首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of various culture conditions on growth, lipid production and fatty acid composition in Mucor rouxii and Mucor sp.1b were studied. Total lipid production was higher in media containing potassium nitrate for both the cultures (30%) and cultures grown on plant seed oil produced more than 44% lipid. Among the carbon sources tested, γ-linolenic acid (GLA) production was maximal in cultures grown on glucose. The major fatty acids produced by these two cultures were palmitic, stearic and oleic acids. Levels of GLA in M. rouxii and M. sp.1b was in the range of 3–17% under different culture conditions. Lactose was a poor promoter for biomass and lipid production in both cultures. No GLA was found in fungal cultures grown on sesame oil. The optimal conditions for the production of GLA was standardised in these cultures.  相似文献   

2.
Feeding rodents a diet rich in evening primrose oil (EPO), which contains 5-10 g gamma-linolenic acid (GLA)/100 g total fatty acids, has been shown to decrease lymphocyte proliferation and natural killer cell activity. However, EPO contains a very high level of linoleic acid which itself can affect lymphocyte functions and it is not clear to what extent the effects of EPO can be attributed to GLA. The current study investigated the effect of two levels of GLA in the rat diet upon immune cell functions; the level of linoleic acid was maintained below 30 g/100 g total fatty acids. Weanling rats were fed on high fat (178 g/kg) diets which contained 4.4 g or 10 g GLA/100 g total fatty acids in place of a proportion of linoleic acid. The total polyunsaturated fatty acid content and the n-6 to n-3 polyunsaturated fatty acid ratio of the diet were maintained at 35 g/100 g total fatty acids and 7, respectively. The fatty acid compositions of the serum and of spleen leukocytes were markedly influenced by that of the diet, with an increase in the proportions of GLA and dihomo-gamma-linolenic acid when the diets containing GLA were fed; these diets also increased the proportion of arachidonic acid in spleen leukocytes. Spleen lymphocyte proliferation in response to concanavalin A was significantly reduced (by 60%) by feeding the diet containing the higher level of GLA, but not by the diet containing the lower level of GLA. Spleen natural killer cell activity and prostaglandin E (PGE) production by spleen leukocytes were not significantly affected by inclusion of GLA in the diet, although there was a tendency towards decreased natural killer cell activity by cells from rats fed the high GLA diet. Thus, this study shows that dietary GLA is capable of altering the fatty acid composition of cells of the immune system and of exerting some immunomodulatory effects, but that the level of GLA in the diet must exceed 4.4 g/100 g total fatty acids for these effects to become apparent.  相似文献   

3.
The diatom Nitzschia laevis Hust. is a potential producer of eicosapentaenoic acid (EPA). To elucidate its cellular response to salt stress, the effects of salinity on EPA production, lipid composition, and fatty acid distribution in the lipid pool were investigated. The highest contents of total fatty acids, EPA, and polar lipids were all obtained at NaCl of 20 g · L?1, under which 71.3% of total EPA existed in polar lipid fractions. In N. laevis, high salt concentration might induce the decrease in neutral lipids (NLs), whereas the production of polar lipids, including phospholipids (PLs) and glycolipids (GLs), was enhanced. The degree of fatty acid unsaturation of both neutral and polar lipid fractions increased sharply when NaCl concentration increased from 10 to 20 g · L?1 but decreased at NaCl concentration of 30 g · L?1. The amount of total free sterols was increased with the increase in salt concentration. All these changes in lipid and fatty acids suggested a decrease in membrane permeability and fluidity under high salt concentration, which could help the alga acclimate to the salinity stress.  相似文献   

4.
培养条件对钝顶螺旋藻(Sp)NS-90020脂肪酸组成和含量的影响   总被引:1,自引:0,他引:1  
研究了不同培养条件对钝顶螺旋藻(Sp)NS-90020脂肪酸合成的影响。随着温度升高,其不饱和脂肪酸,γ一亚麻酸(GLA)相对含量降低,总脂肪酸含量升高,当温度为40℃时总脂肪酸和γ-亚麻酸绝对含量都达到最大值,分别为73.4mg/g干重和11.9mg/g干重;当培养基中NaCl浓度高于0.017mol/L时,其GLA相对含量降低,但低于0.0017mol/L时,对其脂肪酸组成无显著影响;氨水使其脂肪酸和GLA绝对含量升高,并在50mgN(NH3·H2O)时达到最大值,分别为67.96mg/g干重和13.63mg/g千重;暗处理92h使其总脂肪酸和GLA绝对含量升高;缺乏Fe2 或Mg2 或Mo2 时,其总脂肪酸和GLA绝对含量降低,而缺乏PO43-时,其总脂肪酸和GLA绝对含量略有升高。  相似文献   

