首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The formation of complex between the Cu2+ ion and poly(α-L -glutamic acid) [poly(Glu)] in 150 mM NaCl solutions was studied by uv–visible absorption and equilibrium dialysis methods at the mixing ratios of Glu residues to Cu2+, R, of 32, 16, and 8 and in the pH range 4–7. The results showed that more than 90% of Cu2+ ions bind to the poly(Glu) at pH > 4.9, but the bound Cu(II) begins to dissociate with a decrease in pH. The absorption spectra of bound Cu(II) varied with pH and R in a complicated manner. Three different component spectra were disclosed from the analysis of the pH dependence of the bound spectra. We concluded that poly(Glu)–Cu(II) complexes fall into three classes in the pH range 4–7, with the proportions of these complexes varying with both pH and R. The three complexes predominate either in the helix or extended-coil region, in the helix–coil transition region, or in the helix-aggregate region. The stability constant and binding mode of each Cu(II)–Glu complex were estimated from the dialysis data. With these results, the possible structure of each complex is discussed.  相似文献   

2.
Circular dichroism and absorption spectra have been measured on solutions of acridine orange and poly(L -glutamic acid) mixed at two molar ratios of carboxyl group-to-dye, P/D 25 and 0.8, and at different pH's. Characteristic circular dichroism is induced at the absorption bands of acridine orange when the P/D is 25 and the solution is acidic. Another type of circular dichroism is manifest at neutral and alkaline pH when P/D is 0.8. For the induction of the former type of circular dichroism, a helical array of acridine-orange dimers bound to the α-helix is postulated, in which the dye molecular planes are almost perpendicular to the helical axis. Assuming the helical geometry and optical parameters, combined with the observed magnitude of transition electric moment, the rotatory strength of the complex is calculated to the zeroth order approximation, and the observed circular dichroism spectra have been reproduced.  相似文献   

3.
The interaction of poly(A) and poly(A).poly(U) with pyronine G dye depending on the concentration of components and temperature was studied spectrophotometrically in the visible and UV ranges at pH (6.86). It was found that the interaction of pyronine G with poly(A) and poly(A).poly(U) results in the formation of two types of complexes. The relation of the equilibrium concentrations of these complexes depends on the initial concentrations of the components in solution. The formation of complex I results in shifting the spectrum towards the short wave range with regard to the monomer band and reflects the aggregation of the dye cations. Complex II is characterized by the shift towards the long wave range. Complex II is formed in considerable amounts for poly(A).pyronine G system at large P/D and for poly(A).poly(U).pyronine G system at P/D = 5-6 and is probably due to the interaction between the dye and polynucleotides of the intercalation type or reflects the interaction between the dye and two negatively charged phosphate groups. Analysis of temperature measurements of spectra confirms the formation of various types of complexes in the system studied.  相似文献   

4.
T Imae  S Ikeda 《Biopolymers》1975,14(6):1213-1221
Circular dichroism and absorption spectra are measured on mixed solutions of acridine orange and poly(S-carboxymethyl-L -cysteine) at different pH and P/D mixing ratios. The observed circular dichroism spectra are classified into several types, mainly based on the number and sign of circular dichroic bands in the visible region. Three of them are associated with the absorption spectra characteristic of dimeric dye or higher aggregates of dye. Type I is observed with solutions, of which the pH is acid and P/D is higher than 4, and it has an unsymmetrical pair of positive and negative dichroic bands at 470 and 430 nm. This type is induced on the dye bound to the polymer in the β-conformation. Types II and III are considered to be characteristic of randomly coiled polymers. Type II is exhibited by solutions of P/D higher than 1 at pH 5–7 and has two dichroic bands around the same wavelengths as Type I but with opposite signs and an additional positive band at 560 nm. Type III, shown by solutions of P/D 2–0.6 at pH 6–10.5, has three dichroic bands around the same wavelengths as Type II but with signs opposite to it. The other two types of circular dichroism, induced for the solutions of P/D less than 1 at slightly acid pH, are associated with the absorption spectra of monomeric dye and are observed with disordered or randomly coiled polymer. They have a pair of dichroic bands at 540 and 425 nm, and the signs of these bands are opposite to each other in these two types.  相似文献   

