首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tissue heterogeneity of the mammalian mitochondrial proteome   总被引:3,自引:0,他引:3  
The functionality of the mitochondrion is primarily determined by nuclear encoded proteins. The mitochondrial functional requirements of different tissues vary from a significant biosynthetic role (liver) to a primarily energy metabolism-oriented organelle (heart). The purpose of this study was to compare the mitochondrial proteome from four different tissues of the rat, brain, liver, heart, and kidney, to provide insight into the extent of mitochondrial heterogeneity and to further characterize the overall mitochondrial proteome. Mitochondria were isolated, solubilized, digested, and subjected to quantitative liquid chromatography-mass spectroscopy. Of the 16,950 distinct peptides detected, 8,045 proteins were identified. High-confidence identification threshold was reached by 1,162 peptides, which were further analyzed. Of these 1,162 proteins, 1,149 were significantly different in content (P and q values < 0.05) between at least 2 tissues, whereas 13 were not significantly different between any tissues. Confirmation of the mitochondrial origin of proteins was determined from the literature or via NH2-terminal mitochondrial localization signals. With these criteria, 382 proteins in the significantly different groups were confirmed to be mitochondrial, and 493 could not be confirmed to be mitochondrial but were not definitively localized elsewhere in the cell. A total of 145 proteins were assigned to the rat mitochondrial proteome for the first time via their NH2-terminal mitochondrial localization signals. Among the proteins that were not significantly different between tissues, three were confirmed to be mitochondrial. Most notable of the significantly different proteins were histone family proteins and several structural proteins, including tubulin and intermediate filaments. The mitochondrial proteome from each tissue had very specific characteristics indicative of different functional emphasis. These data confirm the notion that mitochondria are tuned by the nucleus for specific functions in different tissues. structural proteins; oxidative phosphorylation; liquid chromatography; mass spectrometry; electrophoresis; histone; liver; heart; kidney; brain  相似文献   

2.
Mitochondrial bioenergetic function is often reported to decline with age and the accumulation of oxidative damage is thought to contribute. However, there are considerable uncertainties about the amount and significance of mitochondrial oxidative damage in aging. We hypothesized that, as radical production in mitochondria is greater than the rest of the cell, protein oxidative damage should accumulate more in mitochondria than the cytoplasm, and that this relative accumulation should increase with age. To test these hypotheses we measured the accumulation of three markers of protein oxidative damage in liver, brain, and heart from young and old rats. Ortho- and meta-tyrosine levels in protein hydrolysates were measured by a gas chromatography/mass spectrometry assay, and protein carbonyl content was determined by ELISA. Using these assays we found no evidence for increased protein oxidative damage in mitochondria relative to the cytosol. Most increases found in protein oxidative damage on aging were modest for all three tissues and there was no consistent pattern of increased oxidative damage in mitochondrial proteins on aging. Mitochondrial oxidative phosphorylation complex activities were also assessed revealing 39-42% decreases in F0F1--ATP synthase activity in liver and heart on aging, but not in other oxidative phosphorylation complexes. These findings have implications for the contribution of mitochondrial oxidative damage and dysfunction to aging.  相似文献   