5.
The effect of different initial acetic acid concentrations on the growth of and lipid and gamma-linolenic acid (GLA) production byMucor circinelloides CBS 203.28 was determined in a 14 litre stirred tank reactor operated in a fedbatch, pH-stat mode with acetic acid as carbon source and pH titrant. Increased acetic acid concentrations in the culture resulted in a significant increase in the crude oil content of the biomass. By contrast, all the other parameters such as the biomass concentration, GLA and oil yield on acetic acid, the GLA content of the biomass and oil, the growth rate and volumetric rate of GLA production decreased with an increase in acetic acid concentration. The best results were obtained with acetic acid at 2 g/1, which gave 39.8 mg GLA/g biomass and 15.6% GLA in the neutral lipid fraction, amounting to 340 mg GLA/1 culture. A decrease in the glyco- and phospho-lipid fractions during the cultivation coincided with an increase in the neutral lipid fraction. The GLA content of the biomass remained within rather narrow limits of 3.5% to 4% of the biomass, irrespective of the oil content of the biomass. The fatty acid profile was not greatly affected by the acetic acid concentration. The hyphae of the fungus were characterized by the accumulation of large intracellular oil droplets and some septa delimited the hyphae.  相似文献   

6.
Sex differences in n-3 and n-6 fatty acid metabolism in EFA-depleted rats   总被引:1,自引:0,他引:1  
We studied the effect of sex on the distribution of long-chain n-3 and n-6 fatty acids in essential fatty acid-deficient rats fed gamma-linolenate (GLA) concentrate and/or eicosapentaenoate and docosahexaenoate-rich fish oil (FO). Male and female weanling rats were rendered essential fatty acid deficient by maintaining them on a fat-free semisynthetic diet for 8 weeks. Thereafter, animals of each sex were separated into three groups (n = 6) and given, for 2 consecutive days by gastric intubation, 4 g/kg body wt per day of GLA concentrate (containing 84% 18:2n-6), n-3 fatty acid-rich FO (containing 18% 20:5n-3 and 52% 22:6n-3), or an equal mixture of the two oil preparations (GLA + FO). The fatty acid distributions in plasma and liver lipids were then examined. GLA treatment increased the levels of C-20 and C-22 n-6 fatty acids in all lipid fractions indicating that GLA was rapidly metabolized. However, the increases in 20:3n-6 were less in females than those in males, while those in 20:4n-6 were greater, suggesting that the conversion of 20:3n-6 to 20:4n-6 was more active in female than in male rats. FO treatment increased the levels of 20:5n-3 and 22:6n-3 and reduced those of 20:4n-6. The increase in n-3 fatty acids was greater in females than that in males and the reduction in 20:4n-6 was smaller. Consequently, the sum of total long-chain EFAs incorporated was greater in females than that in males. The administration of n-3 fatty acids also reduced the ratio of 20:4n-6 to 20:3n-6 in GLA + FO-treated rats indicating that n-3 fatty acids inhibited the activity of delta-5-desaturase. However, this effect was not affected by the sex difference.  相似文献   

7.
The fatty acid production characteristics of fungi are described. These characteristics are the relationship between the oil content of the cell and the fatty acid content of the oil. For example, for polyunsaturated fatty acid (PUFA) production by Mucor hiemalis IPD 51, the oil content of the cell and the GLA content of the oil are coupled. For fungal production of some PUFA, synthesized after the rate-limiting step in the fatty acid anabolic chain, a maximum fatty acid production model was developed to link the fatty acid content of the oil and the oil content of the cell. Maximum volumetric productivity of gamma linolenic acid (GLA) by molds was found to occur at a specific GLA content of the oil. For example, for M. hiemalis IPD 51, a maximum volumetric of 4.7 mg GLA/L . h was produced at a GLA content of the oil of 8% to 10%. Similarly for Mucor circinelloides v. Tieghem IPD 155 a maximum volumetric productivity of 4.8 mg GLA/L . h was produced at a GLA content of the oil of 14% to 16%. These results imply that, when screening microorganisms for GLA or other fatty acid production, a number of medium compositions need to be evaluated to determine the tradeoff between oil content of the cell and fatty acid content of the oil. (c) 1993 John Wiley & Sons, Inc.  相似文献   