5.
Electronic absorption, circular dichroic (CD), and magnetic circular dichroic (MCD) spectra have been determined for complexes of cobalt(II)-substituted carboxypeptidase A and five reversible inhibitors. Three of the inhibitors, N-(1-carboxy-5-butyloxycarbonylaminopentyl)-L-phenylalanine, (I); (R,S)-2-benzyl-4-oxobutanoic acid, (III); and 2-benzyl-4-oxo-5,5,5-trifluoropentanoic acid, (IV) are mechanism-based inhibitors. Another, N-(1-carboxy-5-carbobenzoxyaminopentyl)-glycyl-L-phenylalanine, (II), is a tight binding, slowly hydrolyzed substrate. The fifth, phosphoramidon, (V), is a mechanism-based inhibitor of thermolysin, and may also bind to carboxypeptidase in a mechanism-based mode. The absorption and CD spectra of the enzyme-inhibitor complexes all differ from the spectrum of the free enzyme and from each other. The MCD spectra indicate that the tetrahedral coordination geometry of cobalt, which is distorted in the free enzyme, is also distorted in the inhibitor complexes, although to various degrees. The complexes of I and III are spectrally similar despite being structurally dissimilar, and that of IV, whose structure resembles III, is spectrally distinct, indicating that I and III, but not IV, may perturb the metal in nearly the same way. The absorption spectrum of IV is identical to that, at high pH, of Co(II)carboxypeptidase in which Glu-270 has been modified by a carbodiimide reagent, possibly pointing to a common perturbation of this residue. The absorption and CD spectra of II are similar to those of the catalytic intermediate that precedes the rate-limiting step in peptide hydrolysis [D. S. Auld, A. Galdes, K. F. Geoghegan, B. Holmquist, R. Martinelli, and B. L. Vallee, Proc. Natl. Acad. Sci. USA 81, 4675-4681 (1984)]. Since II is a substrate, the steady-state bound species that it generates may therefore be a true productive intermediate rather than a nonproductive mimic of an intermediate. The spectra of the complexes with II and V differ considerably despite structural similarities. The negative CD ellipticity of the free enzyme is reversed in sign in the presence of V, a phenomenon previously observed with complexes of Co(II)carboxypeptidase and dipeptides. This resemblance may result from a similar interaction of cobalt with the phosphoramidate group of phosphoramidon and the N-terminal amine of dipeptides. The spectra of reversible, mechanism-based inhibitors permit general structural predictions about true intermediates but require caution when used for assigning precise conformation and ligands of bound catalytic species.  相似文献   

6.
Potentiometric titration curves of the silver(I) complexes of cytidine, adenosine, and uridine show little uptake of base below pH 7, unlike the curve for silver(I)-guanosine, which shows extensive base uptake at neutral pH. This observation is correlated with spectrophotometric data showing little difference between the silver complex spectra of adenosine, cytidine, and uridine and the spectra of uncomplexed nucleosides, except at high pH, but showing a great difference between the silver complex spectra of guanosine and inosine and the corresponding uncomplexed nucleosides even at pH 6. Similar comparisons of the silver complexes of poly A, poly C, poly I, and poly U, both by potentiometric titration and by spectrophotometry, show that poly I behaves like guanosine and inosine as expected, differing from poly A and poly C. However, poly U behaves like poly I and thus does not resemble uridine in its complexing behavior. There is thus a dichotomy between poly A and poly C on the one hand in silver complexing phenomena, compared with poly U and poly I on the other. When silver(I) is added to systems containing zinc(II) and various polynucleotides, the same dichotomy is noted. Silver(I) inhibits the degradation by zinc(II) of all four polynucleotides, but the degradation of poly I and poly U is prevented virtually completely. Silver(I) alone has no degradative effect on RNA and inhibits, the zinc(II) degradation of RNA. Polynucleotide complexes in which silver(I) and zinc(II) are simultaneously bound to different positions on the macromolecules are postulated as intermediates in the inhibited degradation reactions.  相似文献   