3.
N K Bhat  N G Avadhani 《Biochemistry》1985,24(27):8107-8113
An in vitro system reconstituted with mouse liver polysome translation products was used to study the nature of polypeptide species imported into mitochondria from different mouse tissues such as liver, kidney, brain, and heart, as well as from Ehrlich ascites, Novikoff hepatoma, and Morris hepatoma 3924A tumor lines. Mouse hepatic mitochondria import a number of proteins including 160-kilodalton (kDa) carbamoyl-phosphate synthetase I (CPS-I). Two other proteins of 63 and 57 kDa of unknown function are also imported as major components by mouse liver mitochondria. Under these in vitro conditions, however, mitochondria from non-CPS-I expressing tissues such as brain, kidney, and heart failed to import and process the precursor forms of CPS-I (pCPS-I). Furthermore, mitochondria from three different tumor lines (Novikoff hepatoma, Morris hepatoma, and Ehrlich ascites) containing negligible CPS-I activity were also unable to import and process pCPS-I to any significant level. Similarly, the 63-kDa protein was selectively transported into liver and kidney mitochondria and also into Ehrlich ascites mitochondria at reduced levels, but not into mitochondria from heart and brain. Nevertheless, the 57-kDa protein and a number of proteins of less than 45 kDa are transported efficiently by all of the mitochondrial types studied. These results provide evidence for tissue- or cell-specific selectivity at the mitochondrial membrane level for the transport of some proteins. The transports of 63- and 57-kDa proteins are differentially inhibited by mouse liver mitochondrial matrix and membrane fractions, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The tissue distribution and subcellular location of branched chain aminotransferase was analyzed using polyclonal antibodies against the enzyme purified from rat heart mitochondria (BCATm). Immunoreactive proteins were visualized by immunoblotting. The antiserum recognized a 41-kDa protein in the 100,000 x g supernatant from a rat heart mitochondrial sonicate. The 41-kDa protein was always present in mitochondria which contained branched chain aminotransferase activity, skeletal muscle, kidney, stomach, and brain, but not in cytosolic fractions. In liver mitochondria, which have very low levels of branched chain aminotransferase activity, the 41-kDa protein was not present. However, two immunoreactive proteins of slightly higher molecular masses were identified. These proteins were located in hepatocytes. The 41-kDa protein was present in fetal liver mitochondria but not in liver mitochondria from 5-day neonates. Thus disappearance of the 41-kDa protein coincided with the developmental decline in liver branched chain aminotransferase activity. Two-dimensional immunoblots of isolated BCATm immunocomplexes showed that the liver immunoreactive proteins were clearly different from the heart and kidney proteins which exhibited identical immunoblots. Investigation of BCATm in subcellular fractions prepared from different skeletal muscle fiber types revealed that branched chain aminotransferase is exclusively a mitochondrial enzyme in skeletal muscles. Although total detergent-extractable branched chain aminotransferase activity was largely independent of fiber type, branched chain aminotransferase activity and BCATm protein concentration were highest in mitochondria prepared from white gastrocnemius followed by mixed skeletal muscles with lowest activity and protein concentration found in soleus mitochondria. These quantitative differences in mitochondrial branched chain aminotransferase activity and enzyme protein content suggest there may be differential expression of BCATm in different muscle fiber types.  相似文献   

5.
Santiago AP  Chaves EA  Oliveira MF  Galina A 《Biochimie》2008,90(10):1566-1577
Mitochondrial hexokinase (mt-HK) and creatine kinase (mt-CK) activities have been recently proposed to reduce the rate of mitochondrial ROS generation through an ADP re-cycling mechanism. Here, we determined the role of mt-HK and mt-CK activities in regulate mitochondrial ROS generation in rat brain, kidney, heart and liver, relating them to the levels of classical antioxidant enzymes. The activities of both kinases were significantly higher in the brain than in other tissues, whereas the activities of catalase (CAT), glutathione peroxidase (GPx) and glutathione reductase (GR) were higher in both liver and kidney mitochondria. In contrast, manganese superoxide dismutase (Mn-SOD) activity was not significantly different among these tissues. Activation of mitochondrial kinases by addition of their substrates increased the ADP re-cycling and thus the respiration by enhancing the oxidative phosphorylation. Succinate induced hydrogen peroxide (H(2)O(2)) generation was higher in brain than in kidney and heart mitochondria, and the lowest in liver mitochondria. Mitochondrial membrane potential (DeltaPsi(m)) and H(2)O(2) production, decreased with additions of 2-DOG or Cr to respiring brain and kidney mitochondria but not to liver. The inhibition of H(2)O(2) production by 2-DOG and Cr correspond to almost 100% in rat brain and about 70% in kidney mitochondria. Together our data suggest that mitochondrial kinases activities are potent preventive antioxidant mechanism in mitochondria with low peroxidase activities, complementing the classical antioxidant enzymes against oxidative stress.  相似文献   

