首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Superposition and apposition compound eyes are commonly associated with moths and butterflies, respectively. However, recently intermediate eye designs, combining features of both apposition and superposition eyes were found in tiny insects. Here, we examine the eyes of 12 species of moth, ranging from 1.88 to 6.03 mm body size, by scanning and transmission electron microscopy. Correlations between body and eye sizes are discussed with regard to the eyes' functionality. Although all of the species shared an ommatidial organization characteristic of pterygote insects, three optical designs were found: (a) an apposition eye, (b) an eye resembling apposition eyes, but with a unique crystalline cone, and (c) an eye intermediate in structure between apposition and superposition eyes. Our comparisons also revealed a new type of basal matrix for the Lepidoptera. The results show that in most of the examined compound eyes (with the exception of the apposition eye of Micropterix aruncella), a clear distinction between apposition and superposition eyes is not feasible. Due to functional morphological constraints as a consequence of miniaturization, evolutionary transformations from superposition into apposition optics may have occurred several times independently in various ‘microlepidopteran’ taxa. The Phyllonorycter medicaginella eye appears to illustrate this evolutionary scenario best.  相似文献   

2.
The eyes of larval and juvenile oplophorid shrimps are described for the first time. Variations in eye development occur depending on whether the zoeal stages are lecithotrophic or planktotrophic. In those genera where the first free-living stage is planktonic, the eyes are of the transparent apposition type seen in other decapod zoeas. However, where the eggs hatch after completion of the lecithotrophic zoeal stages, the eyes are laready developing the superposition optics found in the adult. In Oplophorus spinosus the changeover from hexagonal to square facets, indicative of superposition optics, proceeds from anterior to posterior. In Systellaspis debilis the square facets appear first on the lateral face of the eye. Eventually, in both species, only the most dorsal ommatidia retain apposition optics. © 1995 Wiley-Liss, Inc.  相似文献   

3.
The two lemon-shaped compound eyes of the moth Cameraria ohridella measure in dorsal–ventral direction 263.0 μm in male and 238.9 μm in female individuals. In anterior–posterior direction no significant differences were found between the sexes, eye length being about 194.6 μm. The eyes of males consist of ca. 417 hexagonal facets, while those of females contain 367. In both sexes facet diameters are approximately 11.5 μm. Despite the size differences of the eyes in the two sexes, ultrastructurally they are identical and both possess ommatidia of 80 μm mean length. The ultrastructure of the eye is described and compared with that of other compound eyes of Lepidoptera. Anatomically the eyes represent a type intermediate between apposition and refractive superposition kind. A distal rhabdom is present in the space that in the eyes of larger moths with superposition optics is occupied by the so-called clear zone. A tracheal tapetum and longitudinal screening pigment migrations, typical of superposition but not apposition eyes are present despite the lack of a clear zone. Thus, our results support an earlier calculated minimal theoretical limit for superposition eyes.  相似文献   

4.
采用组织切片法光镜下观察黑翅土白蚁Odontotermes formosanus(Shiraki)有翅成虫的复眼形态结构及光、暗适应条件下色素颗粒移动的规律。结果如下:(1)头正前方观,复眼外部形态略呈圆形。(2)有翅成虫复眼类型属于并列像眼,每只复眼约由360个小眼组成。(3)每个小眼是由1套屈光器(1个角膜和1个晶锥)、小网膜色素细胞、视杆和基细胞等几部分组成。小网膜色素细胞内均含有丰富的色素颗粒。(4)在光适应条件状态下,屈光器及视杆周围的色素颗粒主要分布在视杆部位的上侧,暗度适应条件状态时则较均匀地分布于视杆两侧上下;性别对色素颗粒分布无明显影响。  相似文献   

5.
The eyes of galatheid squat lobsters (Munida rugosa) are shown to be of the reflecting superposition type. In the dark-adapted state corneal lenses focus light at the level of the rhabdoms and light from more than 1000 facets is redirected to the superposition focus by the reflecting surfaces of the crystalline cones. When the eye is light adapted, apposition optics are used. In this state paraxial light is focused by the corneal lens and the parabolic proximal end of the cone onto the distal end of a rhabdomeric lightguide. The latter transmits light across the clear zone to the rhabdom layer. In the dorsal part of the eye the individual ommatidia become progressively shorter until the cones and rhabdoms are no longer separated by a clear zone. Although formerly considered to be developing ommatidia, they are shown to be retained specifically for scanning the downwelling irradiance.Abbreviations RI refractive index - SEM scanning electron microscope  相似文献   

