首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
WNT and beta-catenin signalling: diseases and therapies   总被引:15,自引:0,他引:15  
WNT signalling has been studied primarily in developing embryos, in which cells respond to WNTs in a context-dependent manner through changes in survival and proliferation, cell fate and movement. But WNTs also have important functions in adults, and aberrant signalling by WNT pathways is linked to a range of diseases, most notably cancer. What is the full range of diseases that involve WNT pathways? Can inhibition of WNT signalling form the basis of an effective therapy for some cancers? Could activation of WNT signalling provide new therapies for other clinical conditions? Finally, on the basis of recent experiments, might WNTs normally participate in self-renewal, proliferation or differentiation of stem cells? If so, altering WNT signalling might be beneficial to the use of stem cells for therapeutic means.  相似文献   

2.
Inflammation in the central nervous system occurs in diseases such as multiple sclerosis and leads to axon dysfunction and destruction. Both in vitro and in vivo observations have suggested an important role for nitric oxide (NO) in mediating inflammatory axonopathy. The purposes of this study were to model inflammatory axonopathy in vitro and identify modulators of the process. Rat cortical neurones were cultured and exposed to an NO-donor plus potential protective factors. Cultures were then assessed for neuronal survival, axon survival and markers of intracellular signalling pathways. The NO-donor produced dose-dependent neuronal loss and a large degree of axon destruction. Oligodendrocyte conditioned medium (OCM) and insulin-like growth factor type-1 (IGF-1), but not glial cell line-derived neurotrophic factor (GDNF), improved survival of neurones exposed to NO donors. In addition p38 MAP kinase was activated by NO exposure and inhibition of p38 signalling led to neuronal and axonal survival effects. OCM and IGF-1 (but not GDNF) reduced p38 activation in NO-exposed cortical neurones. OCM, IGF-1 and GDNF improved axon survival in cultures exposed to NO, a process dependent on mitogen-activated protein kinase/extracellular signal-related kinase signalling. This study emphasizes that different mechanisms may underlie neuronal/axonal destructive processes, and suggests that trophic factors may modulate NO-mediated neurone/axon destruction via specific pathways.  相似文献   

3.
Recent advances in understanding beta-catenin-independent WNT (non-canonical) signalling suggest an increasing complexity, raising the question of how individual non-canonical pathways are induced and regulated. Here, we examine whether intracellular signalling components such as beta-arrestin (beta-arr) and casein kinases 1 and 2 (CK1 and CK2) can contribute to determining signalling specificity in beta-catenin-independent WNT signalling to the small GTPase RAC-1. Our findings indicate that beta-arr is sufficient and required for WNT/RAC-1 signalling, and that casein kinases act as a switch that prevents the activation of RAC-1 and promotes other non-canonical WNT pathways through the phosphorylation of dishevelled (DVL, xDSH in Xenopus). Thus, our results indicate that the balance between beta-arr and CK1/2 determines whether WNT/RAC-1 or other non-canonical WNT pathways are activated.  相似文献   

4.
5.
6.
Bone formation is remarkable for the convergence in the activity of four major signalling pathways, the bone morphogenetic protein (BMP), fibroblast growth factor (FGF), hedgehog (HH) and wingless‐integrated (WNT) pathways. These pathways cooperate in morphogenetic, proliferative and differentiative processes that underpin the development, growth and repair of skeletal structures. They are regulated by pathway‐specific modulators and by another class of molecules, the glypicans. Glypicans are proteoglycans located on the cell surface, where they act as coreceptors to promote or inhibit signalling by ligands of the BMP, FGF, HH and WNT pathways, through protein–protein and protein–carbohydrate interactions. In this review, we discuss glypican structure, expression and function in the context of bone development and growth, with emphasis on the long bone growth plate where five of the six glypicans are expressed in overlapping patterns in the chondrogenic zone. Analyses of gene knockout models and the human conditions of Simpson–Golabi–Behmel syndrome and omodysplasia, which arise from mutations in glypican 3 (GPC3) and GPC6, respectively, highlight both subtle and striking effects of glypicans on bone growth. We draw attention to challenges and areas of opportunity, where the actions of glypicans on BMP, FGF, HH and WNT signalling might be profitably studied to help illuminate the complex interplay of signalling that drives bone growth. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
WNT proteins are secreted morphogens that are required for basic developmental processes, such as cell-fate specification, progenitor-cell proliferation and the control of asymmetric cell division, in many different species and organs. In blood and immune cells, WNT signalling controls the proliferation of progenitor cells and might also affect the cell-fate decisions of stem cells. Recent studies indicate that WNT proteins also regulate effector T-cell development, regulatory T-cell activation and dendritic-cell maturation. WNT signalling seems to function as a universal mechanism in leukocytes to establish a pool of undifferentiated cells for further selection, effector-cell maturation and terminal differentiation. WNT signalling is therefore subject to strict molecular control, and dysregulated WNT signalling is implicated in the development of haematological malignancies.  相似文献   

