首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Despite the topic of soil nitrogen (N) mineralization being well-studied, very few studies have addressed the relative contribution of different plant and soil variables in influencing soil N mineralization rates, and thus the supply of inorganic N to plants. Here, we used data from a well-studied N-limited grassland to address the relative effects of six plant and soil variables on net and on gross rates of soil N mineralization. We also addressed whether plant effects on soil N mineralization were mediated by changes in C and N concentrations of multiple soil organic matter (SOM) fractions. Regression analyses show that key plant traits (i.e., plant C:N ratios and total root mass) were more important than total C and N concentrations of bulk soil in influencing N mineralization. This was mainly because plant traits influenced the C and N concentration (and C:N ratios) of different SOM fractions, which in turn were significantly associated with changes in net and gross N mineralization. In particular, C:N ratios of a labile soil fraction were negatively related to net soil N mineralization rates, whereas total soil C and N concentrations of more recalcitrant fractions were positively related to gross N mineralization. Our study suggests that changes in belowground N-cycling can be better predicted by simultaneously addressing how plant C:N ratios and root mass affect the composition and distribution of different SOM pools in N-limited grassland systems.  相似文献   

2.
The usefulness of the C/N ratio as an indicator of the decomposability of organic matter in forest soil was assessed. The assessment was based on the relationship between the C/N ratio and the contents of soil organic carbon (SOC), soil nitrogen (total N), dissolved total organic carbon (DTOC) and dissolved inorganic nitrogen (DIN). SOC, total N, DTOC and DIN were determined in soils sampled in coniferous and coniferous–deciduous forest sites from genetic horizons of 48 soil profiles. The variability of the above soil parameters was determined and the correlation between these parameters and the C/N values were calculated. It was found that the C/N ratio in soil was shaped by the difference in the mobility of both elements, whereas the decrease in the C content in subsequent horizons was mostly higher than the decrease in the N content, which means that the C/N value decreased with the depth of a soil profile. When the loss of SOC and total N contents occurs at a similar rate, the C/N ratio is maintained at a more or less stable level despite the advancing SOM mineralization. When the rate of the carbon release from SOM differs from that of nitrogen or when there is an N input from external sources, the C/N ratio does not adequately describe the process of SOM mineralization as well. The correlation coefficients between the C/N ratio and other parameters indicate that the relationships between them are not significant or that there is no correlation at all. It was found that the percentage of DTOC in SOC seemed to be a better indicator of SOM mineralization than the C/N ratio.  相似文献   

3.
Recent advances in soil C saturation concepts have increased our understanding of soil C storage and mineralization without explicit links to N retention and saturation theories. Here, we exploit soil texture and organic matter (OM) gradients in a Maryland, USA hardwood forest to test hypotheses that link soil organic C saturation with soil 15N retention and nitrification. At our site, mineral-associated OM (MAOM) N concentrations in the silt + clay particle fraction (g MAOM-N g silt + clay−1) were negatively correlated with the fraction of NH4-N transferred to MAOM during a 3-day in situ incubation (R = −0.85), but positively correlated with potential net nitrification (R = 0.76). Moreover, the fraction of NH4-N transferred to MAOM was negatively correlated with potential net nitrification (R = −0.76). Due to physico-chemical stabilization mechanisms, MAOM is considered to be resistant to mineralization. Carbon saturation theory suggests that the proportion of new C inputs that can be stabilized in MAOM decreases in proportion to the amount of C already present in the fraction; C inputs not stabilized in MAOM are susceptible to rapid mineralization. We demonstrate that NH4-N stabilization in MAOM is similar to C stabilization in MAOM and associated with nitrification, thereby extending soil C saturation theory to mineral N and linking it with N retention and saturation theories. These data and concepts complement N saturation models that emphasize vegetation type, N input levels, and microbial turnover. Incorporating the OM retention capacity of fine mineral particles into N saturation theory can improve predictions of N saturation rates and resolve inconsistent relationships between soil organic matter, texture, N mineralization, and N retention.  相似文献   

