首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
L A Sporn  V J Marder  D D Wagner 《Cell》1986,46(2):185-190
von Willebrand factor (vWf) secreted constitutively by human endothelial cells was compared to that released from Weibel-Palade bodies after stimulation. The majority of constitutively secreted molecules were dimeric and contained both pro-vWf and mature subunits. In contrast, the vWf released by the calcium ionophore A23187 or thrombin consisted of only very large multimers of mature subunits. The large multimers are known to be more active in in vitro platelet binding assays, and their absence in vivo results in a bleeding disorder. Endothelial cells therefore concentrate a special subclass of very large and biologically potent vWf multimers in Weibel-Palade bodies, presumably available for release in response to vascular injury.  相似文献   

2.
Endothelial cells store the multimeric adhesive glycoprotein von Willebrand factor (vWf), which promotes the formation of a platelet plug at the site of vessel injury. To investigate the packaging of vWf into the granules called Weibel-Palade bodies, we expressed pro-vWf cDNA and cDNA lacking the prosequence in a variety of cell lines. Storage granules formed only in cells that contain a regulated pathway of secretion. Furthermore, packaging required the prosequence. Pro-vWf, lacking the C-terminal region involved in interchain disulfide bonding, formed granules. We conclude that the signal for storage is universal in that an adhesive glycoprotein can be stored by a hormone-secreting cell; the storage of vWf is independent of its covalent multimeric structure; the unusual rod shape of Weibel-Palade bodies is due to vWf; and the vWf propolypeptide is necessary for the formation of vWf storage granules.  相似文献   

3.
Two conditions were identified that interfered with the complex polymerization process in biosynthesis of von Willebrand factor (vWf). Treatment of human umbilical vein endothelial cells with tunicamycin inhibited N-linked glycosylation of nascent vWf and the resulting pro-vWf monomers failed to dimerize. The single subunits accumulated in the endoplasmic reticulum and were neither processed further nor secreted. In the presence of a weak base (ammonium chloride or chloroquine), interdimer disulfide bond formation was inhibited in a dose-dependent manner. This process appeared therefore to be pH sensitive and likely to be initiated in the acidic trans-Golgi apparatus (Anderson, R. G. W., and R. K. Pathak, 1985, Cell, 40: 635-643). The weak base had no obvious effect on the other processing steps, i.e. dimerization, complex carbohydrate formation and sulfation, and produced only slight inhibition of prosequence cleavage. On the other hand, the weak base interfered with the targeting of newly synthesized vWf into Weibel-Palade bodies, with all of the vWf being secreted constitutively and none stored in the Weibel-Palade bodies. In summary, initial glycosylation of the nascent vWf protein and low pH in the trans-Golgi apparatus were important conditions for the successful polymerization of human vWf. Genetic defects disrupting any one of these conditions could result in the phenotype of von Willebrand disease.  相似文献   

4.
Biosynthesis of von Willebrand protein by human umbilical vein endothelial cells involved distinct processing steps marked by the presence of several intermediate molecular species. Examination of endoglycosidase H sensitivity of these intracellular intermediates indicated that the processing steps occurred in at least two separate cellular compartments. In the pre-Golgi apparatus (most probably the endoplasmic reticulum), the high mannose carbohydrates were added onto the precursor monomer chains and the 260,000-mol-wt monomers dimerized by interchain disulfide bond formation. The other processing steps have been localized to the Golgi apparatus and later compartments (e.g., Weibel-Palade bodies). High mannose carbohydrate was converted to the complex type, leading to the appearance of a larger precursor subunit of 275,000 mol wt. The 275,000-mol-wt species was not formed if carbohydrate processing was inhibited by the ionophore monensin. From the large pool of dimers of precursor subunits, the high molecular weight multimers were built. These dimer molecules appeared to have free sulfhydryls which might have been involved in the interdimer disulfide bond formation. Simultaneously with multimerization, the precursor subunits were cleaved to the 220,000-mol-wt form. The cleavage of the pro-sequence was not likely to be an absolute requirement for von Willebrand protein multimerization or secretion, as the 275,000-mol-wt precursor subunit was present in secreted high molecular weight multimers of the protein.  相似文献   

