首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The binding of phenylalanine to the allosteric site of chorismate mutase/prephenate dehydratase has been studied by steady-state dialysis. Under most of the experimental conditions examined positive co-operativity was observed for the binding of ligand up to 50% saturation and negative co-operativity above 50% saturation. In the presence of 0.4 M NaCl at pH 8.2 the co-operativity was positive at all phenylalanine concentrations and the maximal stoichiometry of 1 mol of phenylalanine/mol of enzyme subunit was observed. It was concluded that there is a single phenylalanine-binding site per subunit which is associated with the regulation of each of the mutase and dehydratase activities. The effects of enzyme concentration, NaCl, temperature and pH on the binding of phenylalanine have been investigated. Neither tyrosine nor tryptophan bound to the allosteric site of the enzyme. Enzyme that was desensitized to inhibition by phenylalanine following modification of three sulphydryl groups with 5,5'-dithio-bis (2-nitrobenzoic acid) did not bind phenylalanine. The mechanism of co-operativity, the binding of the enzyme to Sepharosyl-phenylalanine and the physiological significance of the inhibition of the enzyme by phenylalanine are discussed in terms of the results obtained.  相似文献   

2.
An analysis of the effect of eleven monoclonal antibodies on the functional characteristics of monkey liver phenylalanine hydroxylase is presented. These eleven antibodies have been found to react with eight distinct regions on the phenylalanine hydroxylase protein. PH1 antibody inhibits enzyme activity, is dependent on phenylalanine for its binding, and appears to be related to structural changes occurring during phenylalanine activation of the enzyme activity. PH2 and PH3 antibodies stimulate enzyme activity, their binding is inhibited by lysolecithin and this group apparently is recognizing structures involved in lysolecithin activation of the enzyme activity. PH5, PH10, PH12 and PH6 recognise sites on phenylalanine hydroxylase affected by lysolecithin activation.  相似文献   

3.
Monoclonal antibody PH7 has specificity for the phosphorylated form of the human liver phenylalanine hydroxylase and negligible reactivity towards the dephosphorylated form of the native enzyme by enzyme-linked immunoassay. PH7 binds specifically to the phosphorylated form of the liver enzyme after SDS/polyacrylamide-gel electrophoresis and transfer to nitrocellulose. Competitive blocking assays have been applied in conjunction with reversed-phase h.p.l.c. of purified tryptic fragments of human liver phenylalanine hydroxylase to localize the epitope. The major immunoreactive tryptic peptide cross-reacting with PH7 had an amino acid analysis corresponding to the first 41 amino acids of the human liver phenylalanine hydroxylase sequence and included the serine residue that is thought to be the phosphorylation site. The monoclonal antibody recognized the phosphorylated form of the synthetic decapeptide corresponding to the local phosphorylation-site sequence Gly-Leu-Gly-Arg-Lys-Leu-Ser(P)-Asp-Phe-Gly, but not the dephosphodecapeptide. Thermolysin digestion of the peptide demonstrated the monoclonal antibody bound to the pentapeptide Leu-Ser(P)-Asp-Phe-Gly. Monoclonal antibody PH7 recognized the phosphodecapeptide at concentrations 10(3)-fold higher than with phenylalanine hydroxylase, compared with 10(4)-10(7)-fold higher for other phosphopeptides and phosphoproteins. The results demonstrate that monoclonal antibody PH7 has specificity for the phosphorylated form of phenylalanine hydroxylase at the phosphorylation site.  相似文献   

4.
BALB/c mice were immunized with a synthetic co-factor of the aromatic amino acid hydroxylases, 6,7-dimethyl-5,6,7,8-tetrahydropterin, conjugated to albumin. Hybridoma cell lines isolated from the immunized mice secreted monoclonal antibodies reacting specifically with the pterin molecule and monoclonal antibodies which were found to bind phenylalanine hydroxylase. Several lines of evidence were consistent with the anti-phenylalanine hydroxylase antibodies being anti-idiotype antibodies mimicking the pterin molecule and binding to the pterin binding site of phenylalanine hydroxylase. (a) An anti-idiotype monoclonal antibody, NS7, when reimmunized into mice produced anti-pterin antibodies consistent with NS7 being an internal image anti-idiotypic antibody. (b) NS7 antibody was prevented from binding to phenylalanine hydroxylase when a competitive inhibitor of phenylalanine hydroxylase enzyme activity, 6,7-dimethyl-7,8-dihydropterin, was bound to phenylalanine hydroxylase. (c) NS7 antibody was shown to bind to a wide range of pterin-requiring enzymes: phenylalanine, tyrosine and tryptophan hydroxylases, dihydropteridine reductase, dihydrofolate reductase, and sepiapterin reductase. Thus the NS7 antibody has successfully mimicked a common portion of the pterin cofactors utilized by these enzymes and demonstrated structure homology in their pterin binding sites despite their diverse function and little amino acid sequence homology except among the three aromatic amino acid hydroxylases.  相似文献   

