首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
D F Bull  M G King  H P Pfister  G Singer 《Peptides》1990,11(5):1027-1031
Recent investigations have demonstrated the susceptibility of various components of the immune system to behavioral conditioning, using a conditioned taste aversion (CTA) paradigm. In Experiment 1 the effective antipyretic dose (40 micrograms/kg) and duration of antipyretic action (up to 4 hr) of alpha-melanocyte-stimulating hormone (alpha-MSH) was determined in rats tested with lipopolysaccharide (LPS). In the second experiment, alpha-MSH was used as the unconditioned stimulus (UCS) and paired with a novel-tasting saccharin solution (0.1%) to elicit a conditioned antipyretic response to a fever induced one hour previously by LPS. Both the antipyretic effect of alpha-MSH and the pyrogenic effect of LPS were found to be significantly conditionable. The conditioning of fever/antipyretic responses demonstrates for the first time that still another aspect of the host response can be influenced by conditioning procedures.  相似文献   

2.
L.B. Deeter  L.W. Martin  J.M. Lipton   《Peptides》1988,9(6):1285-1288
alpha-Melanocyte stimulating hormone (alpha-MSH 1-13) has marked antipyretic effects when administered centrally or peripherally in small doses. A C-terminal fragment, alpha-MSH (11-13), contains an antipyretic message sequence of alpha-MSH; however, the lesser potency of this fragment relative to that of the entire molecule suggests that other amino acids of the alpha-MSH sequence are essential for the full antipyretic effect. Graded doses of alpha-MSH (11-13) (Ac LysProVal NH2), alpha-MSH (10-13) (Ac GlyLysProVal NH2), and alpha-MSH (8-13) (Ac ArgTrpGlyLysProVal NH2), were injected into the cerebral ventricles of rabbits made febrile by IV administration of crude interleukin-1. All three fragments reduced fever in a dose-related manner. The (8-13) sequence was much more effective than the other two fragments, and the (10-13) portion was less effective than the (11-13) tripeptide. None of the fragments was as potent as alpha-MSH (1-13). The results confirm that an antipyretic message resides within alpha-MSH (11-13) and sequential addition of amino acids to alpha-MSH (11-13) can both enhance and reduce the potency of the fragment.  相似文献   

3.
Inflammation is generally conceptualized in terms of cells, mediators, and events in the periphery, with no consideration of an influence of the central nervous system (CNS). However, the neuroendocrine peptide alpha-melanocyte stimulating hormone (alpha-MSH) is anti-inflammatory when given systemically and this molecule reaches the brain to exert another effect: fever reduction. Tests on mice indicate that alpha-MSH can act solely within the CNS to inhibit inflammation in the skin. This observation indicates that the central nervous system can inhibit peripheral inflammation via action of alpha-MSH molecules and it further strengthens the idea of neural/endocrine modulation of the host responses.  相似文献   

4.
Because the onset of fever induced by intravenously (i.v.) injected bacterial endotoxic lipopolysaccharides (LPS) precedes the appearance in the bloodstream of pyrogenic cytokines, the presumptive peripheral triggers of the febrile response, we have postulated previously that, in their stead, PGE2 could be the peripheral fever trigger because it appears in blood coincidentally with the initial body core temperature (Tc) rise. To test this hypothesis, we injected Salmonella enteritidis LPS (2 microg/kg body wt i.v.) into conscious guinea pigs and measured their plasma levels of LPS, PGE2, TNF-alpha, IL-1beta, and IL-6 before and 15, 30, 60, 90, and 120 min after LPS administration; Tc was monitored continuously. The animals were untreated or Kupffer cell (KC) depleted; the essential involvement of KCs in LPS fever was shown previously. LPS very promptly (<10 min) induced a rise of Tc that was temporally correlated with the elevation of plasma PGE2. KC depletion prevented the Tc and plasma PGE2 rises and slowed the clearance of LPS from the blood. TNF-alpha was not detectable in plasma until 30 min and in IL-1beta and IL-6 until 60 min after LPS injection. KC depletion did not alter the times of appearance or magnitudes of rises of these cytokines, except TNF-alpha, the maximal level of which was increased approximately twofold in the KC-depleted animals. In a follow-up experiment, PGE2 antiserum administered i.v. 10 min before LPS significantly attenuated the febrile response to LPS. Together, these results support the view that, in guinea pigs, PGE2 rather than pyrogenic cytokines is generated by KCs in immediate response to i.v. LPS and triggers the febrile response.  相似文献   