5.
The assembly of von Willebrand factor multimers in the Golgi apparatus requires D1D2 domains of the von Willebrand factor propeptide, which may act as an oxidoreductase to promote disulfide bond formation or rearrangement between two D3 domains in the mature subunit. This mechanism predicts that the propeptide should form a transient intrachain disulfide bond with the D3 domain before multimerization. Such an intermediate was detected using truncated subunits that simplify the analysis of the multimerization process. When only the D1D2D'D3 region of von Willebrand factor was expressed in baby hamster kidney cells, the propeptide and D'D3 formed an intrachain disulfide-linked species in the endoplasmic reticulum that could be identified by two-dimensional gel electrophoresis after cleavage with thrombin or furin. This intermediate rearranged in the Golgi to form free propeptide and D'D3 dimers that were secreted. A similar intracellular disulfide-linked species was identified in cells expressing the propeptide and D'D3 as separate proteins and in cells expressing full-length von Willebrand factor. These results support a model in which the propeptide acts as an oxidoreductase to promote von Willebrand factor multimerization in the Golgi apparatus.  相似文献   

6.
The 50 S ribosomal subunit of Escherichia coli was allowed to react with 2-iminothiolane under conditions in which amidine-linked sulfhydryl derivatives were formed between lysine ?-amino groups in ribosomal proteins and the heterocyclic thioimidate. Crosslinking between sulfhydryl groups close enough to form intermolecular disulfide bonds was promoted by oxidation of the modified ribosomal subunits. Disulfide-linked dimers were partially purified by extraction of the oxidized subunits with lithium chloride and electrophoresis of the salt-extracted fractions in polyacrylamide/urea gels at pH 5.5. Crosslinked protein dimers were separated by polyacrylamide/sodium dodecyl sulfate diagonal gel electrophoresis. Fifteen protein dimers were identified. Many of them involve proteins implicated in functional sites of the 50 S subunit and in ribosome assembly. The crosslinking results show the proximity of many of these proteins at these active centers, and extend the neighborhood by demonstrating the presence of additional proteins.  相似文献   

7.
Incubation of human plasma fibronectin in the presence of low concentrations of FeCl3 or CuSO4 led to the formation of disulfide-bonded multimers as revealed by analysis in sodium dodecyl sulfate-polyacrylamide gel electrophoresis under nonreducing or reducing conditions. The polymers induced by FeCl3 did not enter the spacer gel, and those induced by CuSO4 migrated to the top of the running gel, indicating that the former polymers were larger than the latter, which in gel filtration experiments appeared to be larger than Mr 670,000. The polymerization occurred between pH 7 and 9 and more rapidly at 22 or 37 degrees C than at 4 degrees C and was inhibited by metal-chelating reagents. NaCl, heparin, spermine, urea, or guanidine hydrochloride did not appreciably affect the reaction, whereas dithioerythritol enhanced the CuSO4-induced polymerization of fibronectin. When incubated in the presence of FeCl3, the Mr 30,000 NH2-terminal, Mr 40,000 gelatin-binding, and the Mr 120,000-140,000 COOH-terminal fragments of fibronectin formed disulfide-bonded polymers, whereas only the Mr 140,000 fragment was polymerized in the presence of CuSO4. Disulfide-bonded polymers were also formed in the presence of FeCl3 but not CuSO4 when the free sulfhydryl groups of fibronectin were blocked by N-ethylmaleimide. The results suggest that in the presence of CuSO4, disulfide-bonded polymerization of fibronectin may involve predominantly the free sulfhydryl groups, whereas in the presence of FeCl3, also the intramolecular disulfides may exchange to form disulfides between separate fibronectin molecules. Thus, under different conditions, different parts of fibronectin may be susceptible to disulfide-bonded polymerization.  相似文献   