4.
Summary The nitrogen and phosphorus contents of organic materials as a factor in determining the trend of mineralization of these elements when plant materials are added to the soil, were studied in an incubation experiment over a period of 12 weeks.Nitrogen mineralization increased with decreasing C:N ratio. No nitrogen mineralization was recorded above C:N ratio of 16.1 and the critical ratio lay between this and 23.0, with the plant materials used.Initial phosphorus immobilization occurred when plant materials ranging in C:P ratio from 501 to 112 were decomposed in the soil. The release of the immobilized phosphorus as incubation progressed suggests that green manuring should be considered of long-term benefit as far as phosphorus is concerned.  相似文献   

5.
酸性矿山废水污染的水稻田土壤中重金属的微生物学效应   总被引:20,自引:1,他引:20  
采样调查了广东大宝山地区受酸性采矿废水长期污染的亚热带水稻田的土壤理化性质 ,重金属 Cu、Pb、Zn、Cd的全量及其 DTPA浸提量 ,以及微生物生物量及其呼吸活性等指标。利用主成分和逐步回归分析了影响土壤重金属的有效性及其微生物学效应的因素。结果表明 :土壤高含硫 ,强酸性 ,有机碳、全氮较低 ,4种金属的全量普遍超标。DTPA可提取态金属含量较高 ,不仅与其全量呈显著正相关 ,而且与土壤酸度和粘粒含量正相关 ,和 Mn含量负相关。过量的金属显著降低了土壤微生物生物量 C、N、微生物商、生物量 N/全 N比 ,并抑制了微生物呼吸强度和对有机碳的矿化率 ,导致了土壤 C/N比的升高。同时 ,金属对微生物群落及生理代谢指标 ,如微生物生物量 C/N比和代谢商的影响不显著。 DTPA可提取态金属 ,特别是 DTPA- Cu是导致微生物生物量和活性指标变化的主要因素。以有机碳 (或全氮 )为基数的复合微生物指标降低了土壤性质差异造成的干扰 ,较单一指标更能准确指示微生物对金属胁迫的反应。土壤硫没有对金属有效性和微生物指标产生明显影响 ,但其氧化过程可能引起酸化和金属离子的释放  相似文献   

6.
The growth of forest species in soil development chronosequences becomes increasingly phosphorus (P)-limited with time, as P is weathered, eroded and leached from soil. Foliar nitrogen (N) concentrations also tend to decrease with soil age when vegetation may be limited in both N and P. Here we report on soil development in temperate rain forests along three New Zealand chronosequences that have minimal pollution and disturbance from human activities, at Franz Josef, Waitutu and Central Volcanic Plateau, and on factors influencing soil net N mineralization (aerobic; 56 days) and foliar N and P concentrations. Except in very young soils (<500 years), at least 85% of total-P in mineral soil (0–10 cm) was transformed to organic-P. In each chronosequence, total-P declined with time, and foliar N:P ratios (mass) generally increased from 8 to 15–18, suggesting P was more limiting than N in the oldest soils of the chronosequence. There was a negative relationship between net N mineralization and C:N ratio for mineral soil. For the FH (organic) layer, net N mineralization had the strongest relationships with total-N concentration (positively) and C:organic-P ratio (negatively); however, relationships varied with forest group, suggesting that other factors were also important. Foliar P of kamahi (Weinmannia racemosa Linn. f.), a dominant canopy species, was related to soil organic-P, suggesting mineralization was an important process for tree nutrition.Foliar N was positively related to N concentration in the FH layer, but was not significantly related to any measured property in mineral soil, possibly because of the wide range of soils. The consistent declines in both soil and foliar P across the contrasting chronosequences strongly suggest that vegetation becomes progressively P-limited during long-term ecosystem development.  相似文献   