5.
The proinflammatory cytokine interleukin-1beta (IL-1beta) influences neuroendocrine activity and produces other effects, including fever and behavioral changes such as anxiety. The melanocortin neuropeptides, such as alpha-melanocyte-stimulating hormone (alpha-MSH), antagonize many actions of IL-1, including fever, anorexia and hypothalamic-pituitary-adrenal (HPA) axis activation through specific melanocortin receptors (MC-R) in the central nervous system. The objective of the present study was to establish the effect of MSH peptides on IL-1beta-induced anxiety-like behavior and the melanocortin receptors involved. We evaluated the effects of intracerebroventricular (i.c.v.) administration of IL-1beta (30 ng) and melanocortin receptor agonists: alpha-MSH, an MC3/MC4-R agonist (0.2 microg) or gamma-MSH, an MC3-R agonist (2 microg) or HS014, an MC4-R antagonist (2 microg), on an elevated plus-maze (EPM) test. Injection of IL-1beta induced an anxiogenic-like response, as indicated by reduced open arms entries and time spent on open arms. The administration of alpha-MSH reversed IL-1beta-induced anxiety with co-administration of HS014 inhibiting the effect of alpha-MSH. However, the associated treatment with gamma-MSH did not affect the anxiety response to IL-1beta. These data suggest that alpha-MSH, through central MC4-R can modulate the anxiety-like behavior induced by IL-1beta.  相似文献   

6.
Modulation of host defense by the neuropeptide alpha-MSH   总被引:1,自引:0,他引:1  
alpha-melanocyte stimulating hormone (alpha-MSH), a peptide that occurs within the brain, the circulation, and other body sites, is a potent antipyretic agent when given centrally or peripherally. The peptide likewise inhibits inflammation and aspects of the acute-phase response. The combined evidence suggests that alpha-MSH molecules act as natural modulators of host reactions by antagonizing the central and peripheral actions of cytokines.  相似文献   

7.
(1) The classical view of the genesis of infectious fevers is that they develop in sequential steps, starting with the production by peripheral mononuclear phagocytes activated by the infectious noxa (i.e., the invading pathogens and/or their products, e.g., bacterial endotoxic lipopolysaccharides (LPS)) of pyrogenic cytokines, principally tumor necrosis factor-, interleukin(IL)-1β and IL-6, the release of these cytokines into the bloodstream, their transport to targets accessible from blood (e.g., cerebral microvessels, the organum vasculosum laminae terminalis) in close proximity to the ventromedial preoptic area (VMPO, the presumptive brain site of the febrigenic controller), and the consequent generation of stimulatory signals directed to the VMPO. An alternative view is that the message of the pyrogenic cytokines elaborated in the periphery is conveyed to the VMPO via a neural rather than a humoral pathway. In both views, cyclooxygenase (COX)-2-dependent prostaglandin (PG) E2 is considered to be the proximal fever mediator induced in the VMPO by these cytokines, modulating the activity of thermosensitive neurons contained in this region and effecting the development of fever. (2) However, peripheral cytokines are not consistently detectable in febrile illnesses, and it was recently reported that neither circulating LPS nor cytokine levels are increased at the onset of robust fevers induced in rats by subcutaneous injections of replicating Escherichia coli. (3) And it was reported long ago that the intracerebroventricular (icv) injection of PGE2 did not evoke fever in newborn lambs and goats although these animals responded normally to the intravenous injection of LPS, and that the icv-injection of synthetic PGE2 antagonists that prevented the febrile response of rabbits to icv-injected PGE2 did not inhibit that to a simultaneously injected endogenous pyrogen. (4) Other, more recent data indicate that the pyrogenic chemokine macrophage inflammatory protein-1β produces fever independently of PGE2. (5) We found recently that the febrile response of adult guinea pigs to intravenously injected LPS is initiated significantly before the appearance of cytokines in the blood and, moreover, is evoked and sustainable in the absence of preoptic PGE2. (6) What is amiss? Are the contradictory data fallacious or should the conventional wisdom be revisited? This issue is considered in this article and an explanation suggested for these disparate findings.  相似文献   