6.
Mammalian mitochondrial tRNA (mt-tRNA) plays a central role in the synthesis of the 13 subunits of the oxidative phosphorylation complex system (OXPHOS). However, many aspects of the context-dependent expression of mt-tRNAs in mammals remain unknown. To investigate the tissue-specific effects of mt-tRNAs, we performed a comprehensive analysis of mitochondrial tRNA expression across five mice tissues (brain, heart, liver, skeletal muscle, and kidney) using Northern blot analysis. Striking differences in the tissue-specific expression of 22 mt-tRNAs were observed, in some cases differing by as much as tenfold from lowest to highest expression levels among these five tissues. Overall, the heart exhibited the highest levels of mt-tRNAs, while the liver displayed markedly lower levels. Variations in the levels of mt-tRNAs showed significant correlations with total mitochondrial DNA (mtDNA) contents in these tissues. However, there were no significant differences observed in the 2-thiouridylation levels of tRNALys, tRNAGlu, and tRNAGln among these tissues. A wide range of aminoacylation levels for 15 mt-tRNAs occurred among these five tissues, with skeletal muscle and kidneys most notably displaying the highest and lowest tRNA aminoacylation levels, respectively. Among these tissues, there was a negative correlation between variations in mt-tRNA aminoacylation levels and corresponding variations in mitochondrial tRNA synthetases (mt-aaRS) expression levels. Furthermore, the variable levels of OXPHOS subunits, as encoded by mtDNA or nuclear genes, may reflect differences in relative functional emphasis for mitochondria in each tissue. Our findings provide new insight into the mechanism of mt-tRNA tissue-specific effects on oxidative phosphorylation.  相似文献   

7.
This study examines the role of c- jun N-terminal kinase (JNK) in mitochondrial signaling and bioenergetics in primary cortical neurons and isolated rat brain mitochondria. Exposure of neurons to either anisomycin (an activator of JNK/p38 mitogen-activated protein kinases) or H2O2 resulted in activation (phosphorylation) of JNK (mostly p46JNK1) and its translocation to mitochondria. Experiments with mitochondria isolated from either rat brain or primary cortical neurons and incubated with proteinase K revealed that phosphorylated JNK was associated with the outer mitochondrial membrane; this association resulted in the phosphorylation of the E subunit of pyruvate dehydrogenase, a key enzyme that catalyzes the oxidative decarboxylation of pyruvate and that links two major metabolic pathways: glycolysis and the tricarboxylic acid cycle. JNK-mediated phosphorylation of pyruvate dehydrogenase was not observed in experiments carried out with mitoplasts, thus suggesting the requirement of intact, functional mitochondria for this effect. JNK-mediated phosphorylation of pyruvate dehydrogenase was associated with a decline in its activity and, consequently, a shift to anaerobic pyruvate metabolism: the latter was confirmed by increased accumulation of lactic acid and decreased overall energy production (ATP levels). Pyruvate dehydrogenase appears to be a specific phosphorylation target for JNK, for other kinases, such as protein kinase A and protein kinase C did not elicit pyruvate dehydrogenase phosphorylation and did not decrease the activity of the complex. These results suggest that JNK mediates a signaling pathway that regulates metabolic functions in mitochondria as part of a network that coordinates cytosolic and mitochondrial processes relevant for cell function.  相似文献   

8.
Mitochondria are tailored to meet the metabolic and signaling needs of each cell. To explore its molecular composition, we performed a proteomic survey of mitochondria from mouse brain, heart, kidney, and liver and combined the results with existing gene annotations to produce a list of 591 mitochondrial proteins, including 163 proteins not previously associated with this organelle. The protein expression data were largely concordant with large-scale surveys of RNA abundance and both measures indicate tissue-specific differences in organelle composition. RNA expression profiles across tissues revealed networks of mitochondrial genes that share functional and regulatory mechanisms. We also determined a larger "neighborhood" of genes whose expression is closely correlated to the mitochondrial genes. The combined analysis identifies specific genes of biological interest, such as candidates for mtDNA repair enzymes, offers new insights into the biogenesis and ancestry of mammalian mitochondria, and provides a framework for understanding the organelle's contribution to human disease.  相似文献   