7.
Given the same amount of irrigation volume, applying alternate partial root-zone irrigation (PRI) has improved crop N nutrition as compared to deficit irrigation (DI), yet the mechanisms underlying this effect remain unknown. Therefore, the objective of this study was to investigate whether PRI induced soil dry/wet cycles facilitate soil organic N mineralization hereby contributing to the improvement of N nutrition in tomatoes. The plants were grown in split-root pots in a climate-controlled glasshouse and were subjected to PRI and DI treatments during early fruiting stage. 15N-labeled maize residues were incorporated into the soils. Results showed that PRI resulted in 25% higher net 15N mineralization than did DI, indicating that the enhanced mineralization of soil organic N alone could account for the 16% increase of N accumulation in the PRI than in the DI plants. The higher net N mineralization under PRI was coincided with an intensified soil microbial activity. In addition, even though soil chloroform fumigation labile carbon (CFL-C, as an index of microbial biomass) was similar for the two irrigation treatments, a significant increase of chloroform fumigation labile nitrogen (CFL-N) was found in the PRI wetting soil. Consequently, the C:N ratio of the chloroform fumigation labile pool was remarkably modified by the PRI treatment, which might indicate physiological changes of soil microbes or changes in labiality of soil organic C and N due to the dry/wet cycles of soils, altering conditions for net N mineralization. Moreover, in both soil compartments PRI caused significantly less extractable organic carbon (EOC) as compared with DI; whilst in the PRI wetting soil significantly higher extractable organic nitrogen (EON) was observed. A low EOC:EON ratio in the PRI wetting soil may indicate an increasing net mineralization of the organic N as a result of microbial metabolism. Conclusively, PRI induced greater microbial activity and higher microbial substrates availability are seemingly responsible for the enhanced net N mineralization and improved N nutrition in tomato plants.  相似文献   

8.
High atmospheric nitrogen (N) deposition is expected to impair phosphorus (P) nutrition of temperate forest ecosystems. We examined N and P cycling in organic soil horizons of temperate forests exposed to long-term N addition in the northeastern USA and Scandinavia. We determined N and P concentrations, enzyme activities and net N and P mineralization rates in organic soil horizons of two deciduous (Harvard Forest, Bear Brook) and two coniferous (Klosterhede, Gårdsjön) forests which had received experimental inorganic N addition between 25 and 150 kg N ha?1 year?1 for more than 25 years. Long-term N addition increased the activity of phosphatase (+?180%) and the activity of carbon (C)- and N-acquiring enzymes (cellobiohydrolase: +?70%, chitinase: +?25%). Soil N enrichment increased the N:P ratio of organic soil horizons by up to 150%. In coniferous organic soil horizons, net N and P mineralization were small and unaffected by N addition. In deciduous organic soil horizons, net N and P mineralization rates were significantly higher than at the coniferous sites, and N addition increased net N mineralization by up to 290%. High phosphatase activities concomitant with a 40% decline in P stocks of deciduous organic soil horizons indicate increased plant P demand. In summary, projected future global increases in atmospheric N deposition may induce P limitation in deciduous forests, impairing temperate forest growth.  相似文献   

9.
Manure processing could help farmers to effectively manage nitrogen (N) surplus load. Many pig farms have to treat wastewater. Piggery wastewater treatment is a complex challenge, due to the high COD and N concentrations and low C/N ratio. Anaerobic digestion (AD) could be a convenient pre-treatment, particularly from the energetic view point and farm income, but this causes further reduction of C/N ratio and makes denitrification difficult. N removal can only be obtained integrating anaerobic/aerobic treatment by taking into account the best use of electron donors. Experiences gained in Italy during development of integrated biological treatment approaches for swine manure, from bench to full scale, are reported in this paper. Solid/liquid separation as pre-treatment of raw manure is an efficient strategy to facilitate liquid fraction treatment without significantly lowering C/N ratio. In Italy, two full scale SBRs showed excellent efficiency and reliability. Current renewable energy policy and incentives makes economically attractive the application of AD to the separated solid fraction using high solid anaerobic digester (HSAD) technology. Economic evaluation showed that energy production can reduce costs up to 60%, making sustainable the overall treatment.  相似文献   