8.
J R Glyn  J M Lipton 《Peptides》1981,2(2):177-187
ACTH (1--24) and alpha-melanotropin (alpha-MSH), peptides previously shown to influence body temperature when administered centrally and to occur naturally in brain regions important to temperature control, were injected intracerebroventricularly (ICV) in rabbits. The peptides in doses of 1.25, 2.5 and 5.0 micrograms produced dose-related hypothermias in a 23 degrees C environment, and greater decreases in body temperature when the experiments were repeated in the cold (10 degrees C), but the largest dose had no effect on temperature in the heat (30 degrees C). These results indicate that the peptides do not reduce the central set-point of temperature control. Rather, they appear to selectively inhibit heat conservation and production responses. Five microgram of ACTH reversed vasoconstriction and inhibited rises in temperature caused by leukocytic pyrogen (LP) given IV and ICV. The same dose of alpha-MSH also reduced fever produced by IV and ICV LP, but the reduction was not as great as after ACTH. Both peptides (5 micrograms) also reduced temperature rises and vasoconstriction caused by ICV PGE2. ACTH reduced d-amphetamine-induced hyperthermia without altering vasoconstriction which suggests that this peptide can reduce temperature rises by inhibiting heat production alone. One of the most important findings was that the peptides are antipyretic in that they reduce fever at doses (0.25 microgram, ICV) that do not affect normal temperature. The powerful effects of these peptides on resting body temperature, hyperthermia and fever, together with their presence in brain tissue important to temperature control, suggest that the endogenous central peptides participate in thermoregulation, perhaps by limiting fever and influencing normal temperature.  相似文献   

9.
K. Goelst  H. Laburn 《Peptides》1991,12(6):1239-1242
The role of endogenous pyrogens induced by gram-positive bacterial pyrogens is not known. Intravenous alpha-MSH (2.5 micrograms) significantly reduced only the first phase of the biphasic thermal response to IV S. aureus cell walls (5 x 10(7)). Intracerebroventricular alpha-MSH (200 ng) had no effect on the fever response. The fall in serum iron concentration was significantly attenuated by the IV alpha-MSH but was not affected by the ICV alpha-MSH. Intravenous alpha-MSH had no effect on fever or the serum iron response caused by muramyl dipeptide (MDP). We conclude that the first phase of the thermal response to S. aureus cell walls is mediated by an endogenous pyrogen (EP) and the second phase of the response by a mechanism not involving EP, but possibly a muramyl peptide.  相似文献   

10.
M E Hiltz  A Catania  J M Lipton 《Cytokine》1992,4(4):320-328
The neuropeptide alpha-melanocyte stimulating hormone [alpha-MSH(1-13)] occurs in the pituitary, brain, skin and other tissues and receptors for this molecule are likewise widespread. In previous research, this tridecapeptide, which shares its amino acid sequence with ACTH(1-13), was shown to have both potent antipyretic activity and a role in the endogenous control of the febrile response. alpha-MSH(1-13) and its COOH-terminal tripeptide were subsequently found to inhibit inflammation induced by general stimuli such as topical application of an irritant. The aim in the present experiments was to determine if these peptides can inhibit acute inflammatory responses induced in mice by injection of individual cytokines, endogenous pyrogen (EP), a natural cytokine mixture, and other mediators of inflammation. Inflammation induced in the mouse ear by rIL-1 beta, rIL-6 or rTNF-alpha was inhibited by alpha-MSH and a D-valine-substituted analog of alpha-MSH(11-13) whereas substantial doses of alpha-MSH(1-13) did not alter inflammation induced by LTB4, PAF and IL-8. Both peptides inhibited edema caused in the mouse paw by local injection of EP. The results indicate that alpha-MSH molecules antagonize the actions of certain cytokine mediators of inflammation, consistent with previous observations of anti-cytokine activity of these peptides. Failure to inhibit edema caused by LTB4, PAF and IL-8 suggests that, in inflammation induced by general stimuli, such as EP, the peptides act prior to the release of these mediators of the inflammatory response. Because of the anticytokine/anti-inflammatory actions of the alpha-MSH molecules they may be useful in understanding the cytokine network and for treatment of inflammatory diseases.  相似文献   

11.
Pure human interleukin-1 beta (IL-1 beta) and interleukin-6 (IL-6), both of natural origin, were found to cause fever in rabbits when injected into the PO/AH region of the brain. The threshold dose required for this effect was between 0.4 and 4 U, equivalent to 0.04 to 0.4 ng for IL-1 beta, and around 50 U, equivalent to 0.05 ng for IL-6. From this it was estimated that this area of the brain responds to a local concentration of approximately 1 ng/ml of these cytokines, a level which can easily be reached after intravenous administration of threshold pyrogenic doses of either cytokine. The observation supports the view that fever induced by systemic endogenous production of IL-1 and IL-6 is due to a direct effect on the thermoregulatory center and may not require production of mediators, such as prostaglandins, at sites distant from the center.  相似文献   