9.
The mitochondrial ATPase inhibitor proteins--the Pullman-Monroy inhibitor (PMI) and the Ca(2+)-binding protein (CaBI)--have a wide distribution, both being present in mitochondria of bovine heart and kidney, rat liver and brain, two mitochondrial populations of rabbit skeletal muscle, and mitochondria from human fibroblasts and the human breast cancer cell line T-47-D. The ratio of CaBI to PMI was highest in heart and skeletal muscle mitochondria. The subsarcolemmal fraction of skeletal muscle had 2.6-times as much CaBI as did the intermyofibrillar. The ratio of CaBI to PMI in the mitochondria of the other normal tissues and fibroblasts was close to 1. In contrast, mitochondria from T-47D cells had 1.5-times as much PMI as CaBI whilst mitochondria from fibroblasts from a patient with Luft's disease showed a virtual lack of PMI. The specific ATPase, ATP-synthetase and succinate dehydrogenase activities of the Luft's mitochondria were, however, in the normal range. The specific ATP synthetase activity of the T-47D cells was significantly higher than normal. We conclude that tissues like heart and skeletal muscle which experience wide fluctuations in intracellular Ca2+ have a greater need for CaBI. Why lack of PMI could lead to 'loose' coupling of oxidative phosphorylation in skeletal muscle of Luft's patients, but not in fibroblasts is discussed.  相似文献   

10.
Reactive oxygen species are a by-product of mitochondrial oxidative phosphorylation, derived from a small quantity of superoxide radicals generated during electron transport. We conducted a comprehensive and quantitative study of oxygen consumption, inner membrane potentials, and H2O2 release in mitochondria isolated from rat brain, heart, kidney, liver, and skeletal muscle, using various respiratory substrates (α-ketoglutarate, glutamate, succinate, glycerol phosphate, and palmitoyl carnitine). The locations and properties of reactive oxygen species formation were determined using oxidative phosphorylation and the respiratory chain modulators oligomycin, rotenone, myxothiazol, and antimycin A and the uncoupler CCCP. We found that in mitochondria isolated from most tissues incubated under physiologically relevant conditions, reactive oxygen release accounts for 0.1–0.2% of O2 consumed. Our findings support an important participation of flavoenzymes and complex III and a substantial role for reverse electron transport to complex I as reactive oxygen species sources. Our results also indicate that succinate is an important substrate for isolated mitochondrial reactive oxygen production in brain, heart, kidney, and skeletal muscle, whereas fatty acids generate significant quantities of oxidants in kidney and liver. Finally, we found that increasing respiratory rates is an effective way to prevent mitochondrial oxidant release under many, but not all, conditions. Altogether, our data uncover and quantify many tissue-, substrate-, and site-specific characteristics of mitochondrial ROS release.  相似文献   