8.
Multimerization of the Hantaan virus nucleocapsid protein (NP) in Hantaan virus-infected Vero E6 cells was observed in a competitive enzyme-linked immunosorbent assay (ELISA). Recombinant and truncated NPs of Hantaan, Seoul, and Dobrava viruses lacking the N-terminal 49 amino acids were also detected as multimers. Although truncated NPs of Hantaan virus lacking the N-terminal 154 amino acids existed as a monomer, those of Seoul and Dobrava formed multimers. The multimerized truncated NP antigens of Seoul and Dobrava viruses could detect serotype-specific antibodies, whereas the monomeric truncated NP antigen of Hantaan virus lacking the N-terminal 154 amino acids could not, suggesting that a hantavirus serotype-specific epitope on the NP results in multimerization. The NP-NP interaction was also detected by using a yeast two-hybrid assay. Two regions, amino acids 100 to 125 (region 1) and amino acids 404 to 429 (region 2), were essential for the NP-NP interaction in yeast. The NP of Seoul virus in which the tryptophan at amino acid number 119 was replaced by alanine (W119A mutation) did not multimerize in the yeast two-hybrid assay, indicating that tryptophan 119 in region 1 is important for the NP-NP interaction in yeast. However, W119A mutants expressed in mammalian cells were detected as the multimer by using competitive ELISA. Similarly, the truncated NP of Seoul virus expressing amino acids 155 to 429 showed a homologous interaction in a competitive ELISA but not in the yeast two-hybrid assay, indicating that the C-terminal region is important for the multimerization detected by competitive ELISA. Combined, the results indicate that several steps and regions are involved in multimerization of hantavirus NP.  相似文献   

9.
HIV-1 Gag drives a number of events during the genesis of virions and is the only viral protein required for the assembly of virus-like particles in vitro and in cells. Although a reasonable understanding of the processes that accompany the later stages of HIV-1 assembly has accrued, events that occur at the initiation of assembly are less well defined. In this regard, important uncertainties include where in the cell Gag first multimerizes and interacts with the viral RNA, and whether Gag-RNA interaction requires or induces Gag multimerization in a living cell. To address these questions, we developed assays in which protein crosslinking and RNA/protein co-immunoprecipitation were coupled with membrane flotation analyses in transfected or infected cells. We found that interaction between Gag and viral RNA occurred in the cytoplasm and was independent of the ability of Gag to localize to the plasma membrane. However, Gag:RNA binding was stabilized by the C-terminal domain (CTD) of capsid (CA), which participates in Gag-Gag interactions. We also found that Gag was present as monomers and low-order multimers (e.g. dimers) but did not form higher-order multimers in the cytoplasm. Rather, high-order multimers formed only at the plasma membrane and required the presence of a membrane-binding signal, but not a Gag domain (the CA-CTD) that is essential for complete particle assembly. Finally, sequential RNA-immunoprecipitation assays indicated that at least a fraction of Gag molecules can form multimers on viral genomes in the cytoplasm. Taken together, our results suggest that HIV-1 particle assembly is initiated by the interaction between Gag and viral RNA in the cytoplasm and that this initial Gag-RNA encounter involves Gag monomers or low order multimers. These interactions per se do not induce or require high-order Gag multimerization in the cytoplasm. Instead, membrane interactions are necessary for higher order Gag multimerization and subsequent particle assembly in cells.  相似文献   

10.
The disulfide bonding pattern in ficolin multimers   总被引:3,自引:0,他引:3  
Ficolin is a plasma lectin, consisting of a short N-terminal multimerization domain, a middle collagen domain, and a C-terminal fibrinogen-like domain. The collagen domains assemble the subunits into trimers, and the N-terminal domain assembles four trimers into 12-mers. Two cysteine residues in the N-terminal domain are thought to mediate multimerization by disulfide bonding. We have generated three mutants of ficolin alpha in which the N-terminal cysteines were substituted by serines (Cys4, Cys24, and Cys4/Cys24). The N-terminal cysteine mutants were produced in a mammalian cell expression system, purified by affinity chromatography, and analyzed under nondenaturing conditions to resolve the multimer structure of the native protein and under denaturing conditions to resolve the disulfide-linked structure. Glycerol gradient sedimentation and electron microscopy in nondenaturing conditions showed that plasma and recombinant wild-type protein formed 12-mers. The Cys4 mutant also formed 12-mers, but Cys24 and Cys4/Cys24 mutants formed only trimers. This means that protein interfaces containing Cys4 are stable as noncovalent protein-protein interactions and do not require disulfides, whereas those containing Cys24-Cys24 require the disulfides for stability. Proteins were also analyzed by nonreducing SDS-PAGE to show the covalent structure under denaturing conditions. Wild-type ficolin was covalently linked into 12-mers, whereas elimination of either Cys4 or Cys24 gave dimers and monomers. We present a model in which symmetric Cys24-Cys24 disulfide bonds between trimers are the basis for multimerization. The model may also be relevant to collectin multimers.  相似文献   