10.
Organic carbon (C) and nitrogen (N) are essential for heterotrophic soil microorganisms, and their bioavailability strongly influences ecosystem C and N cycling. We show here that the natural 15N abundance of the soil microbial biomass is affected by both the availability of C and N and ecosystem N processing. Microbial 15N enrichment correlated negatively with the C : N ratio of the soil soluble fraction and positively with net N mineralization for ecosystems spanning semiarid, temperate and tropical climates, grassland and forests, and over four million years of ecosystem development. In addition, during soil incubation, large increases in microbial 15N enrichment corresponded to high net N mineralization rates. These results support the idea that the N isotope composition of an organism is determined by the balance between N assimilation and dissimilation. Thus, 15N enrichment of the soil microbial biomass integrates the effects of C and N availability on microbial metabolism and ecosystem processes.  相似文献   

11.
植物对有机氮源的利用及其在自然生态系统中的意义   总被引:12,自引:1,他引:12  
崔晓阳 《生态学报》2007,27(8):3500-3512
近来大量实验研究表明,许多植物能够在不经矿化的情况下直接吸收、利用环境介质中的生物有机氮,尤其氨基酸类。而且,有些植物利用氨基酸的效率可以与矿质氮源(NH4 、NO3)相当或更高。自然界植物赖以生存的土壤生境中同时存在多种有机氮和矿质氮养分,这是导致植物(至少部分植物)进化产生利用各种不同氮源能力的环境驱动力。土壤中的游离氨基酸尽管含量不高,但其周转快、通量大,理论上可远大于植物的氮需求。尽管植物在与土壤微生物的有机氮源竞争中处于根本性劣势,但土壤中氨基酸的巨大潜在通量和植物相对于微生物的生命周期仍可使植物在长期竞争中获取数量可观的氮。基于植物根对氨基酸的吸收能力、土壤中游离氨基酸库的大小和通量、植物与土壤微生物对氨基酸氮源的竞争以及有关的原位实验结果,近来许多研究者都认为植物有机氮营养在多种生态系统中是重要或潜在重要的。尤其是在一些极地、高山、亚高山、北方针叶林或泰加林生态系统中,由于低温等因素限制有机氮矿化,土壤氨基酸浓度常超过矿质氮(NH4 、NO3-)浓度,氨基酸可能代表着植物的一个主要氮源。认识到现实生态系统中植物对有机氮源利用的重要性意味着传统的矿质营养观念的更新,这将在很大程度上改变人们对某些重要生态过程的理解,并导致对若干生态学中心问题的再认识。研究以森林生态系统为例,阐述了我国开展该领域研究的科学意义和基本框架。  相似文献   

12.
Castells E  Peñuelas J 《Oecologia》2003,136(2):183-192
The effects of the Mediterranean shrub Cistus albidus on N cycling were studied in two siliceous (granitic-derived and schistic-derived) and one calcareous soil differentiated by their texture and acidity. We aimed to find out whether soils under C. albidus were affected by the release of C compounds from the canopy, and whether phenolic compound production in C. albidus changed depending on the soil N availability. Calcareous soils, with higher clay content and polyvalent cations, had a higher organic matter content but lower net N mineralization rates than siliceous soils, and C. albidus growing therein were characterized by lower foliar N and phenolic compound concentrations. Under C. albidus, all types of soils had higher phenolic compound concentrations and polyphenol oxidase activity. C. albidus presence and leachate addition decreased net N mineralization and increased soil respiration in siliceous soils, and these changes were related to a higher soil C/N ratio under the canopy. In calcareous soils, however, no significant effects of plant presence on N cycling were found. In the studied plant-soil system it is not likely that higher phenolic compound concentrations were selected during evolution to enhance nutrient conservation in soil because (1) higher phenolic compound concentrations were not associated with lower soil fertilities, (2) C compounds released from C. albidus accelerated N cycling by increasing N immobilization and no evidence was found for decreased gross N mineralization, and (3) soil organic N content was more related to soil chemical and physical properties than to the effects of the C. albidus canopy.  相似文献   