6.
Similarities and differences between the 2 main kinds of compound eye (apposition and superposition) are briefly explained before several promising topics for research on compound eyes are being introduced. Research on the embryology and molecular control of the development of the insect clear‐zone eye with superposition optics is one of the suggestions, because almost all of the developmental work on insect eyes in the past has focused on eyes with apposition optics. Age‐ and habitat‐related ultrastructural studies of the retinal organization are another suggestion and the deer cad Lipoptena cervi, which has an aerial phase during which it is winged followed by a several months long parasitic phase during which it is wingless, is mentioned as a candidate species. Sexual dimorphism expressing itself in many species as a difference in eye structure and function provides another promising field for compound eye researchers and so is a focus on compound eye miniaturization in very small insects, especially those that are aquatic and belong to species, in which clear‐zone eyes are diagnostic or are tiny insects that are not aquatic, but belong to taxa like the Diptera for instance, in which open rather than closed rhabdoms are the rule. Structures like interommatidial hairs and glands as well as corneal microridges are yet another field that could yield interesting results and in the past has received insufficient consideration. Finally, the dearth of information on distance vision and depth perception is mentioned and a plea is made to examine the photic environment inside the foam shelters of spittle bugs, chrysales of pupae and other structures shielding insects and crustaceans.  相似文献   

7.
《Journal of Asia》2006,9(1):19-30
The eyes of the winged males and larvi-form, wingless females of the firefly Rhagophthalmus ohbai differ from each other in several respects. Compared with the eyes of the males, those of the females contain fewer (35 versus ca. 3500) and smaller (20 μm versus 24-31 μm) facets and anatomically they are of the apposition type. Their main function appears to be to detect light intensity changes from day to nighttime; resolving power of the female eye must be poor and e-vector discrimination would be absent. The eyes of the males consist of a smaller, dorsal region of ca. 500 om-matidia of about 250 μm length and a larger, ventral region of ca. 2000 ommatidia of about 640 urn length. The microvilli of the dorsal eye region are somewhat wider than those of the ventral region (55 nm versus 45 nm) and are less regularly arranged. A tapetal reflecting layer is only present in the dorsal eye region. The small clear-zone between dioptric apparatus and retina in the dorsal eye region would not allow as good a superposition image to be produced as in the ventral eye region with its 5 times wider clear-zone. The regular orientations of the microvilli in the rhabdoms and the lack of a proper tapetum in the ventral eye region suggest that e-vector discrimination should be possible.  相似文献   

8.
Ommatidia of the eucon compound eye of Adoxophyes reticulana (Lepidoptera : Tortricidae) were investigated elect ronmicroscopically. The dorsofrontal part and the dorsal rim region were examined in serial sections. Seven radially arranged retinula cells RC1−7 form the rhabdom from distal to proximal region (Fig. 1). The 8th retinula cell RC8 joins the first 7 at their bases; this cell enlarges proximally (Fig. 1C, D). In the dorsofrontal region, 2 types of rhabdoms are distinguished; Type II (Figs. 1B2;3b) outnumbers Type I (Figs. 1B1;3a by a ratio of 4 : l. In the dorsal rim area, the first 2 rows are occupied exclusively by Type 11-rhabdoms; beyond this, the rhabdom of the dorsal rim area is characterized by the fact that its middle and proximal parts are considerably larger in diameter than in the dorsofrontal part; in this region, the microvilli of the horizontally oriented rhabdomeres are also parallel to the ;,-axis of the eye (Figs. 1B3;3d). Thus, this small eye region meets the structural requirements for the detection of polarized light. The eye is interpreted as an intermediate between apposition and superposition eyes, because the rhabdom begins at the tip of the crystalline tract and the retinula cells are pigmented like those of an apposition eye. On the other hand, the structure of the dioptric apparatus and the tracheal system corresponds to those of superposition eyes. Parallels with the Ephestia eye in basic structural features are discussed in regard to the possible function of this eye and to the systematic position of A. reticulana.  相似文献   