11.
Subunit composition of oligomeric human von Willebrand factor   总被引:10,自引:0,他引:10  
The oligomerization of human endothelial cell-synthesized von Willebrand factor (vWf) has been studied by gel chromatography in columns of Sephacryl S-500 and by discontinuous agarose gel electrophoresis. A quantitative recovery of high Mr vWf oligomers has been obtained after binding to a monoclonal anti-vWf-Sepharose adduct. This reagent has been used to analyze gel filtration chromatographic elution profiles of [35S]methionine-labeled culture medium and cell lysate. It was determined that high Mr oligomers are present in endothelial cell lysates as well as in the medium overlying these cells and are composed of Mr 225,000 subunits. When vWf oligomers were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis in the presence of a reducing agent, the Mr 240,000 subunit (provWf) was not observed to oligomerize beyond the dimer stage to a significant degree. Therefore, vWf oligomerization appears to be facilitated by conversion of provWf subunits to mature vWf subunits, most likely by proteolytic removal of sequences unique to the intracellular precursor.  相似文献   

12.
Sorting of von Willebrand factor precursor (pro-vWf) from the trans-Golgi network to secretory granules (Weibel-Palade bodies) is critical for its conversion to the biologically active highly multimeric form, as well as for regulated secretion by the endothelial cells. When expressed in hormone-secretory cells, vWf is also recognized as a stored protein and is directed to storage granules. Recently, carboxypeptidase E (CPE) was proposed as a granular sorting receptor for prohormones (Cool et al., Cell 88: 73, 1997). To explore whether CPE is also involved in pro-vWf sorting, we initially examined its expression in human umbilical vein endothelial cells. A specific message for CPE and the protein itself were detected making it a plausible candidate as a targeting receptor for vWf in endothelium. To investigate this possibility, we used mice lacking CPE. The highly multimeric forms, subunit composition and plasma levels of vWf in CPE-deficient mice were similar to those of their wild-type littermates. vWf was also found in alpha-granules of platelets and in Weibel-Palade bodies of endothelial cells obtained from the CPE-deficient mice. Furthermore, vWf was released from the cultured CPE-deficient endothelial cells after stimulation with a secretagogue. We conclude that CPE is not essential for sorting vWf to the regulated secretory pathway. Thus, a CPE-independent mechanism must exist for protein sorting to storage granules.  相似文献   

13.
Proteins of the TRIM5 family, such as TRIM5α and the related TRIMCyp, are cytoplasmic factors that can inhibit incoming retroviruses. This type of restriction requires a direct interaction between TRIM5 proteins and capsid proteins that are part of mature, intact retroviral cores. In such cores, capsids are arranged as hexameric units. Multiple lines of evidence imply that TRIM5 proteins themselves interact with retroviral cores as multimers. Accordingly, stabilization by crosslinking agents has revealed that TRIM5α and TRIMCyp are present as trimers in mammalian cells. We report here that TRIM5 proteins seem to form dimers, trimers, hexamers and multimers of higher complexity in mammalian cells. The hexameric form in particular seems to be the most abundant multimer. Multimerization did not involve disulfide bridges and was not affected by infection with restriction-sensitive viruses or by treatment with the known TRIM5 inhibitors arsenic trioxide, MG132 and cyclosporine A. We conclude that TRIM5 multimerization results from more than one protein-protein interface and that it is seemingly not triggered by contact with retroviral cores.  相似文献   