5.
B S Gibbs  S J Benkovic 《Biochemistry》1991,30(27):6795-6802
A pterin analogue, 5-[(3-azido-6-nitrobenzylidene)amino]-2,6-diamino-4-pyrimidinone (ANBADP), was synthesized as a probe of the pterin binding site of phenylalanine hydroxylase. The photoaffinity label has been found to be a competitive inhibitor of the enzyme with respect to 6,7-dimethyltetrahydropterin, having a Ki of 8.8 +/- 1.1 microM. The irreversible labeling of phenylalanine hydroxylase by the photoaffinity label upon irradiation is both concentration and time dependent. Phenylalanine hydroxylase is covalently labeled with a stoichiometry of 0.87 +/- 0.08 mol of label/enzyme subunit. 5-Deaza-6-methyltetrahydropterin protects against inactivation and both 5-deaza-6-methyltetrahydropterin and 6-methyltetrahydropterin protect against covalent labeling, indicating that labeling occurs at the pterin binding site. Three tryptic peptides were isolated from [3H]ANBADP-photolabeled enzyme and sequenced. All peptides indicated the sequence Thr-Leu-Lys-Ala-Leu-Tyr-Lys (residues 192-198). The residues labeled with [3H]ANBADP were Lys198 and Lys194, with the majority of the radioactivity being associated with Lys198. The reactive sulfhydryl of phenylalanine hydroxylase associated with activation of the enzyme was also identified by labeling with the chromophoric label 5-(iodoacetamido)fluorescein [Parniak, M. A., & Kaufman, S. (1981) J. Biol. Chem. 256, 6876]. Labeling of the enzyme resulted in 1 mol of fluorescein bound per phenylalanine hydroxylase subunit and a concomitant activation of phenylalanine hydroxylase to 82% of the activity found with phenylalanine-activated enzyme. Tryptic and chymotryptic peptides were isolated from fluorescein-labeled enzyme and sequenced. The modified residue was identified as Cys236.  相似文献   

6.
The state of phosphorylation of phenylalanine hydroxylase was determined in isolated intact rat hepatocytes. 32P-labeled phenylalanine hydroxylase was immunoisolated from cells loaded with 32Pi or from cell extracts 'back-phosphorylated' with [gamma-32P]ATP by cAMP-dependent protein kinase. The rate of phenylalanine hydroxylase phosphorylation in cells with elevated cAMP was similar to that observed for the isolated enzyme phosphorylated by homogeneous cAMP-dependent protein kinase. The phosphorylation rate in cAMP-stimulated cells was increased up to four times (reaching 0.018 s-1) by the presence of phenylalanine, the phosphate content (mol/mol hydroxylase) increasing to 0.5 from the basal level (0.17) in 50 s. The half maximal effect of phenylalanine was obtained at a physiologically relevant concentration (110 microM). The synthetic phenylalanine hydroxylase cofactor dimethyltetrahydropterin also enhanced the cAMP-stimulated phosphorylation of phenylalanine hydroxylase, presumably by displacing the endogenous cofactor, tetrahydrobiopterin. Phenylalanine was a negative modulator of the phosphorylation of phenylalanine hydroxylase induced by incubating cells with vasopressin or with the phosphatase inhibitor okadaic acid. The same site on the phenylalanine hydroxylase was phosphorylated in response to these two agents as in response to elevated cAMP. The available evidence suggested that not only vasopressin, but also okadaic acid, acted by stimulating the multifunctional Ca2+/calmodulin-dependent protein kinase II or a kinase with closely resembling properties.  相似文献   