9.
The galatheid squat lobster, Munida rugosa, has compound eyes of the reflecting superposition type in which a distal cone cell layer and a proximal rhabdom layer are separated by an extensive clear zone. The eye is shown to have certain unique features. In all other reflecting superposition eyes, the clear zone is traversed by crystalline tracts formed by the cone cells. In M. rugosa a thin distal rhabdom thread, formed by the eighth retinula cell, connects the cones to the proximal fusiform rhabdoms. The cytoplasm of the other retinula cells also crosses the clear zone in a complex pattern. Fully light-adapted ommatidia are optically isolated by limited migrations of distal shielding pigments. A reflecting pigment multilayer lines each cone to facilitate the formation of a superposition image. This also shows a light-induced change which may limit the acceptance angle of the eye during light adaptation.  相似文献   

10.
With a body length of only 2 mm, the nepticulid Stigmella microtheriella (Stainton, 1854) is one of the smallest moths known to date. We investigated the optical design of its lemon‐shaped compound eyes, which measure 83.60 μm in anterior–posterior and 119.77 μm in dorso‐ventral direction. The eyes consist of about 123 facets, each of the latter just 9.9 μm in diameter. Transmission electron microscopy reveals an optical design with features intermediate between apposition and superposition optics similar to that known from two other small species of moths (one Nepticulid and one Gracillarid). Size‐related evolutionary adaptations of the ommatidial organization include (1) the involvement of only five rhabdomeres in the formation of the distal rhabdom (2) the complete absence of a rhabdomere of the eighth (= basal) retinula cell, (3) the “hourglass” shape of the rhabdom with a characteristic narrow waist separating distal from proximal portion, and (4) the reduction to one single layer of tracheoles as an adaptation to the overall restricted space available in this minute eye. J. Morphol. 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

11.
Based on a review of studies of functional and comparative anatomy of crustacean eyes, a hypothesis is formed on eyes in primitive crustaceans. It is suggested that they were similar to present-day frontal eyes of the malacostracan type. Neuronal architecture suggests that the development to apposition compound eye followed two main routes, one seen in malacostracans and the other in non-malacostracans. Within the two subgroups different and separate lines have been followed to form specialized apposition types and, within the Malacostraca, superposition eyes as pointed out by Nilsson (Nilsson, D. E. 1989. Facets of vision, pp. 30–73).  相似文献   

12.
The fine structure of the compound eyes of the adult diving beetle Agabus japonicus is described with light, scanning, and transmission electron microscopy. The eye of A. japonicus is mango‐shaped and consists of about 985 ommatidia. Each ommatidium is composed of a corneal facet lens, an eucone type of crystalline cone, a fused layered rhabdom with a basal rhabdomere, seven retinula cells (including six distal cells and one basal cell), two primary pigment cells and an undetermined number of secondary pigment cells that are restricted to the distalmost region of the eye. A clear‐zone, separating dioptric apparatus from photoreceptive structures, is not developed and the eye thus resembles an apposition eye. The cross‐sectional areas of the rhabdoms are relatively large indicative of enhanced light‐sensitivity. The distal and central region of the rhabdom is layered with interdigitating microvilli suggesting polarization sensitivity. According to the features mentioned above, we suggest that 1) the eye, seemingly of the apposition type, occurs in a taxon for which the clear‐zone (superposition) eye is characteristic; 2) the eye possesses adaptations to function in a dim‐light environment; 3) the eye may be sensitive to underwater polarized light or linearly water‐reflected polarized light. J. Morphol. 275:1273–1283, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

13.
Summary Compound eyes of larval and first postlarval grass shrimp (Palaemonetes pugio Holthuis) were studied with light and electron microscopy following adaptation to darkness or bright light. Larvae have well-developed apposition eyes, including 3 main types of accessory screening and reflecting pigments and a fourth class of putatively reflective granules recently described in adult shrimps. Rhabdoms contain orthogonally layered microvilli, and by the last larval stage, 8 retinular cells. Ocular accessory pigments in both light- and dark-adapted larvae are distributed much like those of light-adapted adults, but the distal mass of reflecting pigment is concentrated dorsally in larvae and ventrally in adults. Since larvae swim upside-down, reflecting pigment is oriented downward in all developmental stages and may function for countershading. Light and dark adaptational migrations of all 3 major accessory pigments commence abruptly at metamorphosis to the first postlarva. Upon dark adaptation in postlarvae, superposition optics remain impossible because (1) distal screening pigment migrates only slightly, (2) no clear zone has developed, and (3) the crystalline cones remain circular in cross section. Nevertheless, a slight improvement in photon catch is expected due to extensive redistributions of reflecting pigment and retinular cell screening pigment granules.
  相似文献   