13.
东北次生杨桦林土壤碳氮动态特征   总被引:1,自引:0,他引:1  
汲常萍  王文杰  韩士杰  祖元刚 《生态学报》2015,35(17):5675-5685
土壤分级组分是研究其碳氮动态的基础,次生杨桦林作为东北地区主要的天然林类型,目前相关数据的欠缺状态要求对此进行深入研究。为此,采集0—10cm、10—20cm、20—30cm长白山次生杨桦林土壤,通过土壤颗粒组分物理化学分级方法,将土壤分成5种组分:沙和稳定团聚体土壤组分(SA)、酸不溶土壤组分(AI)、易氧化土壤组分(EO)、颗粒态土壤组分(P)和可溶性土壤组分(S),进而分析了不同组分的质量分数、碳氮含量、碳氮分配比例及红外光谱5类官能团相对含量,旨在探讨次生杨桦林土壤固碳、氮供应机制。结果显示,接近90%的土壤质量集中在稳定组分AI(66.21%)和SA(22.11%)上,导致稳定组分中碳截获量最大(占土壤总碳量的2/3),而且其C/N比活跃组分(P和EO)大2—9倍;与碳不同,由于活跃组分中N含量比稳定组分大4—80倍,致使活跃组分P和EO氮的分配比例最大,分别占土壤总氮的33.1%和26.0%;除了占土壤质量很少的P和S外,组分间以及组分内的碳氮间多具有显著相关关系。这种土壤碳、氮在不同组分间贮存方式的差异使得土壤碳储存稳定性更高、而N肥力供应更快速。伴随不同组分碳氮储存的变化,不同组分间红外官能团存在显著差异,AI组分中绝大多数官能团相对含量均最低,而P和S组分中绝大多数官能团相对含量均较高,绝大多数官能团相对含量与碳含量、氮含量呈现显著的正相关关系,反映了官能团具有维持土壤碳氮的功能。同时,官能团与土壤C/N具有显著相关关系,反映出组分官能团相对含量的高低具有指示组分化学活性高低的作用。研究发现对于林分土壤的碳截获与氮供应的机制阐明具有重要的科学意义,这为深入了解东北次生杨桦林碳氮动态及对未来气候的响应提供基础数据。  相似文献   

14.
Amino sugar dynamics represent an important but under-investigated component of the carbon (C) and nitrogen (N) cycles in old-growth Douglas-fir forest soils. Because fungal biomass is high in these soils, particularly in areas colonized by rhizomorphic ectomycorrhizal fungal mats, organic matter derived from chitinous cell wall material (or the monomeric building block of chitin, N-acetylglucosamine (NAG)) could be a significant source of C or N to the soil microbiota, and thus an important driver of microbial C and N processing. This paper reports the results of incubation experiments initiated to measure chitin degradation, NAG utilization, and the contribution of these substrates to soil respiration and N mineralization rates in mat-colonized and non-mat soil organic horizons. Amendments of chitin and NAG stimulated respiration, N mineralization, and biomass accumulation in mat and non-mat soils, and responses to NAG amendment were stronger than to chitin amendment. NAG-induced respiration was consistently two-fold higher in mat soils than non-mat soils, but induced N mineralization was similar between the two soil patch types. Assimilation of both C and N into microbial biomass was apparent, biomass C:N ratio decreased in all treatments, and microbial N use efficiency (treatment means 0.25 ± 0.06–0.50 ± 0.05) was greater than C use efficiency (treatment means 0.12 ± 0.04–0.32 ± 0.02). NAGase enzyme response was non-linear and showed the same pattern in chitin and NAG amendments. Responses to NAG and chitin amendment differed between mat and non-mat soils, indicating different mechanisms driving NAG and chitin utilization or differences in saprotrophic community composition between the two soil patch types. Net chitin and NAG processing rates were 0.08–3.4 times the basal respiration rates and 0.07–14 times the ambient net N mineralization rates, high enough for the turnover of total soil amino sugars to potentially occur in days to weeks. The results support the hypotheses that amino sugars are important microbial C and N sources and drivers of C and N cycling in these soils.  相似文献   

