首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Growth factor receptors promote cell growth and survival by stimulating the activities of phosphatidylinositol 3-kinase and Akt/PKB. Here we report that Akt activation causes proteasomal degradation of substrates that control cell growth and survival. Expression of activated Akt triggered proteasome-dependent declines in the protein levels of the Akt substrates tuberin, FOXO1, and FOXO3a. The addition of proteasome inhibitors stabilized the phosphorylated forms of multiple Akt substrates, including tuberin and FOXO proteins. Activation of Akt triggered the ubiquitination of several proteins containing phosphorylated Akt substrate motifs. Together the data indicate that activated Akt stimulates proteasomal degradation of its substrates and suggest that Akt-dependent cell growth and survival are induced through the degradation of negative regulators of these processes.  相似文献   

2.
3.
4.
5.
6.
7.
8.
Interleukin-3 signals through multiple isoforms of Stat5.   总被引:31,自引:6,他引:25       下载免费PDF全文
The interleukin (IL)-3 family of cytokines mediates its numerous effects on myeloid growth and maturation by binding a family of related receptors. It has been shown recently that IL-3 induces the activation of two distinct cytoplasmic signal transducing factors (STFs) that are likely to mediate the induction of immediate early genes. In immature myeloid cells, IL-3 activates STF-IL-3a, which comprises two tyrosine-phosphorylated DNA binding proteins of 77 and 80 kDa. In mature myeloid cells, IL-3 and granulocyte-macrophage colony-stimulating factor activate STF-IL-3b, which consists of a 94 and 96 kDa tyrosine-phosphorylated DNA binding protein. Peptide sequence data obtained from the purified 77 and 80 kDa proteins (p77 and p80) indicate that they are closely related but are encoded by distinct genes. Both peptide and nucleotide sequence data demonstrate that these two proteins are the murine homologs of ovine mammary gland factor (MGF)/Stat5. The peptide data also indicate that p77 and p80 are phosphorylated on tyrosine 699, a position analogous to the tyrosine that is phosphorylated in Stat1 and Stat2 in response to interferon. Additionally, antiserum raised against bacterially expressed p77/p80 recognizes the 94 and 96 kDa protein components of STF-IL-3b, suggesting that these may be additional isoforms of Stat5. These studies indicate that the IL-3 family of ligands is able to activate multiple isoforms of the signal transducing protein Stat5.  相似文献   

9.
10.
11.
Using glutathione S-transferase Syk fusion proteins, we evaluated the mode of platelet FcgammaRII tyrosine phosphorylation induced by FcgammaRII cross-linking or anti-CD9 monoclonal antibodies (mAb). The N-terminal SH2 domain of Syk (Syk-N-SH2), the C-terminal SH2 domain of Syk (Syk-C-SH2), and the domain having both the N- and C-terminal SH2 of Syk (Syk-NC-SH2) all bound to tyrosine-phosphorylated FcgammaRII with FcgammaRII cross-linking. In the case of anti-CD9 mAb-induced platelet activation, only Syk-C-SH2 and Syk-NC-SH2 bound to tyrosine-phosphorylated FcgammaRII. Since the SH2 domain is specific for a particular structure containing phosphotyrosine, these findings suggest that only one tyrosine residue in the immunoreceptor tyrosine-based activation motif (ITAM) is phosphorylated with anti-CD9 mAb, and that both are phosphorylated with FcgammaRII cross-linking. Synthetic peptides corresponding to the ITAM of human platelet FcgammaRII with the N-terminal tyrosine residue phosphorylated (N-P) or the C-terminal tyrosine residue phosphorylated (C-P), were used. N-P more potently dissociated Syk-C-SH2 from tyrosine-phosphorylated FcgammaRII than C-P, suggesting that the N-terminal tyrosine residue is phosphorylated upon anti-CD9 mAb-induced activation. Furthermore, these findings imply that Syk-N-SH2 binds to the phosphorylated C-terminal tyrosine residue of ITAM, and Syk-C-SH2 to the N-terminal tyrosine. Taken together, our findings suggest that FcgammaRII-dependent platelet activation without FcgammaRII dimerization, such as with anti-CD9 mAb, is distinct from that induced by FcgammaRII cross-linking.  相似文献   

12.
13.
14.
15.
16.
The family of cytoplasmic Janus (Jak) tyrosine kinases plays an essential role in cytokine signal transduction, regulating cell survival and gene expression. Ligand-induced receptor dimerization results in phosphorylation of Jak2 on activation loop tyrosine Y1007 and stimulation of its catalytic activity, which, in turn, results in activation of several downstream signaling cascades. Recently, the catalytic activity of Jak2 has been found to be subject to negative regulation through various mechanisms including association with SOCS proteins. Here we show that the ubiquitin-dependent proteolysis pathway is involved in the regulation of the turnover of activated Jak2. In unstimulated cells Jak2 was monoubiquitinated, and interleukin-3 or gamma interferon stimulation induced polyubiquitination of Jak2. The polyubiquitinated Jak2 was rapidly degraded through proteasomes. By using different Jak2 mutants we show that tyrosine-phosphorylated Jak2 is preferentially polyubiquitinated and degraded. Furthermore, phosphorylation of Y1007 on Jak2 was required for proteasomal degradation and for SOCS-1-mediated downregulation of Jak2. The proteasome inhibitor treatment stabilized the Jak2-SOCS-1 protein complex and inhibited the proteolysis of Jak2. In summary, these results indicate that the ubiquitin-proteasome pathway negatively regulates tyrosine-phosphorylated Jak2 in cytokine receptor signaling, which provides an additional mechanism to control activation of Jak2 and maintain cellular homeostasis.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号