7.
Design and synthesis of peptides capable of specific binding to DNA   总被引:1,自引:0,他引:1  
In the present communication, design, synthesis and DNA binding activities of the following two peptides are reported: Dns-Gly-Ala-Gln-Lys-Leu-Ala-Cly-Lys-Val-Gly-Thr-Lys-Val-Lys-Val-Gl y-Thr-Lys-Thr - Val-OH (I) and [(H-Ala-Lys-Leu-Ala-Thr-Lys-Ala-Gly-Val-Lys-Gln-Gln-Ser-Ile-Gln-Leu-Ile- Thr- Ala-Aca-Lys-Aca)2Lys-Aca]2Lys-Val-OH (II), where Aca = NH(CH2)5CO--; Dns is a residue of 5-dimethylaminonaphtalene-1-sulfonic acid. Peptide I contains a large fraction (ca.30%) of valyl and threonyl residues, which possess a high potential for beta structure formation. Peptide II contains four repeats of the amino acid sequence present in the presumed DNA binding helix-turn-helix unit of 434 Cro repressor. These four domains are linked in such a way that two domains can interact with two halves a 14 base pair long operator site on DNA. From CD studies we have found that peptide I is in a random coil conformation in the aqueous solution in the presence of 20% trifluoroethanol. By contrast, amino acid residues of peptide II assume alpha helical, beta and random coiled conformations under the same conditions. A change in the secondary structure of the two peptides upon binding to DNA is observed. The difference CD spectra obtained by subtracting the spectra of free DNA from the spectra of peptide I--DNA complexes gives rise to a beta-like pattern. The difference CD spectra obtained for complexes of peptide II with various natural and synthetic DNAs suggest that alpha-beta-transition takes place in the presumed helix-turn-helix repeat units of peptide II upon binding to DNA. Peptide I binds more strongly to poly(dG).poly(dC) than to poly(dA).poly(dT) and poly[d(GC)].poly[d(GC)]. The binding takes place in the minor DNA groove because minor groove binding antibiotic sibiromycin can displace peptide I from a complex with poly(dG).poly(dC). Analysis of footprinting diagramms shows that peptide I specifically protects phosphodiester bonds within operator sites OR1 and OR2 of phage lambda from nuclease cleavage. By contrast, peptide II does not react specifically with operators OR1, OR2 and OR3 of phage 434 although it forms very tight complexes with DNA which are stable in the presence of 1M NH4F.  相似文献   

8.
The electronic absorption and circular dichroism spectra of the DNA-acridine orange complex have been measured over a range of ionic strength, pH, and DNA phosphate to dye (P/D) ratios. Three circular dichroism bands associated with the long wavelength absorption band of acridine orange are induced on complex formation with DNA. Two of the dichroism bands, due mainly to dimeric dye molecules, are favored by low ionic strength, low pH (3.2), and a low P/D ratio (~3), while the third, deriving primarily from monomeric dye, is optimum at high ionic strength, neutral pH, and a larger P/D ratio (9). The data suggest that monomeric acridine orange binds to DNA in the form of a left-handed helical array with four dye molecules per turn, while the bound dimer has a skewed sandwich conformation which is itself dissymmetric. The stereochemical relations between the bound monomer dye and the DNA are consistent with a modified intercalation model for the DNA-acridine complex.  相似文献   

9.
C A Grygon  T G Spiro 《Biochemistry》1989,28(10):4397-4402
Raman spectra are reported for distamycin, excited at 320 nm, in resonance with the first strong absorption band of the chromophore. Qualitative band assignments to pyrrole ring and amide modes are made on the basis of frequency shifts observed in D2O. When distamycin is dissolved in dimethyl sulfoxide or dimethylformamide, large (30 cm-1) upshifts are seen for the band assigned to amide I, while amides II and III shift down appreciably. Similar but smaller shifts are seen when distamycin is bound to poly(dA-dT) and poly(dA)-poly(dT). Examination of literature data for N-methylacetamide in various solvents shows that the amide I frequencies correlate well with solvent acceptor number but poorly with solvent donor number. This behavior implies that acceptor interactions with the C = O group are more important than donor interactions with the N-H group in polarizing the amide bond and stabilizing the zwitterionic resonance form. The resonance Raman spectra therefore imply that the distamycin C = O groups, despite being exposed to solvent, are less strongly H-bonded in the polynucleotide complexes than in aqueous distamycin, perhaps because of orienting influences of the nearby backbone phosphate groups. In this respect, the poly(dA-dT) and poly(dA)-poly(dT) complexes are the same, showing the same RR frequencies. Resonance Raman spectra were also obtained at 200-nm excitation, where modes of the DNA residues are enhanced. The spectra were essentially the same with and without distamycin, except for a perceptable narrowing of the adenine modes of poly(dA-dT), suggesting a reduction in conformational flexibility of the polymer upon drug binding.  相似文献   