8.
The mechanism on of how salinity affects seed fatty acids accumulation remains unclear in halophytes. The present results revealed that the content of total unsaturated fatty acids in black seeds was higher than in brown seeds in the euhalophyte Suaeda salsa under controlled saline conditions. Salinity (200?mM NaCl) significantly increased the total oil content, unsaturated acid/saturated acid ratio, and content of α-linolenic acid (C18:3) (ALA), especially in brown seeds. The most abundant fatty acid in dimorphic seeds is linoleic acid (C18:2) (>70%). It appears that more ALA accumulated in brown seeds compared to black seeds. The enzyme activity of omega-3 fatty acid desaturase (ω-3 FAD) in brown seeds was much higher than that in black seeds, but salinity had no significant effect on the activity of ω-3 FAD in both brown and black seeds. The relative expression of SsFAD7 was increased by salinity, and the value in brown seeds was much higher than that in black seeds. This means salinity can, salinity can improve the quantity of fatty acids in dimorphic seeds of S. salsa, and the enzyme of ω-3 FAD and SsFAD7 may involve in the accumulation of ALA in dimorphic seeds under salinity.  相似文献   

9.
考察了不同渗透胁迫(0、10、20、30和40 g/L NaCl)对裂殖壶菌HX-308发酵产DHA及脂肪酸构成的影响。结果表明:20 g/L NaCl最有利于裂殖壶菌生长和DHA积累,生物量、总脂肪酸含量、DHA产量及DHA占生物量的比值分别为73 g/L、10.7 g/L、5.0 g/L和68 mg/g,并且DHA在总脂肪酸中所占百分比最高,为45.2%。此外,在低渗透压(10 g/L NaCl)条件下,添加40 mmol/L甘氨酸甜菜碱,DHA产量与未添加相比提高了28.21%;在高渗透压(40 g/L NaCl)条件下添加40 mmol/L海藻糖,DHA产量提高了46.84%;表明添加适量的外源相容性溶质能有效地促进裂殖壶菌积累DHA。  相似文献   

10.
Culture conditions of Schizochytrium limacinum SR21 for the purpose of microbial docosahexaenoic acid (DHA) production were investigated. The strain SR21 showed a wide tolerance to salinity; that is, the optimum salinity was between 50% and 200% that of sea water. Monosaccharides (glucose and fructose) and glycerol supported good cell growth and DHA yield. Di- and polysaccharides, oleic acid, and linseed oil gave low DHA yields. A high content of DHA (more than 30% of total fatty acids) was obtained from culture on glucose, fructose, and glycerol, and also the strain had simple polyunsaturated fatty acid profiles. The major polyunsaturated fatty acids other than DHA were n-6 docosapentaenoic acid only, and the contents of icosapentaenoic acid and arachidonic acid were less than 1%. Using corn steep liquor as a nitrogen source, a high total fatty acid content was obtained. The total fatty acid content in the dry cell weight increased as the concentration of the nitrogen source decreased, reached more than 50%. An increase in carbon source concentration led to a high DHA yield. A maximum DHA yield of more than 4 g/l was obtained in both glucose and glycerol media at 9% and 12% respectively. S. limacinum SR21 was thought to be a promising resource for microbial DHA production yielding a good level of productivity as well as a simple polyunsaturated fatty acid profile. Received: 26 June 1997 / Received revision: 29 August 1997  / Accepted: 19 September 1997  相似文献   