14.
15.
J D Chen  V Pirrotta 《The EMBO journal》1993,12(5):2075-2083
The Drosophila zeste protein forms multimeric species in vitro through its C-terminal domain. Multimerization is required for efficient binding to DNA containing multiple recognition sequences and increasing the number of binding sites stimulates binding in a cooperative manner. Mutants that can only form dimers still bind to a dimeric site, but with lower affinity. Mutations or progressive deletions from the C-terminal show that when even dimer formation is prevented, DNA-binding activity is lost. Surprisingly, binding activity is regained with larger deletions that leave only the DNA-binding domain. Additional protein sequences apparently inhibit DNA binding unless they permit multimerization. The DNA-binding domain peptides bind strongly even to isolated recognition sequences and they bind as monomers. The ability of various zeste peptides to stimulate white gene expression in vivo shows that multimeric forms are the functional species of the zeste product in vivo. The DNA-binding domain peptide binds well to DNA in vitro, but it cannot stimulate white gene expression in vivo. This failure may reflect the need for an activation domain or it may be caused by indiscriminate binding of this peptide to non-functional isolated sites. Multimerization increases binding specificity, selecting only sites with multiple recognition sequences.  相似文献   

16.
von Willebrand factor (vWF) is a multimeric glycoprotein that promotes platelet aggregation and stabilizes coagulation factor VIII in the plasma. vWF is also required for the stable accumulation of recombinant factor VIII secreted from cells in a heterologous expression system. In this report, we show that vWF can promote the in vitro reconstitution of factor VIII activity from dissociated heavy and light chains of factor VIII, suggesting that vWF may act to promote stable assembly of factor VIII subunits at the site of secretion. The structural requirements for vWF propeptide cleavage and for vWF multimerization in its binding and stabilization of factor VIII was examined using specifically altered recombinant vWF. The mutant vWF molecules were also assayed for their function in ristocetin-induced platelet agglutination mediated through the platelet receptor GPIb. Deletion of the vWF propeptide produced a dimeric vWF molecule that failed to mediate platelet agglutination, suggesting that multimerization is required for vWF to attain functional GPIb binding. This mature dimeric form of vWF, however, was fully capable of binding to and supporting stable secretion of factor VIII. A vWF mutant with an altered propeptide cleavage site formed large multimers of uncleaved pro-vWF that functioned in platelet agglutination. However, this noncleavage mutant neither bound to or supported stable accumulation of factor VIII. Analysis of the vWF propeptide, expressed independently, demonstrated that it could not bind factor VIII or stabilize its secretion. These results show that the dimeric mature vWF subunit is sufficient to bind and stabilize factor VIII and that the presence of uncleaved vWF propeptide inhibits both factor VIII binding and stabilization.  相似文献   

17.
The effect of reduced temperature on the post-translational processing and stimulated release of von Willebrand factor (vWf) from human umbilical vein endothelial cells was studied. Following pulse-labeling, cells were incubated for 4 h at 18 degrees C or 20 degrees C. Post-translational processing was reversibly arrested at the dimer stage, dimers were composed of Endo H-sensitive precursor subunits, and no vWf was detected in the culture medium. This block was reversible, since warming cells to 37 degrees C relieved it and resulted in the appearance of fully processed vWf in the cells and the culture medium. The same results were obtained when cells were incubated with carbonyl cyanide m-chlorophenol hydrazone or dinitrophenol which inhibit mitochondrial oxidative phosphorylation, known to block exit of secretory proteins from the endoplasmic reticulum (ER). This indicated that ER exit is not required for the complete dimerization of vWf. Reduced temperature (18 degrees C and 20 degrees C) also reversibly and nearly completely inhibited the secretagogue-induced release of vWf from Weibel-Palade bodies without affecting the microtubular cytoskeleton. We add reduced temperature to the list of useful tools for the study of the vWf secretory pathway in endothelial cells.  相似文献   

