首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hybrid membrane particles from two mutants of Escherichia coli K12, Bv4 and KI1, defective in oxidative phosphorylation, have been prepared, in which ATP-driven membrane energization is restored.

A soluble factor of mutant KI1 was found to have properties similar to parental crude coupling factor, ATPase (EC 3.6.1.3). Membrane particles of this mutant could not be reconstituted by parental coupling factor. Either parental coupling factor, or the soluble factor of mutant KI1 could reconstitute both respiration-driven and ATP-driven energization to membrane particles of mutant BV4 or to parental particles depleted of ATPase. Mutant BV4 was found to be devoid of coupling factor activity, while retaining the ability to hydrolyze ATP. Both mutants possess an ATPase with an altered binding to the membrane.

Mutant KI1 is impaired in respiration-driven amino acid transport, in contrast to mutant BV4.

The three major subunits of parental Escherichia coli ATPase have been isolated and antibodies have been prepared against these subunits. Antibodies against the largestsubunit ( component) or against the intact catalytic subunits ( + β components) inhibit both ATP-Pi exchange in the parent organism as well as ATP hydrolytic activity in parent and mutants. Antibodies against the two other subunits (β or γ components) also inhibit these two reactions, but were found to be less effective. Mutant NI44, which lacks ATPase activity, shows no precipitin lines with anti-, anti-β, anti-γ, or anti-( + β) preparations. In contrast, mutants BV4 and KI1, exhibit cross-reactivity with all of the antisera.  相似文献   


2.
The aerobic-driven and ATP-driven energy-dependent transhydrogenase activities of membrane particles from two different Ca2+, Mg2+-activated ATPase-negative mutants of E.coli were examined. The activities were low or absent in one of the mutants (DL-54). Reconstitution of the aerobic-driven reaction could be obtained by addition to particles from this mutant of DCCD or of a coupling factor prepared from the parent strain. The coupling factor also restored the ATP-driven reaction. In the other mutant (N144) the aerobic-driven activity was unimpaired, and was not affected by DCCD or by the coupling factor. The difference between the two mutants could be rationalized if the coupling factor ATPase had both a stabilizing and an enzymic function.  相似文献   

3.
Among a number of mutants unable to utilize non-fermentable carbon substrates, scoring for membrane ATPase and for ATP-driven transhydrogenase activity permitted to distinguish two phenotypes: (A) mutants lacking ATPase and ATP-driven transhydrogenase; (B) one mutant with an ATPase which behaved according to several criteria as released into solution instead of being membrane bound, a.o it exhibited no ATP-driven transhydrogenase activity. All A and B mutants exhibited a common nutritional pattern. The ATPase-deficient group, when scored for ATPase-binding sites on its membrane particles revealed three different subgroups: (1) mutants having free ATPase-binding sites, (2) mutants with ATPase-binding sites made available by the procedure which releases ATPase from wild-type membrane, and (3) mutants with no detectable ATPase-binding sites. Membranes of the mutant B with unbound ATPase also exhibited a deficiency in ATPase-binding sites, but its soluble ATPase was also found unable to bind to ATPase-binding sites of wild type membranes. The double alteration, namely abnormal or inactive ATPase and absence of ATPase-binding sites on the membrane is compatible with a single mutational defect.  相似文献   

4.
Among a number of mutants unable to utilize non-fermentable carbon substrates, scoring for membrane ATPase and for ATP-driven transhydrogenase activity permitted to distinguish two phenotypes: (A) mutants lacking ATPase and ATPdriven transhydrogenase; (B) one mutant with an ATPase which behaved according to several criteria as released into solution instead of being membrane bound, a.o it exhibited no ATP-driven transhydrogenase activity. All A and B mutants exhibited a common nutritional pattern.The ATPase-deficient group, when scored for ATPase-binding sites on its membrane particles revealed three different subgroups: (1) mutants having free ATPase-binding sites, (2) mutants with ATPase-binding sites made available by the procedure which releases ATPase from wild-type membrane, and (3) mutants with no detectable ATPase-binding sites.Membranes of the mutant B with unbound ATPase also exhibited a deficiency in ATPase-binding sites, but its soluble ATPase was also found unable to bind to ATPase-binding sites of wild type membranes.The double alteration, namely abnormal or inactive ATPase and absence of ATPase-binding sites on the membrane is compatible with a single mutational defect.  相似文献   