11.
The biochemical composition and fatty acid content of twelve strains of filamentous, heterocystous, nitrogen-fixing cyanobacteria have been determined. When grown under diazotrophic conditions, protein, carbohydrate, lipid, and nucleic acids comprised 37–52%, 16–38%, 8–13%, and 8–11% of the dry weight, respectively. The presence of a combined nitrogen source resulted in an increase in the protein content of the cells and a decrease in the levels of lipids and carbohydrates, although biomass productivity was not affected significantly. Biochemical composition also changed during culture growth, with the highest levels of proteins and lipids occurring as the culture entered stationary phase, whereas the highest levels of carbohydrate and nucleic acids were found during the exponential phase. Total fatty acid levels in the strains assayed ranged between 3 and 5.7% of the dry weight. With regard to fatty acid composition, all strains showed high levels of polyunsaturated fatty acids (PUFAs) and saturated fatty acids (SAFAs), with values of 24–45% and 31–52% of total fatty acids, respectively, whereas the levels of monounsaturated fatty acids (MUFAs) were in general lower (11– 32%). Palmitic acid (16:0) was the most prevalent SAFA, whereas palmitoleic (16:1n- 7) and oleic acid (18:1n-9) were the most abundant MUFAs in all the strains. Among PUFAs, γ-linolenic acid (GLA, 18:3n-6) was present at high levels (18% of total fatty acids) in Nostoc sp. (Chile) and at lower levels (3.6% of total fatty acids) in Anabaenopsis sp. The presence of GLA has not been previously reported in these genera of cyanobacteria. The rest of the strains exhibited high levels (12–35% of total fatty acids) of α-linolenic acid (ALA, 18:3n-3). Linoleic acid (18:2n-6) was also present at a substantial level in most of the strains. Eicosapentaenoic acid (EPA, 20:5n-3) was also detected in Nostoc sp. (Albufera). Some filamentous nitrogen-fixing cyanobacteria therefore represent potential sources of commercially interesting fatty acids.  相似文献   

12.
Nowadays, microalgae are discussed as a promising feedstock for biodiesel production. The present study examines the possibility of enhancement of fatty acid productivity of Scenedesmus obliquus by modifications of the culture medium composition. The effect of different concentrations of sodium bicarbonate, salinity, potassium nitrate, glycerol and sugarcane molasses on the enhancement of biomass and esterified fatty acids production was studied. NaHCO3 caused an increase in the biomass productivity at low concentrations (0.5 g L?1), while negatively affected fatty acid productivity at all tested concentrations. Increase of salinity enhanced both biomass and fatty acid productivity. The optimum NaCl concentration and sea water ratio were 0.94 g L?1 and 25 % which resulted in 56 and 39 % increase in fatty acid productivity, respectively. Nitrogen deficiency showed increase in fatty acid content by 54 % over control but fatty acid productivity was decreased as a result of growth inhibition. Nitrogen-free cultures and cultures treated with ?50 % concentrations of KNO3 showed 96 and 42 % decrease in EFA productivity, respectively, as compared with the control. Addition of 0.05 and 0.1 M of glycerol increased the biomass productivity by 6 and 5 %, respectively but showed no significant effect on fatty acid productivity as a result of decrease in fatty acid content. Finally, usage of sugarcane molasses stimulated both biomass and fatty acid content. The increase in fatty acid productivity was 32, 65 and 73 % above the control level at 1, 3 and 5 g L?1 of sugarcane molasses, respectively.  相似文献   

13.
Yue Jiang  Feng Chen   《Process Biochemistry》2000,35(10):1205-1209
The effects of medium glucose concentration and pH on growth and docosahexaenoic acid (DHA, C22:6 ω-3) content of Crypthecodinium cohnii were investigated. Over a range of glucose concentrations (5–40 g l−1) investigated, the highest specific growth rate (0.12 h−1), highest cell dry weight concentration (3.13 g l−1) and highest growth yield on glucose (0.6 g g−1) were obtained at 20 g l−1 glucose. However, the highest degree of fatty acid unsaturation (3.2) and highest DHA proportion (53.4% of total fatty acids) were achieved at 5 g l−1 glucose. Low glucose concentrations enhanced the degree of fatty acid unsaturation and DHA formation. Medium pH also affected cell growth, fatty acid unsaturation and DHA proportion. When medium pH was 7.2, the highest specific growth rate (0.089 h−1), highest cell dry weight concentration (2.73 g l−1), highest growth yield on glucose (0.564 g g−1), highest degree of fatty acid unsaturation (3.4) and highest DHA proportion (56.8% of total fatty acids) were obtained. Results suggest that glucose concentration and pH value could be effectively manipulated to achieve maximum DHA production by C. cohnii.  相似文献   