7.
A monoclonal antibody against 4-aminobenzoate hydroxylase (EC 1.14.13.27) from Agaricus bisporus, a common edible mushroom, has been produced by the fusion of BALB/c mouse spleen cells immunized with the denatured enzyme and P3x63Ag8U1 myeloma cells in order to locate and characterize the catalytic site of the enzyme. The monoclonal antibody immunoblotted the enzyme and immunoprecipitated its apoenzyme. The immunoprecipitation was inhibited in the presence of FAD, and the monoclonal antibody competitively inhibited the binding of FAD to the apoenzyme. The monoclonal antibody, therefore, recognizes the FAD-binding site of 4-aminobenzoate hydroxylase. Interestingly, it was shown that the monoclonal antibody was cross-reactive with FAD-dependent enzymes such as salicylate hydroxylase (EC 1.14.13.1) and D-amino acid oxidase (EC 1.4.3.3), and that it was specific for the FAD-binding sites of these enzymes. This fact suggests that these FAD-dependent enzymes have immunologically similar structures on their FAD-binding sites.  相似文献   

8.
1. Phenylalanine hydroxylase activity has been analyzed in Drosophila melanogaster using as cofactors the natural tetrahydropteridine 5,6,7,8-tetrahydrobiopterin (H4Bip) and the synthetic one 5,6-dimethyl-5,6,7,8-tetrahydropterin (H4Dmp). 2. The apparent Vmax and KM for substrate and cofactor showed that the enzyme has two times more affinity for the substrate when H4Bip is the cofactor in the reaction. Similarly to what was found with purified rat liver phenylalanine hydroxylase, H4Bip was the most effective cofactor, leading to 4-5 times more activity than that obtained with H4Dmp. 3. With the natural cofactor H4Bip, no activation of the enzyme with Phe was necessary (in contrast to mammalian phenylalanine hydroxylase), and this tetrahydropteridine inhibits phenylalanine hydroxylase activity when the enzyme is exposed to it before phenylalanine addition. With the synthetic H4Dmp, both types of preincubations led to an increase of phenylalanine hydroxylase activity. 4. The enzyme is highly unstable compared to mammalian phenylalanine hydroxylase, even at -20 degrees C. 5. Thorax and abdomen extracts caused significant inhibition of phenylalanine hydroxylase activity from third instar larvae or newborn adult head extracts, when assayed with the synthetic cofactor H4Dmp. This inhibition did not happen with H4Bip. The presence of the pteridine 7-xanthopterin in adult bodies was not the cause of this inhibition.  相似文献   

9.
Four monoclonal antibodies to phenylalanine hydroxylase are described. Two are inhibitory (PH alpha 1-1 and PH alpha 2-1-1 antibodies), one is stimulatory (B5-1 antibody) and one has no effect on enzyme activity (PH alpha 3-0 antibody). Their properties are compared. Two antibodies (PH alpha 1-1 and B5-1 antibodies) bind primate and rodent phenylalanine hydroxylase, whereas the other two (PH alpha 2-1-1 and PH alpha 3-0 antibodies) bind only the primate enzyme. The binding of PH alpha 1-1 antibody to phenylalanine hydroxylase is dependent on substrate phenylalanine, whereas the binding of the others is not influenced by phenylalanine. Affinity adsorbents prepared from the four antibodies purified phenylalanine hydroxylase substantially (greater than 80% purity) in one step, except for a PH alpha 3-0 antibody--Sepharose column, which behaved anomalously. Two previous publications described the isolation and preliminary characterization of B5 and PH alpha 1-1 antibodies. PH alpha 2-1-1 and PH alpha 3-0 antibodies are reported for the first time.  相似文献   