14.
南五台蝎蛉成虫复眼的超微结构   总被引:1,自引:0,他引:1  
采用扫描电镜和组织切片法,观察南五台蝎蛉Panorpa nanwutaina Chou成虫复眼的超微结构。南五台蝎蛉复眼近半椭球形,包括1500~1600个小眼。小眼表面光滑,由角膜、晶体、2个初级和12个次级色素细胞、视杆、以及基膜组成。角膜为多层片状纤维结构;晶体含有4个晶锥细胞;视杆由若干个视网膜细胞组成。晶体、视杆周围、和色素细胞内含有大量的色素颗粒,基膜两侧也有色素颗粒分布。南五台蝎蛉的复眼属于并列像眼。与普通蝎蛉P.communis L.小眼的次级色素细胞数目不同。讨论了南五台蝎蛉角膜的功能以及感觉毛和次级色素细胞在分类中的作用。  相似文献   

15.
Nocturnal vision and landmark orientation in a tropical halictid bee   总被引:1,自引:0,他引:1  
BACKGROUND: Some bees and wasps have evolved nocturnal behavior, presumably to exploit night-flowering plants or avoid predators. Like their day-active relatives, they have apposition compound eyes, a design usually found in diurnal insects. The insensitive optics of apposition eyes are not well suited for nocturnal vision. How well then do nocturnal bees and wasps see? What optical and neural adaptations have they evolved for nocturnal vision? RESULTS: We studied female tropical nocturnal sweat bees (Megalopta genalis) and discovered that they are able to learn landmarks around their nest entrance prior to nocturnal foraging trips and to use them to locate the nest upon return. The morphology and optics of the eye, and the physiological properties of the photoreceptors, have evolved to give Megalopta's eyes almost 30 times greater sensitivity to light than the eyes of diurnal worker honeybees, but this alone does not explain their nocturnal visual behavior. This implies that sensitivity is improved by a strategy of photon summation in time and in space, the latter of which requires the presence of specialized cells that laterally connect ommatidia into groups. First-order interneurons, with significantly wider lateral branching than those found in diurnal bees, have been identified in the first optic ganglion (the lamina ganglionaris) of Megalopta's optic lobe. We believe that these cells have the potential to mediate spatial summation. CONCLUSIONS: Despite the scarcity of photons, Megalopta is able to visually orient to landmarks at night in a dark forest understory, an ability permitted by unusually sensitive apposition eyes and neural photon summation.  相似文献   

16.
Superposition optics and the time of flight in onitine dung beetles   总被引:1,自引:0,他引:1  
Dung beetles fly to fresh dung, with vision essential for flight navigation. The daily period of flight varies among different species: some beetles fly only in sunlight, others only when ambient light levels change rapidly during dusk or dawn and others in the constant dark of night. Measurements of the optical properties of the lenses, eye geometry and photoreceptor dimensions were used in a computer ray-tracing model to determine the optical performance of the superposition eyes of nine species of onitine dung beetles. Eye sensitivity to light is determined mainly by body size, by the refractive-index parameters and size of the crystalline cones, and by the photoreceptor dimensions. Based on the optics of the ommatidial lenses and absorption of light in the retina, the most sensitive eyes, found in the crepuscular-nocturnal beetles, are 85 times or nearly two log units more sensitive than the eyes of the diurnal beetles. Three possible criteria are considered to determine the best position for the retina: maximum amount of light absorbed in the target rhabdom; maximum amount of light falling on the target rhabdom (best focus); and maximum resolution. The structure and physiological optics of the superposition compound eyes of an onitine dung beetle are matched to the range of light intensities at which it flies. Accepted: 4 February 1998  相似文献   