10.
Absorption and CD spectra of the pi-pi* transition near 200 nm are calculated for helical (Pro)10 forms I and II with a variable proline ring conformation characterized by torsion angle chi 2 in the range -60 degrees to 60 degrees. The spectra for poly(Pro) I are not sufficiently sensitive to chi 2 to suggest a preferred ring conformation. The spectra for poly(Pro) II are more sensitive to chi 2, and suggest preferred ring conformations near either or both of the chi 2 regions -50 +/- 10 degrees and 50 +/- 10 degrees.  相似文献   

11.
The interaction of several 3,6-diaminoacridines with DNAs of various base composition has been studied by steady-state and transient fluorescence measurements. The acridine dyes employed are of the following two classes: class I - proflavine, acriflavine and 10-benzyl proflavine; class II - acridine yellow, 10-methyl acridine yellow and benzoflavine. It is found that the fluorescence decay kinetics follows a single-exponential decay law for free dye and the poly[d(A-T)]-dye complex, while that of the dye bound to DNA obeys a two-exponential decay law. The long lifetime (tau 1) for each complex is almost the same as the lifetime for the poly[d(A-T)]-dye complex, and the amplitude alpha 1 decreases with increasing GC content of DNA. The fluorescence quantum yields (phi F) of dye upon binding to DNA decrease with increasing GC content; the phi F values for class I are nearly zero when bound to poly(dG) X poly(dC), but those for class II are not zero. This is in harmony with the finding that GMP almost completely quenches the fluorescence for class I, whereas a weak fluorescence arises from the GMP-dye complex for class II. The fluorescence spectra of the DNA-dye complexes gradually shift toward longer wavelengths with increasing GC content. In this connection, the fluorescence decay parameters show a dependence on the emission wavelength; alpha 1 decreases with an increase in the emission wavelength. In view of these results, it is proposed that the decay behavior of the DNA-dye complexes has its origin in the heterogeneity of the emitting sites; the long lifetime tau 1 results from the dye bound to AT-AT sites, while the short lifetime tau 2 is attributable to the dye bound in the vicinity of GC pairs. Since GC pairs almost completely quench the fluorescence for class I, partly intercalated or externally bound dye molecules may play an important role in the component tau 2.  相似文献   

12.
The interaction of mitoxantrone, ametantrone and their Pd(II) complexes with DNA have been studied using absorption and circular dichroism spectroscopy. We have shown that mitoxantrone forms with Pd(II) a complex in which two Pd(II) ions are bound to two molecules of drug (D1 and D2). One Pd(II) ion is bound to the two nitrogens of the side chain on C-5 of molecule D1 and to the two nitrogens of the side chain on C-5 of molecule D2, whereas the second Pd(II) ion is bound to the nitrogens of the side chain on C-8 of molecule D1 and of molecule D2. The same complex is formed between Pd(II) and ametantrone. The stability constants for these complexes are, respectively, beta M = (1.4 +/- 0.5).10(19) and beta A = (2.5 +/- 0.5).10(18). They display antitumor activity against P 388 leukemia which compares with that of the free drugs. Interactions of the free drugs with DNA have been studied. Mitoxantrone and ametantrone are not optically active by themselves. However, through interaction with DNA, there is an induction of optical activity within the electronic transitions of both drugs. At a nucleotide/drug molar ratio lower than about 5 a CD signal of the couplet type is observed, suggesting that there is a coupling between the pi----pi transitions of the molecules of drugs intercalated between the base pairs. This coupling disappears when the molar ratio is increased. The interactions of the Pd(II) complexes with DNA do not give rise to induction of optical activity within the electronic transition of the drugs, indicating that the presence of the metal ion prevents the intercalation of the drugs between the base pairs.  相似文献   