11.
The subcellular distribution of ATP, ADP, creatine phosphate and creatine was studied in normoxic control, isoprenaline-stimulated and potassium-arrested guinea-pig hearts as well as during ischemia and after reperfusion. The mitochondrial creatine phosphate/creatine ratio was closely correlated to the oxidative activity of the hearts. This was interpreted as an indication of a close coupling of mitochondrial creatine kinase to oxidative phosphorylation. To further investigate the functional coupling of mitochondrial creatine kinase to oxidative phosphorylation, rat or guinea-pig heart mitochondria were isolated and the mass action ratio of creatine kinase determined at active or inhibited oxidative phosphorylation or in the presence of high phosphate, conditions which are known to change the functional state of the mitochondrial enzyme. At active oxidative phosphorylation the mass action ratio was one-third of the equilibrium value whereas at inhibited oxidative phosphorylation (N2, oligomycin, carboxyatractyloside) or in the presence of high phosphate, the mass action ratio reached equilibrium values. These findings show that oxidative phosphorylation is essential for the regulation of the functional state of mitochondrial creatine kinase. The functional coupling of the mitochondrial creatine kinase and oxidative phosphorylation indicated from the correlation of mitochondrial creatine phosphate/creatine ratios with the oxidative activity of the heart in situ as well as from the deviation of the mass action ratio of the mitochondrial enzyme from creatine kinase equilibrium at active oxidative phosphorylation in isolated mitochondria is in accordance with the proposed operation of a creatine shuttle in heart tissue.  相似文献   

12.
Oxygen free radicals have been hypothesized to play an important role in the aging process. To investigate the correlation between the oxidative stress and aging, we have determined the levels of oxidative protein damage and lipid peroxidation in the brain and liver, and activities of antioxidant enzymes in the brain, liver, heart, kidney, and serum from the Fisher 344 rats at ages of 1, 6, 12, 18, and 24 months. The results showed that the level of oxidative protein damage (measured as carbonyl content) in the brain and liver was significantly higher in older animals than in young animals. No statistical difference was observed in the lipid peroxidation of the liver and brain between young and old animals. The activities of antioxidant enzymes in most tissues displayed an age-dependent decline. Superoxide dismutases in the heart, kidney, and serum, glutathione peroxidase activities in the serum and kidney, and catalase activities in the brain, liver, and kidney, significantly decreased during aging. Cytochrome c oxidase, an enzyme involved in electron transport in mitochondria, initially increased, but subsequently decreased in the aged brain, whereas no significant alteration was observed in the liver mitochondrial antioxidant enzymes. The present studies suggest that the accumulation of oxidized proteins during aging is most likely to be linked with an age-related decline of antioxidant enzyme activities, whereas lipid peroxidation is less sensitive to predict the aging process.  相似文献   

13.
In accordance with their manifold tasks, various dysfunctions of mitochondria are critically involved in a large number of diseases and the aging process. This has inspired considerable efforts to identify all the mitochondrial proteins by denaturing approaches, notably, the standard gel-based method employing isoelectric focusing. Because a significant part of the mitochondrial proteome is membrane-associated and/or functions as homo- or heterooligomeric protein complexes, there is an urgent need to detect and identify mitochondrial proteins, both membranous and soluble ones, under conditions preserving protein-protein interactions. Here, we investigated mitochondria of five different rat organs (kidney, liver, heart, skeletal muscle, and brain) solubilized with digitonin, enabling the quantitative extraction of the five oxidative phosphorylation (OXPHOS) complexes. The analysis by blue-native (BN)-PAGE recovered the OXPHOS complexes to a large extent as supercomplexes and separated many other protein complexes and individual proteins which were resolved by subsequent 2D SDS-PAGE revealing the tissue-diverse mitochondrial proteomes. Using MS peptide mass fingerprinting, we identified in all five organs 92 nonredundant soluble and membrane-embedded non-OXPHOS proteins, among them, many as constituents of known mitochondrial protein complexes as well as novel ones such as the putative "stomatin-like protein 2 complex" with an apparent mass of ca. 1800 kDa. Interestingly, the identification list included 36 proteins known or presumed to be localized to nonmitochondrial compartments, for example, glycolytic enzymes, clathrin heavy chain, valosin-containing protein/p97, VoV1-ATPase, and Na,K-ATPase. We expect that more than 200 distinct non-OXPHOS proteins of digitonin-solubilized rat mitochondria separated by 2D BN/SDS-PAGE, representing a partial "protein interactome" map, can be identified.  相似文献   