12.
We have studied, using a telemetry system, the pyrogenic properties of recombinant murine interleukin-18 (rmIL-18) injected into the peritoneum of C57BL/6 mice. The effect of IL-18 was compared with the febrile response induced by human IL-1beta, lipopolysaccharide (LPS), and recombinant murine interferon-gamma (rmIFN-gamma). Both IL-1beta and LPS induced a febrile response within the first hour after the intraperitoneal injection, whereas rmIL-18 (10-200 microg/kg) and rmIFN-gamma (10-150 microg/kg) did not cause significant changes in the core body temperature of mice. Surprisingly, increasing doses of IL-18, injected intraperitoneally 30 min before IL-1beta, significantly reduced the IL-1beta-induced fever response. In contrast, the same pretreatment with IL-18 did not modify the febrile response induced by LPS. IFN-gamma does not seem to play a role in the IL-18-mediated attenuation of IL-1beta-induced fever. In fact, there was no elevation of IFN-gamma in the serum of mice treated with IL-18, and a pretreatment with IFN-gamma did not modify the fever response induced by IL-1beta. We conclude that IL-18 is not pyrogenic when injected intraperitoneally in C57BL/6 mice. Furthermore, a pretreatment with IL-18, 30 min before IL-1beta, attenuates the febrile response induced by IL-1beta.  相似文献   

13.
We investigated dose-dependent effects of alpha-melanocyte-stimulating hormone (alpha-MSH) on habituation in the Texas toad, Bufo speciosus. Additionally, we determined changes in plasma and brain levels of alpha-MSH following peripheral administration of the peptide or following exposure to an ether stressor. The ability of alpha-MSH to facilitate acquisition of habituation was dose dependent. Plasma alpha-MSH concentrations were elevated within 5 min of dorsal lymph sac injection and remained elevated up to 600% over controls after 30 min. Administration of 50 microgram alpha-MSH had no effect on plasma corticosterone levels. Radiolabeled alpha-MSH was detected in cerebrospinal fluid microdialysates within minutes of peripheral injection. Concentrations of alpha-MSH in the telencephalon and preoptic area were significantly lowered after ether exposure, whereas levels in the optic tectum, thalamus/hypothalamus, brainstem, and plasma were unchanged. We conclude that alpha-MSH administered peripherally facilitates habituation in a dose-dependent fashion. Our results confirm that the effects of alpha-MSH are independent of corticosterone secretion. The peptide is cleared rapidly into the bloodstream and enters the cerebrospinal fluid after dorsal lymph sac injection. Neuronal alpha-MSH may help toads gather information about their environment when exposed to certain stressors.  相似文献   

14.
We determined the relative effectiveness of alpha-MSH and a highly potent melanotropin analogue, [Nle4, D-Phe] - alpha-MSH, in stimulating a shift from pheomelanogenesis to eumelanogenesis within hair bulbs of mice. The analogue proved to be at least a hundred times more effective than the native hormone when injected subcutaneously. The two melanotropins were then incorporated into an ointment base and topically applied to a shaved area of the skin on the back of a yellow strain of mice (C57BL/6JAY). Within 24-48 hours eumelanin production was visible within hair bulb melanocytes in both treated and untreated areas of animals. The presence of melanized organelles (eumelanosomes) within melanocytes was confirmed by electron microscopy. These results document the delivery of a peptide hormone through the skin and into the systemic circulation. This is the first demonstration of the delivery of a peptide hormone by percutaneous absorption and may provide a model for a similar route of delivery of other peptide hormones. The hormone analogue has also been delivered across human skin in vitro. Delivery of a melanotropin by a transdermal route may prove to be clinically useful in the treatment of some integumental hypopigmentary disorders in humans.  相似文献   