13.
Spontaneously active tyrosine-specific protein kinases I and II (designated TyrK I and TyrK II) have been purified to electrophoretic homogeneity from a particulate fraction of porcine spleen based on an assay that used poly(4Tyr, Glu) as a substrate. SDS/polyacrylamide gels revealed a doublet of bands of about Mr 51,000 for TyrK I and two protein bands of Mr 55,000 and 54,000 for TyrK II. After incubation in the presence of [gamma-32P]ATP, the bands corresponding to both protein kinases contained phosphotyrosine. The two tyrosine protein kinases showed high activities with poly(Tyr, 4Glu) and poly(Tyr, 3Ala, 6Glu) as substrates and lower activity with angiotensin II. Neither histone, phosvitin, casein nor bovine serum albumin were phosphorylated. Both protein tyrosine kinases were activated by millimolar concentrations of Mg2+ whereas Mn2+ was less effective. The effects of various polyanionic and polycationic substances depended on the nature of the peptide substrate. With poly(Tyr, 4Glu) as a substrate, the substances either inhibited the activities of TyrK I and TyrK II or had no effect. However, activation was observed with angiotensin II as substrate in the presence of polylysine, polyornithine, protamine sulfate, and heparin as effectors. When angiotensin II was used as substrate, activation also occurred by autophosphorylation, in parallel to the phosphate incorporation into the protein kinases. Activation by autophosphorylation was not observed with the synthetic peptide substrates, poly(Tyr, 4Glu) and poly(Tyr, 3Ala, 6Glu).  相似文献   

14.
Infrared spectra of poly(D,L-alanine), poly(L-glutamic acid), poly(L-lysine), silk fibroin, and tropomyosin have been registered for various conformations of the polypeptide chain. Assuming additivity of the main- and side-chain absorption, spectral parameters of amide I and II absorption bands corresponding to alpha-, beta-, and random coil conformations have been derived. The amide I band parameters for H2O and D2O have been compared.  相似文献   

15.
Iron uptake by the ubiquitous iron-storage protein ferritin involves the oxidation of two Fe(II) ions located at the highly conserved dinuclear “ferroxidase centre” in individual subunits. We have measured X-ray absorption spectra of four mutants (K86Q, K86Q/E27D, K86Q/E107D, and K86Q/E27D/E107D, involving variations of Glu to Asp on either or both sides of the dinuclear ferroxidase site) of recombinant human H-chain ferritin (rHuHF) in their complexes with reactive Fe(II) and redox-inactive Zn(II). The results for Fe–rHuHf are compared with those for recombinant Desulfovibrio desulfuricans bacterioferritin (DdBfr) in three states: oxidised, reduced, and oxidised/Chelex®-treated. The X-ray absorption near-edge region of the spectrum allows the oxidation state of the iron ions to be assessed. Extended X-ray absorption fine structure simulations have yielded accurate geometric information that represents an important refinement of the crystal structure of DdBfr; most metal–ligand bonds are shortened and there is a decrease in ionic radius going from the Fe(II) to the Fe(III) state. The Chelex®-treated sample is found to be partly mineralised, giving an indication of the state of iron in the cycled-oxidised (reduced, then oxidised) form of DdBfr, where the crystal structure shows the dinuclear site to be only half occupied. In the case of rHuHF the complexes with Zn(II) reveal a surprising similarity between the variants, indicating that the rHuHf dinuclear site is rigid. In spite of this, the rHuHf complexes with Fe(II) show a variation in reactivity that is reflected in the iron oxidation states and coordination geometries.  相似文献   

16.
H J Hinz  W Haar  T Ackermann 《Biopolymers》1970,9(8):923-936
The enthalpies of the helix-coil transitions of the ordered polynucleotide systems of poly(inosinic acid)–poly(cytidylic acid) [poly(I + C)], (helical duplex), and of poly (inosinic acid) [poly(I + I + I)], (proposed secondary structure: a triple-stranded helical complex), were determined by using an adiabatic twin-vessel differential calorimeter. Measuring the temperature course of the heat capacity of the aqueous polymer solutions, the enthalpy values for the dissociation of the helical duplex poly (I + C) and the three-stranded helical complex poly(I + 1 + 1), respectively, were obtained by evaluating the additional heat capacity involved in the conformational change of the polynucleotide system in the transition range. The ΔH values of the helix-coil transition of poly (I + C) resulting from the analysis of the calorimetric measurements vary between the limits 6.5 ± 0.4 kcal/mole (I + C) and 8.4 ± 0.4 kcal/mole (I + C). depending on the variation of the cation concentration ranging from 0.063 mole cations kg H2O to 1.003 mole cations/kg H2O. The calorimetric investigation of an aqueous poly I solution (cation concentration 1.0 mole/kg H2O) yielded the enthalpy value ΔH = 1.9 ± 0.4 kcal/mole (I), a result which has been interpreted qualitatively following current models of inter- and intramolecular forces of biologically significant macromolecules. Additional information on the transition behavior of poly(I+ C)Was obtained by ultraviolet and infrared absorption measurements.  相似文献   