14.
Polyunsaturated fatty acids, especially gamma linolenic acid (GLA), are potentially useful agents in the treatment of cancer. Cunninghamella echinulata, a fungus species that is able to synthesize GLA, when cultivated under nitrogen‐limited conditions in a medium having glucose as carbon and energy source, accumulated 32–35% of lipids containing 11–18% GLA. The conversion yield of glucose to lipid was around 0.11 g per gram of glucose consumed while the lipid production was 5 g/L. Fatty acid lithium salts (FALS) were prepared from the total Cunninghamella lipids and studied for their effects on HL‐60 human leukemic cells. Cytotoxicity of FALS on HL‐60 leukemic cells was linearly related to the FALS concentration. High FALS concentration (i.e. 15 and 20 μg/mL) induced DNA fragmentation, while concurrent treatment of cells with H2O2 (at 100 μM) and FALS resulted in enhanced cytotoxicity of H2O2. However, when FALS were employed at low concentrations (i.e. 5 and 10 μg/mL), they demonstrated a protective effect on HL‐60 cells against H2O2 genotoxicity, whereas at 20 μg/mL FALS enhanced the ability of H2O2 to induce DNA fragmentation. It is concluded that FALS derived from C. echinulata lipids could be an effective preparation against HL‐60 human leukemic cells.  相似文献   

15.
本文研究了由被抱霉变株MA-90生产了γ-亚麻酸的发酵条件.确定了最适碳源、复源及C/N.初步建立了生产γ-亚麻酸的工艺条件。葡萄糖、蔗糖及天冬酰胺和尿素为最适碳、氮源。在C/N为20/1,葡萄糖浓度为80g/L的条件下.油脂产量和油脂中γ-亚麻酸的含量分别为8.2g/L和14.13%,γ-亚麻酸产量及生物量分别为1.157g/L和31.2g/L。后期适当降低培养温度和良好的通气条件均有利于γ-亚麻酸的积累。  相似文献   

16.
Oceanimonas baumannii ATCC 700832 is a Gram negative marine bacterium capable of utilising phenol as a sole carbon source. The ability of the bacterium to tolerate low water activity when utilising either succinate or phenol as a substrate in minimal medium was studied. The membrane lipid and protein composition showed two discreet adaptive phases as salinity increased. Firstly, when NaCl concentration was increased from 0.15% (w/v), the minimum at which growth was observed, to 1% NaCl (w/v), the ratio of zwitterionic to anionic phospholipids in the membrane increased significantly. At the same time the ratio of saturated to unsaturated fatty acids and the total membrane protein decreased significantly. The second phase was observed when salinity was increased from 1% to 7% NaCl (w/v) as the ratio of zwitterionic to anionic phospholipids decreased and membrane protein increased. However, the ratio of saturated to unsaturated fatty acids was unaffected. Salinity also affected the tolerance of cultures to elevated levels of phenol. Cultures grown in 0.15% NaCl (w/v) could tolerate 12 mM phenol, whereas in the presence of 1% NaCl (w/v) cultures continued to grow in up to 20 mM phenol and in 7% NaCl (w/v) cultures 8 mM phenol could be tolerated. Changes to the composition of the membrane phospholipids and fatty acids were also observed when phenol concentrations were at the maximum that could be tolerated. Under such conditions the ratio of zwitterionic to anionic phospholipids decreased twofold compared to cultures utilising 4 mM phenol as the substrate, in all salinities except in 7% NaCl (w/v) cultures, where there was no significant effect. The ratio of saturated to unsaturated fatty acids increased significantly in all salinities compared to cultures grown with 4 mM phenol. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
Changes in lipid composition of the oleaginous fungus Cunninghamella echinulata were monitored during growth. Lipid fractions and individual lipid classes varied in amount, relative proportions, and fatty acid profile depending on the developmental stage. Neutral lipids (N), comprised mainly of triacylglycerol, were accumulated in the fungal mycelium during both the late exponential and the stationary growth phases with a concomitant decrease in the amount of polar lipids. While fatty acid composition of N fraction remained almost constant, individual N classes showed a noticeable alteration in γ-linolenic acid (GLA) concentration. The glycolipid plus sphingolipid (G+S) fraction consisted mainly of monoglycosylglycerol and diglycosylglycerol. The sugar composition of G+S fraction was analyzed and showed a partial replacement of galactose for glucose as growth proceeded. Phospholipid (P) major classes were phosphatidylcholine (PC) and phosphatidylethanolamine, followed by phosphatidylinositol, phosphatidylserine, and diphosphatidylglycerol. P fatty acid composition showed significant changes with time, resulting in a considerable drop in the unsaturation index of this fraction. While in mid exponential growth phase, all P classes contained more than 20% w/w GLA of total fatty acids, and their concentration decreased to 12–17% w/w, except for the PC class where GLA concentration remained at high levels (e.g., more than 20% w/w). The constant level of GLA in PC at all growth phases suggests that PC was the major source of GLA. Sterol analysis showed that their concentration increased during growth, whereas ergosterol was the major component.  相似文献   