15.
Alpha-MSH peptides inhibit acute inflammation and contact sensitivity   总被引:3,自引:1,他引:2  
M E Hiltz  J M Lipton 《Peptides》1990,11(5):979-982
Alpha-melanocyte stimulating hormone [alpha-MSH(1-13)] occurs within the CNS, skin, circulation and in other body sites. This tridecapeptide and its COOH-terminal tripeptide, alpha-MSH (11-13), have antipyretic and anti-inflammatory actions. Studies of the anti-inflammatory effects of these molecules have been confined mainly to tests of inhibition of histamine and endogenous pyrogen-induced increases in capillary permeability in rabbits and acute inflammation of ear tissue in mice. The aim in the present experiments was to learn if alpha-MSH peptides also antagonize inflammation in two additional models: acute edema induced in the mouse paw and contact sensitivity. Significant anti-inflammatory effects were observed with MSH peptides in both models. These findings converge with previous results to indicate that alpha-MSH peptides modulate inflammation. Because circulating alpha-MSH increases after treatment of animals with endogenous pyrogen or endotoxin, administration of the peptides may simply mimic a naturally occurring modulation of host defense reactions.  相似文献   

16.
To determine if exogenously administered alpha-melanocyte stimulating hormone (alpha-MSH) affects nighttime pineal N-acetyltransferase activity, pineal levels of 5-hydroxytryptophan, serotonin and melatonin, and plasma prolactin levels, adult male hamsters were injected at 1900 hr (lights out 2000-0600 hr) with two doses of the peptide and killed at 0300 hr. The low dose of alpha-MSH (200 ng) produced a significant fall in pineal serotonin, pineal NAT activity and plasma prolactin values. The high dose of the peptide (20 micrograms) increased circulating prolactin titers and pineal serotonin levels and caused a concomitant decrease in pineal melatonin levels.  相似文献   

17.
For over a century it has been recognized that many of the clinical symptoms of malaria are caused by toxins released by rupturing schizonts, but it is only in the past few years that the underlying mechanisms have begun to be understood. Dominic Kwiatkowski here focuses on the toxins that cause malaria fever by stimulating host cells to produce tumour necrosis factor a (TNF) and other pyrogenic cytokines. Both TNF and fever have antiparasite properties, and it is proposed that the release of these toxins plays an important role in the regulation of parasite density within the host. Cerebral malaria is related to excessive TNF production. Recent data indicate that this can be the consequence of genetic variation in the host's propensity to produce TNF.  相似文献   

18.
This paper presents data that inspired a new explanation for the mechanism of early phase endotoxin tolerance. Rabbits injected intravenously with LPS from Salmonella abortus developed a two-phase fever (6 h) and monophasic hyperlipidemia of very low density lipoproteins (two consecutive days). If during these days rabbits were injected with the same dose of LPS at 24-h intervals, the second phase of fever disappeared, i.e. early phase pyrogenic tolerance was obtained. This was correlated with a decrease of lipoprotein hyperlipidemia (measured 1.5 h after LPS injection) and an accumulation of lipids rich in double bonds in monocytes (measured 3.5 h after LPS injection). Results showed that the degree of unsaturation of acyl chains (AC) in monocytes (AC/DB, DB=double bonds) is negatively correlated (r=-0.72) with fever response (fever index). The authors maintain that a gradual increase in monocyte membrane fluidity is an adaptation to repeated exposure of monocytes to lipid A and is responsible for the progressive desensitization of monocytes to endotoxin. It is suggested that disorders of this mechanism lead to an accumulation of abnormal quantities of saturated lipids and cholesterol within macrophages, which, as foam cells, are the starting point for atherosclerosis pathology.  相似文献   

19.
《Journal of thermal biology》2001,26(4-5):307-312
(1) There are two types of angiotensin II (ANG II) receptors, AT1 and AT2. (2) In this paper, our starting point is our previous finding that hypothalamic AT2-receptors modulate PGE-induced fever in a positive fashion. (3) We also present our recent results suggesting that ANG II, acting either peripherally or centrally, or both, contributes to the bacterial endotoxin-induced production of pyrogenic cytokines. (4) Taken together, our data suggest that, in the development of fever, hypothalamic ANG II and AT2-receptors may be involved in the final step, and that ANG II also participates in the first step (namely, the bacterial endotoxin-induced synthesis of pyrogenic cytokines).  相似文献   

20.
Antipyretic effect of centrally administered CRF   总被引:2,自引:0,他引:2  
CRF injected into the third cerebral ventricle (0.5-2.5 micrograms) caused dose-related reductions in fever induced in rabbits by IV administration of leukocytic pyrogen. Control injections of CRF when the same animals were afebrile did not alter normal body temperature. Intravenous injections of 5 and 20 micrograms CRF, doses known to release ACTH and corticosteroids into the bloodstream in other species, did not reduce fever. CRF injected into the cerebral ventricles may be antipyretic per se, or it may reduce fever by virtue of central release of the antipyretic peptides ACTH and alpha-MSH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号