14.
15.
1. The effect of thyroidectomy on turnover rates of liver, kidney and brain mitochondrial proteins was examined. 2. In the euthyroid state, liver and kidney mitochondria show a synchronous turnover with all protein components showing more or less identical half-lives compared with the whole mitochondria. The brain mitochondrial proteins show asynchronous turnover, the soluble proteins having shorter half-lives. 3. Mitochondrial DNA (m-DNA) of liver and kidney has half-lives comparable with that of whole mitochondria from these tissues. 4. Thyroidectomy results in increased half-lives of liver and kidney mitochondria, with no apparent change in the half-life of brain mitochondria. 5. A detailed investigation of the turnover rates of several protein components revealed a significant decrease in the turnover rates of mitochondrial insoluble proteins from the three tissues under study. 6. The turnover rates of m-DNA of liver and kidney show a parallel decrease. 7. Thus it is apparent that thyroid hormone(s) may have a regulatory role in maintaining the synchrony of turnover of liver and kidney mitochondria in the euthyroid state. Turnover of brain mitochondria may perhaps be regulated by some other factor(s) in addition to thyroid hormone(s). 8. It seems likely that during mitochondrial turnover m-DNA and insoluble proteins may constitute a major unit. 9. The mitochondrial protein contents of the three tissues are not affected by thyroidectomy. 10. No correlation was seen between the turnover rate of mitochondria and cathepsin activity in any of the tissues under study in normal or thyroidectomized animals. 11. On the other hand, mitochondrial proteinase activity shows good correlation with the turnover rates of mitochondria in normal animals, and a parallel decrease in activity comparable with the decreased rates of turnover is observed after thyroidectomy. 12. It is concluded that mitochondrial proteinase activity may play a significant role in their protein turnover.  相似文献   

16.
The metabolic effects of 3,5-dimethyl-3'-isopropyl-L-thyronine (DIMIT) on subcellular activities in brain and liver, have been compared to those of T3. Thyroidectomized hypothyroid rats were treated for 10 days with DIMIT (8 micrograms/100 g/day) or T3 (0.25 microgram/100 g/day). In liver mitochondrial oxidative phosphorylation, succinate cytochrome c reductase activities and nuclear RNA polymerases I and II activities were restored to normal level by DIMIT as well as by T3 treatment. In brain T3 treatment normalized both nuclear and mitochondrial activities. On the other hand daily injection of DIMIT restored like T3 nuclear activities whereas that of brain mitochondria were unaffected. We have also examined the early effects of a single injection of T3 (2.5 micrograms/100 g) or DIMIT (80 micrograms/100 g), 20 minutes prior sacrifice. DIMIT is as active as T3 in stimulation of oxidative phosphorylation and succinate cytochrome c reductase activity in liver mitochondria. However DIMIT treatment does not affect the properties of brain mitochondria. On the basis of these observations, it is suggested that there is a tissue specificity of mitochondrial receptors to DIMIT administration as it was shown at the nuclear level.  相似文献   

17.
Ischemia-reperfusion (I/R) has critical consequences in the heart. Recent studies on the functions of I/R-activated kinases, such as p38 mitogen-activated protein kinase (MAPK), showed that I/R injury is reduced in the hearts of transgenic mice that overexpress the p38 MAPK activator MAPK kinase 6 (MKK6). This protection may be fostered by changes in the levels of many proteins not currently known to be regulated by p38. To examine this possibility, we employed the multidimensional protein identification technology MudPIT to characterize changes in levels of proteins in MKK6 transgenic mouse hearts, focusing on proteins in mitochondria, which play key roles in mediating I/R injury in the heart. Of the 386 mitochondrial proteins identified, the levels of 58 were decreased, while only 2 were increased in the MKK6 transgenic mouse hearts. Among those that were decreased were 21 mitochondrial oxidative phosphorylation complex proteins, which was unexpected because p38 is not known to mediate such decreases. Immunoblotting verified that proteins in each of the five oxidative phosphorylation complexes were reduced in MKK6 mouse hearts. On assessing functional consequences of these reductions, we found that MKK6 mouse heart mitochondria exhibited 50% lower oxidative respiration and I/R-mediated reactive oxygen species (ROS) generation, both of which are predicted consequences of decreased oxidative phosphorylation complex proteins. Thus the cardioprotection observed in MKK6 transgenic mouse hearts may be partly due to decreased electron transport, which is potentially beneficial, because damaging ROS are known to be generated by mitochondrial complexes I and III during reoxygenation.  相似文献   