10.
The interaction between phenylalanine 4-mono-oxygenase and analogues of the natural cofactor (6R)-tetrahydrobiopterin [(6R)-BH4] was studied. The rate of cyclic AMP-dependent phosphorylation of phenylalanine 4-mono-oxygenase was inhibited only by those pterins [(6R)-BH4, (6S)-BH4 and 7,8-dihydrobiopterin (BH2)] that were able to decrease the potency and efficiency of phenylalanine as an allosteric activator of the hydroxylase. Since BH2 lacks cofactor activity, this was not required to modulate either the phosphorylation or the phenylalanine-activation of the hydroxylase. Half-maximal inhibition of the phosphorylation was observed at 1.9 microM-(6R)-BH4, 9 microM-(6S)-BH4 and 17 microM-BH2. Competition experiments indicated that all three pterins acted through binding to the cofactor site of the hydroxylase. Since the phosphorylation site and the cofactor binding site are known to reside, respectively, in the N- and C-terminal domains of the hydroxylase, the pterins were able to induce an interdomain conformational change. BH2, whose dihydroxypropyl group is not subject to epimerization, and (6S)-BH4 both inhibited the phosphorylation less efficiently than did the (6R)-epimer of BH4. Pterins with different spatial arrangements of the dihydroxypropyl side chain thus appeared to elicit different conformations of the phosphorylation site. The hydroxylase reaction showed a higher apparent Km for (6S)-BH4 than for (6R)-BH4 both when the native and the phenylalanine-activated enzyme were tested. For the activated enzyme Vmax was 40% lower with the (6S)-epimer than the (6R)-epimer, also when the more rapid enzyme inactivation occurring with the former cofactor was taken into account.  相似文献   

11.
1. Phenylalanine hydroxylase is inhibited by its cofactor, 6,7-dimethyltetrahydropterin. The rate of inactivation, which is irreversible, increases with the concentration of cofactor. 2. Catalase, in sufficient amount relative to cofactor, prevents this inactivation. More tyrosine is formed in the presence of added catalase. 3. Dithiothreitol in the presence of liver extract also prevents inactivation of the enzyme by the cofactor and stimulates hydroxylation of phenylalanine, probably by protecting the cofactor from oxidation and regenerating it from a dihydropterin reaction product. Dithiothreitol restores linearity of rate at very low enzyme concentrations. 4. Dimethyltetrahydropterin is unstable when the solution is exposed to air but is stabilized by dithiothreitol the aerobic oxidation of which is greatly accelerated by dimethyltetrahydropterin. 5. NADH together with liver extract stabilizes the cofactor but not phenylalanine hydroxylase. 6. It is suggested that either hydrogen peroxide or an organic peroxide formed by oxidation in air of the cofactor is the substance attacking phenylalanine hydroxylase, dithiothreitol and cofactor.  相似文献   

12.
Phenylalanine hydroxylase (PAH) is a pterin-dependent non-heme metalloenzyme that catalyzes the oxidation of phenylalanine to tyrosine, which is the rate-limiting step in the catabolism of Phe. Chromobacterium violaceum phenylalanine hydroxylase (cPAH) has been prepared and its steady-state mechanism has been investigated. The enzyme requires iron for maximal activity. Initial rate measurements, done in the presence of the 6,7-dimethyl-5,6,7,8-tetrahydropterin (DMPH(4)) cofactor, yielded an average apparent k(cat) of 36+/-1 s(-1). The apparent K(M) values measured for the substrates DMPH(4), L-Phe, and O(2) are 44+/-7, 59+/-10, and 76+/-7 microM, respectively. Steady-state kinetic analyses using double-reciprocal plots revealed line patterns consistent with a sequential ter-bi mechanism in which L-Phe is the middle substrate in the order of binding. The occurrence of a line intersection on the double-reciprocal plot abscissa when either pterin or O(2) is saturated suggests that, prior to O(2) binding, DMPH(4) and L-Phe are in associative pre-equilibrium with cPAH. Together with an inhibition study using the oxidized cofactor, 7,8-dimethyl-6,7-dihydropterin, it is conclusive that the mechanism is fully ordered, with DMPH(4) binding the active site first, L-Phe second, and O(2) last. This represents the first conclusive steady-state mechanism for a PAH enzyme.  相似文献   

13.
Katz S  Heinrich R  Aronheim A 《FEBS letters》2001,488(3):196-200
Phenylalanine hydroxylase (PAH) is activated by its substrate phenylalanine and inhibited by its cofactor tetrahydrobiopterin (BH(4)). The crystal structure of PAH revealed that the N-terminal sequence of the enzyme (residues 19-29) partially covered the enzyme active site, and suggested its involvement in regulation. We show that the protein lacking this N-terminal sequence does not require activation by phenylalanine, shows an altered structural response to phenylalanine, and is not inhibited by BH(4). Our data support the model where the N-terminal sequence of PAH acts as an intrasteric autoregulatory sequence, responsible for transmitting the effect of phenylalanine activation to the active site.  相似文献   

