies indicated that both peak I and peak II vimentin kinases phosphorylate tryptic peptides in the NH2-terminal region of vimentin that are phosphorylated in intact cells. Electron microscopic examination of reconstituted vimentin filaments phosphorylated with both semipurified kinases indicated that phosphorylation induced filament disassembly. These experiments indicate that the increased phosphorylation of vimentin during mitosis may be catalyzed by a discrete cAMP-independent protein kinase. In addition, preparations from mitotic cells exhibited a Ca2+-stimulated phosphatase activity, suggesting that Ca2+ may play a regulatory role in vimentin dephosphorylation during mitosis.  相似文献   

17.
We have analyzed the in vitro phosphorylation of tau protein by Ca2+/calmodulin-dependent protein kinase, casein kinase II, and proline-directed serine/threonine protein kinase. These kinases phosphorylate tau protein in sites localized in different regions of the molecule, as determined by peptide mapping analyses. Focusing on the phosphorylation of tau by protein kinase C, it was calculated as an incorporation of 4 mol of phosphate/mol of tau. Limited proteolysis assays suggest that the phosphorylation sites could be located within the tubulin-binding domain. Direct phosphorylation of synthetic peptides corresponding to the cysteine-containing tubulin-binding region present in both fetal and adult tau isoforms demonstrates that serine 313 is modified by protein kinase C. Phosphorylation of the synthetic peptide by protein kinase C diminishes its binding to tubulin, as compared with the unphosphorylated peptide.  相似文献   

18.
《BBA》1987,893(2):333-341
The level of phosphorylation of the 24 kDa and the 25 kDa light-harvesting chlorophyll a/b binding protein complex (LHC) II polypeptides in isolated spinach thylakoids has been determined by quantitative SDS-polyacrylamide gel electrophoresis. The time-course of phosphorylation, after correction for the molar abundance of these two polypeptides, shows that (a) the rate of phosphorylation of the 24 kDa polypeptide is at least 3-fold faster compared with the 25 kDa polypeptide, (b) the final extent of phosphorylation for both the polypeptides is very similar, and (c) the final extent of phosphorylation is typically between 0.15 and 0.25 mol phosphate per mol polypeptide. The low extent of phosphorylation is not simply a consequence of inactivation of the kinase and / or LHC II substrate or ATP depletion. These observations suggest that there are at least three different sub-populations of LHC II in isolated thylakoids: (i) phosphorylated ‘mobile’, (ii) phosphorylated ‘PS II-coupled’ and (iii) non-phosphorylated. Furthermore, the reported differences in the specific activity of phosphorylation for the ‘mobile’ and the ‘PS II-coupled’ LHC II sub-populations (Kyle, D.J. et al. (1984) Biochim. Biophys. Acta 765, 89–96) are no longer observed following correction for the non-phosphorylated LHC-II population.  相似文献   

19.
Puthiyaveetil S 《FEBS letters》2011,585(12):1717-1721
State transitions are acclimatory responses to changes in light quality in photosynthesis. They involve the redistribution of absorbed excitation energy between photosystems I and II. In plants and green algae, this redistribution is produced by reversible phosphorylation of the chloroplast light harvesting complex II (LHC II). The LHC II kinase is activated by reduced plastoquinone (PQ) in photosystem II-specific low light. In high light, when PQ is also reduced, LHC II kinase becomes inactivated by thioredoxin. Based on newly identified amino acid sequence features of LHC II kinase and other considerations, a mechanism is suggested for its redox regulation.  相似文献   

20.
Choline acetyltransferase synthesizes acetylcholine in cholinergic neurons. In the brain, these neurons are especially vulnerable to effects of beta-amyloid (A beta) peptides. Choline acetyltransferase is a substrate for several protein kinases. In the present study, we demonstrate that short term exposure of IMR32 neuroblastoma cells expressing human choline acetyltransferase to A beta-(1-42) changes phosphorylation of the enzyme, resulting in increased activity and alterations in its interaction with other cellular proteins. Using mass spectrometry, we identified threonine 456 as a new phosphorylation site in choline acetyltransferase from A beta-(1-42)-treated cells and in purified recombinant ChAT phosphorylated in vitro by calcium/calmodulin-dependent protein kinase II (CaM kinase II). Whereas phosphorylation of choline acetyltransferase by protein kinase C alone caused a 2-fold increase in enzyme activity, phosphorylation by CaM kinase II alone did not alter enzyme activity. A 3-fold increase in choline acetyltransferase activity was found with coordinate phosphorylation of threonine 456 by CaM kinase II and phosphorylation of serine 440 by protein kinase C. This phosphorylation combination was observed in choline acetyltransferase from A beta-(1-42)-treated cells. Treatment of cells with A beta-(1-42) resulted in two phases of activation of choline acetyltransferase, the first within 30 min and associated with phosphorylation by protein kinase C and the second by 10 h and associated with phosphorylation by both CaM kinase II and protein kinase C. We also show that choline acetyltransferase from A beta-(1-42)-treated cells co-immunoprecipitates with valosin-containing protein, and mutation of threonine 456 to alanine abolished the A beta-(1-42)-induced effects. These studies demonstrate that A beta-(1-42) can acutely regulate the function of choline acetyltransferase, thus potentially altering cholinergic neurotransmission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号