17.
Among polychaetes, the errant forms are the only group known so far possessing true multicellular eyes in adults which are preceded by bicellular larval eyes in many species. Most likely, two pairs of such eyes showing a specific structure belong to the ground pattern of Errantia = Aciculata. However, these eyes have primarily been investigated in only two subgroups of Errantia, but data on the third main taxon, Eunicida, are available for only two taxa. In the present investigation, the eyes in two additional species of Eunicida, the dorvilleids Protodorvillea kefersteini and Schistomeringos neglecta, were studied. In P. kefersteini, usually described as possessing one pair of small eyes, two pairs could be detected, whereas in S. neglecta only one pair was found. Each eye is made up of rhabdomeric photoreceptor cells, pigment cells and unpigmented supportive cells. Lenses or vitreous bodies are absent. From their structure most likely all eyes represent adult eyes and even the small anterior eyes in P. kefersteini structurally resemble miniaturized adult eyes. Neither persisting larval eyes nor unpigmented rhabdomeric ocelli were found in the two species. The observations in Dorvilleidae confirm the hypothesis of a common origin of adult eyes in Errantia.  相似文献   

18.
A number of differences exists between the compound eyes of larval and adult rock lobsters, Panulirus longipes. The larval eye more closely resembles the apposition type of compound eye, in which retinula cells and rhabdom lie immediately below the cone cells. The adult eye, on the other hand, is a typical clear-zone photoreceptor in which cones and retinula cell layers are separated by a wide transparent region. The rhabdom of the larval eye, if cut longitudinally, exhibits a "banded" structure over its entire length; in the adult the banded part is confined to the distal end, and the rhabdom is tiered. Both eyes have in common an eighth, distally-located retinula cell, which possesses orthogonally-oriented microvilli, and a peculiar lens-shaped "crystal", which appears to focus light onto the narrow column of the distal rhabdom. Migration of screening pigment on dark-light adaptation is accompanied by changes in sensitivity and resolution of the eye. Retinula cells belonging to one ommatidium do not arrange into one single bundle of axons, but interweave with axons of four neighbouring facets in an extraordinarily regular fashion.  相似文献   

19.
The afocal apposition optics of butterfly eyes was examined from both a geometrical optics and a wave optics point of view. We used several different species of butterfly but put special emphasis on a common Australian nymphalid,Heteronympha merope. From the anatomy of the retina, the optics of isolated components of the eye and the ophthalmoscopy of the intact living eye we derived the following.
1.  The proximal part of the crystalline cone behaves as a powerful lens which, according to our measurements of optical power, turns the complete optical system into an afocal telescope with an angular magnification of 6.4 (inHeteronympha). The rhabdom tip lies in the exit pupil of the telescope and is imaged into the cornea with a magnification of 9.1 (in the same species).
2.  Using light reflected from the eye's tapetum, we studied the waveguide mode phenomena of the rhabdom. Different butterflies showed either one, two or three waveguide modes, depending on the rhabdom diameter. The mode patterns were observed at four different optical planes: at the cornea, at infinity, at the back focal plane of the corneal lens — which, for this measurement, was optically neutralised — and at the plane of the deep pseudopupil.
3.  During light adaptation the closure of the pupil caused the modes to disappear in sequence, starting with the highest order. The behaviour of the fading modes indicates that the pupil acts by absorption rather than by a change of refractive index around the rhabdom.
4.  The modes were used to measure the waveguide parameter of the rhabdom, from which its refractive index was deduced to be 1.36.
5.  The distinction between near-field and farfield versions of the mode patterns provided further evidence in favour of an afocal optical system.
Two different interpretations of the butterfly optical system are discussed and we present a hypothesis to explain how both afocal apposition and refracting superposition optical systems evolved in insect eyes.  相似文献   

20.
We have investigated, comparatively, the ontogenetic development of the compound eye in larvae of a mysid (Neomysis) and a euphausiid (Thysanoessa) species and found it to be close to identical in the two species. The larval eye is of apposition type with special adaptations for planktonic life. The elongated dioptric apparatus is devoid of screening pigment and instead has a proximal lens optically isolating the ommatidium. The pigmented retina is extremely compressed making the eye largely transparent and presumably suitable for a planktonic life. The presence of this specialized type of eye in the planktonic larvae of euphausiids was known before but it is intriguing to find exactly the same type in mysids, spending their entire larval life as embryos in the female marsupium. A possible explanation is offered if mysids earlier in evolution had planktonic larvae. Upon reduction of free-living larvae, the transparent type of eye may have been preserved because there is no selection pressure on the larva to change it. In late larval life, both species transform their eyes to a refracting superposition type typical for adult mysids and euphausiids. The process of transformation and the functional connection between transparent apposition and superposition is described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号