14.
Rats were given intraperitoneal injections of 2 mCi of carrier-free 32Pi and substances known to activate liver phenylalanine hydroxylase. After 30 min, these animals were anesthetized and their livers removed for analysis of enzyme activity, 32Pi incorporation into immunoprecipitated phenylalanine hydroxylase and [gamma-32P]ATP specific activity. Following glucagon treatment, rat liver phenylalanine hydroxylase activity was stimulated more than 6-fold when assayed in the presence of the natural cofactor, tetrahydrobiopterin (BH4). Glucagon injection also resulted in an incorporation of 0.41 mol of 32Pi/mol of hydroxylase subunit (approximately 50,000 Da). In vivo stimulation of phenylalanine hydroxylase activity and 32Pi incorporation by glucagon had been previously observed in this laboratory (Donlon, J., and Kaufman, S. (1978) J. Biol. Chem. 253, 6657-6659). However, we show for the first time in the present study that in vivo treatment with phenylalanine alone results in a 4-fold increase in the BH4-dependent activity of phenylalanine hydroxylase concomitant with a significant incorporation of phosphate into phenylalanine hydroxylase (0.51 mol of 32Pi/mol of hydroxylase subunit). It is further demonstrated in vivo that the combined treatment with phenylalanine and glucagon results in a greater than 10-fold stimulation of BH4-dependent activity and the greatest level of 32Pi incorporation (0.75 mol of 32Pi/mol of hydroxylase subunit). Phenylalanine did not produce an elevation in plasma glucagon in these animals. A model is, thereby, proposed with respect to the ligand binding effects of phenylalanine on the state of phosphorylation and activation of phenylalanine hydroxylase. The significance of these regulatory roles are considered in light of the probable physiological environment of the enzyme.  相似文献   

15.
A monoclonal antibody directed against monkey liver phenylalanine hydroxylase was produced by using a rat-myeloma--rat-spleen-cell-fusion system. This antibody showed the interesting property of increasing mammalian phenylalanine hydroxylase activity more than 2-fold. Perhaps monoclonal antibodies with this effect on other enzyme or proteins could be developed.  相似文献   

16.
The mechanism of phenylalanine hydroxylase   总被引:1,自引:0,他引:1  
The site of oxygen binding during phenylalanine hydroxylase (PAH)-catalyzed turnover of phenylalanine to tyrosine has been tentatively identified as the 4a position of the tetrahydropterin cofactor, based on the spectral characteristics of an intermediate generated from both 6-methyltetrahydropterin and tetrahydrobiopterin during turnover. The rates of appearance of the intermediate and tyrosine are equal. Both rates exhibit the same dependence on enzyme concentration. PAH also requires 1.0 iron per 50,000-dalton subunit for maximal activity. A direct correlation between iron content and specific activity has been demonstrated. Apoenzyme can be reactivated by addition of Fe(II) aerobically or Fe(III) anaerobically and can be repurified to give apparently native protein. Evidence from electron paramagnetic resonance implicates the presence of high spin (5/2) Fe(III). As a working hypothesis we postulate that a key complex at the active site may be one containing iron in close proximity to a 4a-peroxytetrahydropterin.  相似文献   