15.
氮沉降对杉木人工林土壤有机碳矿化和土壤酶活性的影响   总被引:27,自引:0,他引:27  
为探讨氮沉降对亚热带森林土壤有机碳矿化及土壤酶活性的影响规律,在杉木人工林中开展了野外模拟N沉降试验。试验设计为4种处理,分别为N0(对照)、N1(60 kg N?hm-2?a-1)、N2(120 kg N?hm-2?a-1)和N3(240 kg N?hm-2?a-1),每处理重复3次。通过28 d的培养后发现,各土层有机碳日均矿化量随培养时间的延长呈下降趋势,而有机碳累计矿化量则逐步增加。不同氮沉降处理下各土层有机碳累计矿化量总体趋势表现为:随着氮沉降量的增加而降低,日均矿化量降低幅度以N1最大,其次是N0和N2,N3降幅最小。相同N沉降处理下,参与土壤碳循环的6种主要酶(蔗糖酶、纤维素酶、淀粉酶、β-葡糖苷酶、多酚氧化酶、过氧化物酶)活性、土壤有机碳日均矿化量和有机碳累计矿化量均随土层加深而降低。氮沉降对6种土壤酶活性的影响存在差异,对纤维素酶和多酚氧化酶具有促进作用,而对淀粉酶和过氧化物酶表现出一定的抑制作用;中-低氮沉降(N1、N2)对蔗糖酶无影响,而对β-葡糖苷酶具有促进作用,高氮沉降(N3)促进了蔗糖酶活性,但抑制了β-葡糖苷酶活性。表层土壤中,土壤有机碳累积矿化量与土壤纤维素酶、β-葡糖苷酶、过氧化物酶活性呈显著正相关。因此,氮沉降促进了表层土壤纤维素酶、多酚氧化酶和蔗糖酶的活性,但在一定程度上抑制了淀粉酶和过氧化物酶,对土壤有机碳矿化也表现出明显的抑制作用。  相似文献   

16.
有机物料在维持土壤微生物体氮库中的作用   总被引:49,自引:2,他引:49  
李世清  李生秀 《生态学报》2001,21(1):136-142
采用室内和田间培养试验,研究了有机物料矿化过程中土壤微生物体氮的变化,测定结果表明,有机物料对矿化过程和微生物体氮的影响,既与有机物料本身性质和组成有关,也与土壤肥力水平和施氮与否有关。加入C/N比高的有机物料后,微生物对矿质氮的净固定持续时间长,而加入C/N比小的则固定时间短;高肥力土壤上的固定时间比低肥力土壤短。不同有机物料对土壤微生物体氮的影响不同。从加绿豆茎叶、小麦茎叶、未腐解马粪、腐熟马粪、腐熟猪粪到厩肥,土壤微生物体氮依次减小,提供的有效能源物质丰富(如绿豆茎叶)或C/N比较高(如小麦茎叶)时影响效果突出。土壤肥力不同,有机物料对微生物体的影响效果不同,在低肥力土壤的效果突出,约为高肥力土壤的4倍,因此,在评价有机物料对土壤微生物体氮的影响时,既考虑有有机物料的性质和组成,也考虑土壤力水平、矿质氮含量和培养时期。  相似文献   

17.
Livestock grazing often alters aboveground and belowground communities of grasslands and their mediated carbon (C) and nitrogen (N) cycling processes at the local scale. Yet, few have examined whether grazing‐induced changes in soil food webs and their ecosystem functions can be extrapolated to a regional scale. We investigated how large herbivore grazing affects soil micro‐food webs (microbes and nematodes) and ecosystem functions (soil C and N mineralization), using paired grazed and ungrazed plots at 10 locations across the Mongolian Plateau. Our results showed that grazing not only affected plant variables (e.g., biomass and C and N concentrations), but also altered soil substrates (e.g., C and N contents) and soil environment (e.g., soil pH and bulk density). Grazing had strong bottom‐up effects on soil micro‐food webs, leading to more pronounced decreases at higher trophic levels (nematodes) than at lower trophic levels (microbes). Structural equation modeling showed that changes in plant biomass and soil environment dominated grazing effects on microbes, while nematodes were mainly influenced by changes in plant biomass and soil C and N contents; the grazing effects, however, differed greatly among functional groups in the soil micro‐food webs. Grazing reduced soil C and N mineralization rates via changes in plant biomass, soil C and N contents, and soil environment across grasslands on the Mongolian Plateau. Spearman's rank correlation analysis also showed that grazing reduced the correlations between functional groups in soil micro‐food webs and then weakened the correlation between soil micro‐food webs and soil C and N mineralization. These results suggest that changes in soil micro‐food webs resulting from livestock grazing are poor predictors of soil C and N processes at regional scale, and that the relationships between soil food webs and ecosystem functions depend on spatial scales and land‐use changes.  相似文献   