8.
9.
Cell polarization is critical for the correct functioning of many cell types, creating functional and morphological asymmetry in response to intrinsic and extrinsic cues. Neurons are a classical example of polarized cells, as they usually extend one long axon and short branched dendrites. The formation of such distinct cellular compartments (also known as neuronal polarization) ensures the proper development and physiology of the nervous system and is controlled by a complex set of signalling pathways able to integrate multiple polarity cues. Because polarization is at the basis of neuronal development, investigating the mechanisms responsible for this process is fundamental not only to understand how the nervous system develops, but also to devise therapeutic strategies for neuroregeneration. The last two decades have seen remarkable progress in understanding the molecular mechanisms responsible for mammalian neuronal polarization, primarily using cultures of rodent hippocampal neurons. More recent efforts have started to explore the role of such mechanisms in vivo. It has become clear that neuronal polarization relies on signalling networks and feedback mechanisms co-ordinating the actin and microtubule cytoskeleton and membrane traffic. The present chapter will highlight the role of key molecules involved in neuronal polarization, such as regulators of the actin/microtubule cytoskeleton and membrane traffic, polarity complexes and small GTPases.  相似文献   

10.
11.
12.
Song H  Poo M 《Nature cell biology》2001,3(3):E81-E88
Morphogenesis of the nervous system requires the directed migration of postmitotic neurons to designated locations in the nervous system and the guidance of axon growth cones to their synaptic targets. Evidence suggests that both forms of navigation depend on common guidance molecules, surface receptors and signal transduction pathways that link receptor activation to cytoskeletal reorganization. Future challenges remain not only in identifying all the components of the signalling pathways, but also in understanding how these pathways achieve signal amplification and adaptation-two essential cellular processes for neuronal navigation.  相似文献   

13.
Patients on peritoneal dialysis are at risk of developing peritoneal fibrosis and angiogenesis, which can lead to dysfunction of the peritoneal membrane. Recent evidence has identified cross-talk between transforming growth factor beta (TGFB) and the WNT/β-catenin pathway to induce fibrosis and angiogenesis. Limited evidence exists describing the role of non-canonical WNT signalling in peritoneal membrane injury. Non-canonical WNT5A is suggested to have different effects depending on the receptor environment. WNT5A has been implicated in antagonizing canonical WNT/β-catenin signalling in the presence of receptor tyrosine kinase-like orphan receptor (Ror2). We co-expressed TGFB and WNT5A using adenovirus and examined its role in the development of peritoneal fibrosis and angiogenesis. Treatment of mouse peritoneum with AdWNT5A decreased the submesothelial thickening and angiogenesis induced by AdTGFB. WNT5A appeared to block WNT/β-catenin signalling by inhibiting phosphorylation of glycogen synthase kinase 3 beta (GSK3B) and reducing levels of total β-catenin and target proteins. To examine the function of Ror2, we silenced Ror2 in a human mesothelial cell line. We treated cells with AdWNT5A and observed a significant increase in fibronectin compared with AdWNT5A alone. We also analysed fibronectin and vascular endothelial growth factor (VEGF) in a TGFB model of mesothelial cell injury. Both fibronectin and VEGF were significantly increased in response to Ror2 silencing when cells were exposed to TGFB. Our results suggest that WNT5A inhibits peritoneal injury and this is associated with a decrease in WNT/β-catenin signalling. In human mesothelial cells, Ror2 is involved in regulating levels of fibronectin and VEGF.  相似文献   

14.
15.
Vascular endothelial growth factor A (VEGF-A) is best known for its essential roles in blood vessel growth. However, evidence has emerged that VEGF-A also promotes a wide range of neuronal functions, both in vitro and in vivo, including neurogenesis, neuronal migration, neuronal survival and axon guidance. Recent studies have employed mouse models to distinguish the direct effects of VEGF on neurons from its indirect, vessel-mediated effects. Ultimately, refining our knowledge of VEGF signalling pathways in neurons should help us to understand how the current use of therapeutics targeting the VEGF pathway in cancer and eye disease might be expanded to promote neuronal health and nerve repair.  相似文献   