18.
An immunodetection study of protein tyrosine phosphatase 1B (PTP-1B), SHP-2, and Src in isolated mitochondria from different rat tissues (brain, muscle, heart, liver, and kidney) revealed their exclusive localization in the brain. Given this result, we sought whether mitochondria respond to ATP and to the general tyrosine phosphatase inhibitor orthovanadate and found little or no change in the tyrosine phosphorylation profile of mitochondria from muscle, heart, liver, and kidney. In contrast, ATP induced an enhancement in the tyrosine-phosphorylated protein profile of brain mitochondria, which was further greatly enhanced with orthovanadate and which disappeared when Src was inhibited with two inhibitors: PP2 and PP1. Importantly, we found that in brain mitochondria, ATP addition induced Src autophosphorylation at Tyr-416 in its catalytic site, leading to its activation, whereas the regulatory Tyr-527 site remained unphosphorylated. Functional implications were addressed by measurements of the enzymatic activity of each of the oxidative phosphorylation complexes in brain mitochondria in the presence of ATP. We found an increase in complex I, III, and IV activity and a decrease in complex V activity, partially reversed by Src inhibition, demonstrating that the complexes are Src substrates. These results complemented and reinforced our initial study showing that respiration of brain mitochondria was partially dependent on tyrosine phosphorylation. Therefore, the present data suggest a possible control point in the regulation of respiration by tyrosine phosphorylation of the complexes mediated by Src auto-activation.  相似文献   

19.
Manna SK  Aggarwal BB 《FEBS letters》2000,471(1):113-118
The effect of the expression of murine Bax protein on growth and vitality was examined in Saccharomyces cerevisiae and compared with the effect of Bax in mutant cells lacking functional mitochondria. The cytotoxic effect of Bax on yeast does not require functional oxidative phosphorylation, respiration, or mitochondrial proteins (ADP/ATP carriers) implicated in the formation of the permeability transition pore in mammalian mitochondria. In the wild type S. cerevisiae the expression of Bax does not result in a severe effect on mitochondrial membrane potential and respiration. On the basis of Bax induced differences in the fluorescence of green fluorescent protein fused to mitochondrial proteins, it is proposed that Bax may interfere with one essential cellular process in yeast: the mitochondrial protein import pathway that is specific for the proteins of the mitochondrial carrier family.  相似文献   

20.
Oxidative stress has a central role in aging and in several age-linked diseases such as neurodegenerative diseases, diabetes and cancer. Mitochondria, as the main cellular source and target of reactive oxygen species (ROS) in aging, are recognized as very important players in the above reported diseases. Impaired mitochondrial oxidative phosphorylation has been reported in several aging tissues. Defective mitochondria are not only responsible of bioenergetically less efficient cells but also increase ROS production further contributing to tissues oxidative stress. Acetyl-L-carnitine (ALCAR) is a biomolecule able to limit age-linked mitochondrial decay in brain, liver, heart and skeletal muscles by increasing mitochondrial efficiency. Here the global changes induced by aging and by ALCAR supplementation to old rat on the mitochondrial proteome of rat liver has been analyzed by means of the two-dimensional polyacrylamide gel electrophoresis. Mass spectrometry has been used to identify the differentially expressed proteins. A significant age-related change occurred in 31 proteins involved in several metabolisms. ALCAR supplementation altered the levels of 26 proteins. In particular, ALCAR reversed the age-related alterations of 10 mitochondrial proteins relative to mitochondrial cristae morphology, to the oxidative phosphorylation and antioxidant systems, to urea cycle, to purine biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号