18.
Abstract The combined effects of organic matter additions and temperature on short chain fatty acid (SCFA) turnover, sulfate reduction and nutrient accumulation were examined in an organic-rich fish farm sediment. Fish food pellets, which contribute significantly to the organic matter loss from fish farms, were added to surface sediment at three loadings (2.8; 14.0; 28.0 mg ww g−1 ww sediment; equivalent to organic matter loadings measured during fish farming) and incubated for 30 days in anaerobic bags at 5°C and 15°C. SCFA accumulated to high levels (acetate up to 85 mM, propionate up to 17 mM, butyrate up to 25 mM) in sediments amended with food pellets, and sulfate reduction was stimulated up to 30 times relative to unamended sediments. Sulfate reducers appeared saturated with substrates (SCFA) even in the lowest additions. A low C/N ratio (0.4–1.8) of the major mineralization products (TCO2 and NH4+) indicated preferential nitrogen mineralization in amended sediment compared with the total particulate pool (C/N = 8.8–11.9) and added food pellets (C/N = 8.4).  相似文献   

19.
Organic soils are an important source of N2O, but global estimates of these fluxes remain uncertain because measurements are sparse. We tested the hypothesis that N2O fluxes can be predicted from estimates of mineral nitrogen input, calculated from readily-available measurements of CO2 flux and soil C/N ratio. From studies of organic soils throughout the world, we compiled a data set of annual CO2 and N2O fluxes which were measured concurrently. The input of soil mineral nitrogen in these studies was estimated from applied fertilizer nitrogen and organic nitrogen mineralization. The latter was calculated by dividing the rate of soil heterotrophic respiration by soil C/N ratio. This index of mineral nitrogen input explained up to 69% of the overall variability of N2O fluxes, whereas CO2 flux or soil C/N ratio alone explained only 49% and 36% of the variability, respectively. Including water table level in the model, along with mineral nitrogen input, further improved the model with the explanatory proportion of variability in N2O flux increasing to 75%. Unlike grassland or cropland soils, forest soils were evidently nitrogen-limited, so water table level had no significant effect on N2O flux. Our proposed approach, which uses the product of soil-derived CO2 flux and the inverse of soil C/N ratio as a proxy for nitrogen mineralization, shows promise for estimating regional or global N2O fluxes from organic soils, although some further enhancements may be warranted.  相似文献   

20.
This laboratory scale experiment was designed to study the suitability of organic wastes from paper and food seasoning industries to improve the soil organic carbon for rice cultivation. Lignin-rich wastewater from paper industry and nitrogen-rich effluent from a food industry at suitably lower concentrations were used at two levels of green manure to enhance the soil organic carbon fraction over time. Both the groups of soils with or without Sesbania were incubated under submerged condition at 25 degrees C for 15 days. Wastewaters from paper industry (WP), food industry (WS), and a combination of WP+WS were added separately to both the treatment groups in flasks. After 103 days of incubation, from all the three treatments and control, total organic carbon and alkali-soluble organic carbon fractions were analyzed. Results indicated that in all the three treatments containing green manure amended with industrial wastewaters, the organic carbon content increased significantly. The alkali-soluble organic carbon fraction was increased by 59% in the soil amended with green manure containing WS and by 31% in the treatment without green manure compared to control. The paper mill waste water namely, WP, increased the organic carbon only in the soil containing green manure by 63%. The combined treatment of WP+WS with green manure increased alkali-soluble organic carbon fraction by 90% compared to control, while in the treatment without green manure, the organic carbon increase was 71%. Overall, the combined treatment WP+WS with green manure could increase the alkali-soluble organic carbon fraction more than all other treatments. Hence, wastewater rich in organics from paper and food industries can be efficiently used to temporarily increase the soil organic carbon content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号