18.
The process of thyroid hormone synthesis, which occurs in the lumen of the thyroid follicles, results from an oxidative reaction leading, as side effects, to the multimerization of thyroglobulin (TG), the prothyroid hormone. Although hormone synthesis is a continuous process, the amount of Tg multimers is relatively constant. Here, we investigated the role of two molecular chaperones, protein disulfide isomerase (PDI) and immunoglobulin heavy chain-binding protein (BiP), present in the follicular lumen, on the multimerization process due to oxidation using both native Tg and its N-terminal domain (NTD). In vitro, PDI decreased multimerization of Tg and even suppressed the formation of NTD multimers. Under the same conditions, BiP was able to bind to Tg and NTD multimers but did not affect the process of multimerization. Associating BiP with PDI did not enhance the ability of PDI to limit the formation of multimers produced by oxidation. However, when BiP and PDI were reacted together with the multimeric forms and for a longer time (48 h), BiP greatly increased the efficiency of PDI. Accordingly, these two molecular chaperones probably act sequentially on the reduction of the intermolecular disulfide bridges. In the thyroid, a similar process may also be effective and participate in limiting the amount of Tg multimers present in the colloid. These results suggest that extracellular molecular chaperones play a similar role to that occurring in the endoplasmic reticulum and, furthermore, take part in the control of multimerization and aggregation of proteins formed by oxidation.  相似文献   

19.
Clustering the tetrameric (alphabetagamma(2)) IgE receptor, FcepsilonRI, on basophils and mast cells activates the Src-family tyrosine kinase, Lyn, which phosphorylates FcepsilonRI beta and gamma subunit tyrosines, creating binding sites for the recruitment and activation of Syk. We reported previously that FcepsilonRI dimers formed by a particular anti-FcepsilonRI alpha mAb (H10) initiate signaling through Lyn activation and FcepsilonRI subunit phosphorylation, but cause only modest activation of Syk and little Ca(2+) mobilization and secretion. Curtailed signaling was linked to the formation of unusual, detergent-resistant complexes between Lyn and phosphorylated receptor subunits. Here, we show that H10-FcepsilonRI multimers, induced by adding F(ab')(2) of goat anti-mouse IgG to H10-treated cells, support strong Ca(2+) mobilization and secretion. Accompanying the recovery of signaling, H10-FcepsilonRI multimers do not form stable complexes with Lyn and do support the phosphorylation of Syk and phospholipase Cgamma2. Immunogold electron microscopy showed that H10-FcepsilonRI dimers colocalize preferentially with Lyn and are rarely within the osmiophilic "signaling domains" that accumulate FcepsilonRI and Syk in Ag-treated cells. In contrast, H10-FcepsilonRI multimers frequently colocalize with Syk within osmiophilic patches. In sucrose gradient centrifugation analyses of detergent-extracted cells, H10-treated cells show a more complete redistribution of FcepsilonRI beta from heavy (detergent-soluble) to light (Lyn-enriched, detergent-resistant) fractions than cells activated with FcepsilonRI multimers. We hypothesize that restraints imposed by the particular orientation of H10-FcepsilonRI dimers traps them in signal-initiating Lyn microdomains, and that converting the dimers to multimers permits receptors to dissociate from Lyn and redistribute to separate membrane domains that support Syk-dependent signal propagation.  相似文献   

20.
Little is known about the in vivo assembly pathway or structure of the hepatitis C virus nucleocapsid. In this work the intermediates of HCcAg multimerization in Pichia pastoris cells and the nucleic acid binding properties of structured nucleocapsid-like particles (NLPs) were studied. Extensive cross-linking was observed for HCcAg after glutaraldehyde treatment. Data suggest that HCcAg exists in dimeric forms probably representing P21-P21, P21-P23, and P23-P23 dimers. In addition, the presence of HCcAg species that might represent trimers and multimers was observed. After sucrose equilibrium density gradient purification and nuclease digestion, NLPs were shown to contain both RNA and DNA molecules. Finally, the analysis by electron microscopy indicated that native NLPs were resistant to nuclease treatment. These results indicated that HCcAg assembles through dimers, trimers, and multimers' intermediates into capsids in P. pastoris cells. Assembly of NLPs in its natural environment might confer stability to these particles by adopting a compact structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号