18.
The metabolites of linoleic (LA) and -linolenic (ALA) acids are involved in coronary heart disease. Both n-6 and n-3 essential fatty acids (EFAs) are likely to be important in prevention of atherosclerosis since the common risk factors are associated with their reduced 6-desaturation. We previously demonstrated the ability of heart tissue to desaturate LA. In this study we examined the ability of cultured cardiomyocytes to metabolize both LA and ALA in vivo, in the absence and in the presence of gamma linolenic acid (GLA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) alone or combined together. In control conditions, about 25% of LA and about 90% of ALA were converted in PUFAs. GLA supplementation had no influence on LA conversion to more unsaturated fatty acids, while the addition of n-3 fatty acids, alone or combined together, significantly decreased the formation of interconversion products from LA. Using the combination of n-6 and n-3 PUFAs, GLA seemed to counterbalance partially the inhibitory effect of EPA and DHA on LA desaturation/elongation. The conversion of ALA to more unsaturated metabolites was greatly affected by GLA supplementation. Each supplemented fatty acid was incorporated to a significant extent into cardiomyocyte lipids, as revealed by gas chromatographic analysis. The n-6/n-3 fatty acid ratio was greatly influenced by the different supplementations; the ratio in GLA+EPA+DHA supplemented cardiomyocytes was the most similar to that recorded in control cardiomyocytes. Since important risk factors for coronary disease may be associated with reduced 6-desaturation of the parent EFAs, administration of n-6 or n-3 EFA metabolites alone could cause undesirable effects. Since they appear to have different and synergistic roles, only combined treatment with both n-6 and n-3 metabolites is likely to achieve optimum results.  相似文献   

19.
Summary Successful induction of callus from coconut endosperm was achieved by using the tissue situated near the micropylar end of a young fruit. For initiation of callus, a high concentration of auxin (20 to 100 ppm) was added to the basal medium containing activated charcoal. Subcultured callus showed a 40-fold increase during culture of three months. Based on the analysis of fatty acid composition, the maturation of endosperm was characterized by an increase in short chain fatty acids (C8, C10, C12, C14)and a decrease in long chain fatty acids (C16, C18: 1, C18: 2). In developing endosperms, proportion of short chain fatty acids was higher in lipids of the antipodal than those of other regions. In the final stage of maturation, around 82% of total fatty acids was short chain fatty acids, while the proportion of long chain fatty acids decreased up to 16%. The fatty acid composition of callus subcultured for six months was comparable to that of the immature endosperm. Lipids were accumulated in callus as globular bodies.  相似文献   

20.
The lipid accumulation, fatty acid composition and γ-linolenic acid (GLA) production by 28 strains belonging to Mucorales were investigated. The lipid content varied from 5 to 30% on dry biomass and the percentage of γ-linolenic acid in total intracellular lipid was in a range from 2.5 to 15.4% (w/w). The best yield of γ-linolenic acid (expressed as mg GLA per 1 g biomass) was found for Mucor mucedo CCF – 1384 (28.4) and Cunninghamella echinulata CCF – 103 (25.1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号