17.
Conformational change in rat liver phenylalanine hydroxylase associated with activation by phenylalanine or N-(1-anilinonaphth-4-yl)maleimide was investigated by measuring fluorescence spectra and fluorescence lifetimes of tryptophanyl residues as well as the probe fluorophore conjugated with SH groups of the hydroxylase. The fluorescence spectrum of tryptophan exhibited its maximum at 342 nm. It shifted by 8 nm toward longer wavelength accompanied by an increase in its intensity, by preincubation with 1 mM phenylalanine. The fluorescence intensity of tryptophan increased by 36% upon the activation. On the other hand, the binding of (6R)-L-erythro-tetrahydrobiopterin, a natural cofactor of the enzyme, induced a decrease in the fluorescence intensity by 79% without a shift of the maximum wavelength. The fluorescence lifetime of tryptophan of phenylalanine hydroxylase exhibited two components with lifetimes of 1.7 and 4.1 ns. The values of the lifetimes changed to 1.4 and 5.6 ns, respectively, upon the activation. It is considered that the change in the longer lifetime is correlated with the shift of the emission peak upon the activation. The values of both the lifetimes decreased to 0.64 and 3.6 ns upon the binding of (6R)-L-erythro-tetrahydrobiopterin, which is coincident with the decrease in the fluorescence intensity. Conjugation of N-(1-anilinonaphth-4-yl)maleimide with SH of phenylalanine hydroxylase brought about a decrease in both the fluorescence intensity and the value of the shorter lifetime of the tryptophanyl residues, while the longer lifetime remained unchanged.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Mechanism of phenylalanine regulation of phenylalanine hydroxylase   总被引:2,自引:0,他引:2  
The mechanism of phenylalanine regulation of rat liver phenylalanine hydroxylase was studied. We show that phenylalanine "activates" phenylalanine hydroxylase, converting it from an inactive to active form, by binding at a true allosteric regulatory site. One phenylalanine molecule binds per enzyme subunit; it remains at this site during catalytic turnover and, while there, cannot be hydroxylated. Loss of phenylalanine from the site causes a loss of enzymatic activity. The rate of loss of activation is dramatically slowed by phenylalanine, which kinetically "traps" activated enzyme during relaxation from the activated to unactivated state. An empirical equation is presented which allows calculation of relaxation rates over a wide range of temperatures and phenylalanine concentrations. Kinetic trapping by phenylalanine is a novel effect. It was analyzed in detail, and its magnitude implied that phenylalanine activation involves cooperativity among all four subunits of the enzyme tetramer. A regulatory model is presented, accounting for the properties of the phenylalanine activation reaction in the forward and reverse directions and at equilibrium. Fluorescence quenching studies confirmed that activation increases the solvent accessibility of the enzyme's tryptophan residues. Physical and kinetic properties of purified phenylalanine hydroxylase from rat, rabbit, baboon, and goose liver were compared. All enzymes were remarkably alike in catalytic and regulatory properties, suggesting that control of this enzyme is similar in mammals and birds.  相似文献   

19.
PH8 monoclonal antibody has previously been shown to react with all three aromatic amino acid hydroxylases, being particularly useful for immunohistochemical staining of brain tissue [Haan, Jennings, Cuello, Nakata, Chow, Kushinsky, Brittingham & Cotton (1987) Brain Res. 426, 19-27]. Western-blot analysis of liver extracts showed that PH8 reacted with phenylalanine hydroxylase from a wide range of vertebrate species. The epitope for antibody PH8 has been localized to the human phenylalanine hydroxylase sequence between amino acid residues 139 and 155. This highly conserved region of the aromatic amino acid hydroxylases has 11 out of 17 amino acids identical in phenylalanine hydroxylase, tyrosine hydroxylase and tryptophan hydroxylase.  相似文献   

20.
Catecholamines (adrenaline, noradrenaline and dopamine) are potent inhibitors of phenylalanine 4-monooxygenase (phenylalanine hydroxylase, EC 1.14.16.1). The amines bind to the enzyme by a direct coordination to the high-spin (S = 5/2) Fe(III) at the active site (charge transfer interaction), as seen by resonance Raman and EPR spectroscopy. Experimental evidence is presented that a group with an apparent pKa value of about 5.1 (20 degrees C) is involved in the interaction between the catecholamine and the enzyme. The high-affinity binding of L-noradrenaline to phenylalanine hydroxylase, as studied by equilibrium microdialysis (anaerobically) and ultrafiltration (aerobically), shows positive cooperativity (h = 1.9); at pH 7.2 and 20 degrees C the rat enzyme binds about 0.5 mol L-noradrenaline/mol subunit with a half-maximal binding (S50) at 0.25 microM L-noradrenaline. No binding to the ferrous form of the enzyme was observed. The affinity decreases with decreasing pH, by phosphorylation and by preincubation of the enzyme with the substrate L-phenylalanine, while it increases after alkylation of the enzyme with the activator N-ethylmaleimide. Preincubation of the enzyme with L-phenylalanine also leads to a complete loss of the cooperativity of L-noradrenaline binding (h = 1.0). The many similarities in binding properties of the inhibitor L-noradrenaline and the activator/substrate L-phenylalanine makes it likely that the cooperative interactions of these effectors are due to their binding to the same site. The high-affinity of catecholamines to phenylalanine hydroxylase is a valuable probe to study the active site of this enzyme and is also relevant for the homologous enzyme tyrosine hydroxylase, which is purified as a stable catecholamine-Fe(III) complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号