16.
The high temperature requirement factor A1 (HTRA1) is a serine protease which modulates an array of signalling pathways driving basal biological processes. HTRA1 plays a significant role in cell proliferation, migration and fate determination, in addition to controlling protein aggregates through refolding, translocation or degradation. The mutation of HTRA1 has been implicated in a plethora of disorders and this has also led to its growing interest as drug therapy target. This review details the involvement of HTRA1 in certain signalling pathways, namely the transforming growth factor beta (TGF-β), canonical Wingless/Integrated (WNT) and NOTCH signalling pathways during organogenesis and various disease pathogenesis such as preeclampsia, age-related macular degeneration (AMD), small vessel disease and cancer. We have also explored possible avenues of exploiting the serine proteases for therapeutic management of these disorders.  相似文献   

17.
The formation of synapses is critical for functional neuronal connectivity. The coordinated assembly at both sides of the synapse is fundamental for the proper apposition of the neurotransmitter release machinery on the presynaptic neuron and the clustering of neurotransmitter receptors and ion channels on the receptive postsynaptic cell. This process requires bidirectional communication between the presynaptic neuron and its postsynaptic target, another neuron, or muscle fiber. Extracellular signals such as WNT, TGF-beta, and FGF factors are emerging as key target-derived signals required for the initial stages of synaptic assembly. Studies in invertebrates are also providing new insights into the function of these signals in synaptic growth and homeostasis. During early embryonic patterning, WNT, TGF-beta, and FGF factors function as typical morphogens in a concentration-dependent manner to regulate cell fate decisions. This mode of action raises the provocative idea that these same morphogens might also provide a coordinate system for axons to establish the distance to their targets during axon guidance and synapse formation.  相似文献   

18.
Park M  Shen K 《The EMBO journal》2012,31(12):2697-2704
Wnt proteins play important roles in wiring neural circuits. Wnts regulate many aspects of neural circuit generation through their receptors and distinct signalling pathways. In this review, we discuss recent findings on the functions of Wnts in various aspects of neural circuit formation, including neuronal polarity, axon guidance, synapse formation, and synaptic plasticity in vertebrate and invertebrate nervous systems.  相似文献   

19.
Differentiation of human embryonic stem (ES) cells and embryonal carcinoma (EC) cells provides an in vitro model to study the process of neuronal differentiation. Retinoic acid (RA) is frequently used to promote neural differentiation of pluripotent cells under a wide variety of culture conditions. Through systematic comparison of differentiation conditions we demonstrate that RA induced neuronal differentiation of human ES and EC cells requires prolonged RA exposure and intercellular communication mediated by high cell density. These parameters are necessary for the up-regulation of neural gene expression (SOX2, PAX6 and NeuroD1) and the eventual appearance of neurons. Forced over-expression of neither SOX2 nor NEUROD1 was sufficient to overcome the density dependency of neuronal differentiation. Furthermore, inhibition of GSK3β activity blocked the ability of RA to direct cell differentiation along the neural lineage, suggesting a role for appropriately regulated WNT signalling. These data indicate that RA mediated neuronal differentiation of human EC and ES cell lines is not a cell autonomous program but comprises of a multi-staged program that requires intercellular input.  相似文献   

20.
Apico-basal polarity is a cardinal molecular feature of adult eukaryotic epithelial cells and appears to be involved in several key cellular processes including polarized cell migration and maintenance of tissue architecture. Epithelial cell polarity is maintained by three well-conserved polarity complexes, namely, PAR, Crumbs and SCRIB. The location and interaction between the components of these complexes defines distinct structural domains of epithelial cells. Establishment and maintenance of apico-basal polarity is regulated through various conserved cell signalling pathways including TGFβ, Integrin and WNT signalling. Loss of cell polarity is a hallmark for carcinoma, and its underlying molecular mechanism is beginning to emerge from studies on model organisms and cancer cell lines. Moreover, deregulated expression of apico-basal polarity complex components has been reported in human tumours. In this review, we provide an overview of the apico-basal polarity complexes and their regulation, their role in cell migration, and finally their involvement in carcinogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号