17.
The electronic spectra of NCS? and I? adducts of cobalt(II) human carbonic anhydrase I are pH dependent at pH values below 7. The pKa of such equilibrium is dependent on the anion concentration and varies between 4.6 and 6.6. The 1H NMR spectra show that the three histidine residues are bound to the metal ion over the entire pH range investigated. It is supposed that a Glu residue triggers the change in stereochemistry around the metal ion. It is possible that such a Glu residue is Glu 106 present in the active cavity.  相似文献   

18.
In this work we address the question whether light-induced changes in the Mg(II) content in the chloroplast lumen can modulate the electron donation to photosystem I, in particular the electrostatic interaction between plastocyanin (Pc) and the photosystem 1 subunit PsaF. For this, we have used 2D NMR spectroscopy to study the binding of Mg(II) ions and the isolated luminal domain of PsaF to (15)N-labelled Pc. From the chemical-shift perturbations in the (1)H-(15)N HSQC spectra, dissociation constants of (4.9 ± 1.7) mM and (1.4 ± 0.2) mM were determined for the Pc-Mg(II) and Pc-PsaF complexes, respectively. In both cases, significant chemical-shift changes were observed for Pc backbone amide groups belonging to the two acidic patches, residues 42-45 and 59-61. In addition, competitive effects were observed upon the addition of Mg(II) ions to the Pc-PsaF complex, further strengthening that Mg(II) and PsaF bind to the same region on Pc. To structurally elucidate the Mg(II) binding site we have utilized Mn(II) as a paramagnetic analogue of Mg(II). The paramagnetic relaxation enhancement induced by Mn(II) results in line broadening in the Pc HSQC spectra which can be used to estimate distances between the bound ion and the affected nuclear spins. The calculations suggest a location of the bound Mn(II) ion close to Glu43 in the lower acidic patch, and most likely in the form of a hexaquo complex embedded within the hydration shell of Pc. The results presented here suggest a specific binding site for Mg(II) that may regulate the binding of Pc to photosystem 1 in vivo.  相似文献   

19.
The absorption and CD spectra of the complexes of poly(L -arginine) (PLA) and azo dyes have been measured in aqueous solution. On complexation, Blue-shifted additional absorption bands were observed. In the wide pH 4–11 range, induced CD was observed at the visible wavelengths corresponding to the blue-shifted absorption bands. The induced CD arose from the dimeric dye molecules bound to PLA in the α-helical structure. When a modified analysis of induced CE is made by the excition chirality method, the origin of the induced CD can be assigned to the dipole coupling. The PLA–dye complexes showed the counterlockwise (negative, S) chirality of the transition dipole moments of dyes.  相似文献   

20.
The effect ot Cu2+ and Ca2+ ions, on the ultraviolet differential (UVD) spectra of single-stranded poly I was studied and the coordination (Δεb) and conformation (Δεc) conponents of the spectra calculated The comparison of Δεb and the UVD spectrum of protonated IMP leads to the conclusion that N(7) ot inosine-5'-monophosphate (IMP) is a coordinating site tor Ca2+ and Cu2+ ions on the polymer bases. The binding ot Ca2+ and Cu2+ ions causes differently directed displacements of the four absorption bands of poly I, which are observed in the wavenumber range (50-34) × 103 cm−1 The calculation of concentration dependencies tor the association constants (K“) ot Ca2+ and Cu2+ ions binding to poly I bases shows that the binding is cooperative The K“ values for the poly I + Ca2+ complex are two orders of magnitude lower than those for the poly 1 + Cu2+ complex At low ion concentrations, binding to the poly I phosphates predominates and increases the degree of the polynucleotide helicity. At higher concentrations the spectra are mainly affected by the ion binding to bases, which results in melting of the helical parts of poly I At Ca2+ concentrations exceeding 10−3 M light-scattering aggregates are formed. The degree of monomer order in them is close to that observed in multistranded helices of poly I  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号