5.
6.
The effects of norepinephrine (NE), an inhibitor of insulin secretion, were examined on membrane potential and the ATP-sensitive K+ channel (K ATP) in INS 832/13 cells. Membrane potential was monitored under the whole cell current clamp mode. NE hyperpolarized the cell membrane, an effect that was abolished by tolbutamide. The effect of NE on K ATP channels was investigated in parallel using outside-out single channel recording. This revealed that NE enhanced the open activities of the K ATP channels approximately 2-fold without changing the single channel conductance, demonstrating that NE-induced hyperpolarization was mediated by activation of the K ATP channels. The NE effect was abolished in cells preincubated with pertussis toxin, indicating coupling to heterotrimeric G i/G o proteins. To identify the G proteins involved, antisera raised against alpha and beta subunits (anti-G alpha common, anti-G beta, anti-G alpha i1/2/3, and anti-G alpha o) were used. Anti-G alpha common totally blocked the effects of NE on membrane potential and K ATP channels. Individually, anti-G alpha i1/2/3 and anti-G alpha o only partially inhibited the action of NE on K ATP channels. However, the combination of both completely eliminated the action. Antibodies against G beta had no effects. To confirm these results and to further identify the G protein subunits involved, the blocking effects of peptides containing the sequence of 11 amino acids at the C termini of the alpha subunits were used. The data obtained were similar to those derived from the antibody work with the additional information that G alpha i3 and G alpha o1 were not involved. In conclusion, both G i and G o proteins are required for the full effect of norepinephrine to activate the K ATP channel.  相似文献   

7.
DNA-dependent RNA polymerase of thermoacidophilic archaebacteria   总被引:7,自引:0,他引:7  
Among 979 non-glycerol growers of the yeast Schizosaccharomyces pombe, 40 strains were found to be deficient in the mitochondrial ATPase activity. Three of them exhibited an alteration in either the alpha or beta subunits of the F1ATPase. The alpha subunit was not immunodetected in the A23/13 mutant. The beta subunit was not immuno-detected in the B59/1 mutant. The existence of these two mutants shows that the alpha and beta subunits can be present independently of each other in the inner mitochondrial membrane. The beta subunit of the mutant F25/28 had a slower electrophoretic mobility than that of the wild-type beta subunit. This phenotype indicates abnormal processing or specific modification of the beta subunit. All mutants showed reduced activities of the NADH-cytochrome c reductase and of the cytochrome oxidase and a decreased synthesis of cytochrome aa3 and cytochrome b. This pleiotropic phenotype appears to result from specific modifications in the mitochondrial protein synthesis. The mitochondrial synthesis of four polypeptides (three cytochrome oxidase and one cytochrome b subunits) was markedly decreased or absent while three new polypeptides (Mr = 54000, 20000 and 15000) were detected in all the mutants analysed. This observation suggests that a functional F1ATPase is necessary for the correct synthesis and/or assembly of the mitochondrially made components of the cytochrome oxidase and cytochrome b complexes.  相似文献   

8.
Mutant genes for the beta subunit of H+-translocating ATPase (F0F1) were cloned from Escherichia coli strains isolated in this laboratory. Determination of their nucleotide sequence revealed four missense mutations (strain KF39, Glu-41----Lys; strain KF16 and KF42, Glu-185----Lys; strain KF48, Gly-223----Asp; KF26 and 4 other strains, Ser-292----Phe). Two nonsense mutants (strain KF40, Gln-361----end; strain KF20, Gln-397----end) were also identified. Glu-41, Glu-185, and Ser-292 are conserved in the amino acid sequences of the beta subunits so far studied, and Gly-223, Gln-361, and Gln-397 are conserved in beta subunits from bacteria and mitochondria, but not in those from chloroplasts. The amounts of F1 subunits in the membranes of these strains were studied by immunochemical assay and two-dimensional gel electrophoresis. In the mutants studied, the amounts of alpha and beta subunits in the membranes were 69-21 and 46-2%, respectively, of the amounts in wild-type membranes, the amount depending on the strain. No delta and epsilon subunits were detected in membranes of a missense mutant KF16, although reduced amounts of alpha and beta subunits could be detected, suggesting that the F1 portion may not be connected to F0 through the delta and epsilon subunits. The altered residues in missense mutants or missing domains in nonsense mutants may be important for the subunit-subunit interactions or assembly of the entire complex. Genetic experiments on introduction of suppressor tRNA into strains KF40 and KF20 suggested that F1 could be active even when residue 361 or 397 was replaced by a Ser, Leu, or Tyr residue.  相似文献   

9.
The defective coupling factor F1 ATPase from a mutant strain (KF11) of Escherichia coli was purified to a practically homogeneous form. The final specific activity of Mg2+-ATPase was 6-9 units/mg protein, which is about 10-15 times lower than that of F1 ATPase from the wild-type strain. The mutant F1 had a ratio of Ca2+-ATPase to Mg2+-ATPase of about 3.5, whereas the wild-type F1 had ratio of about 0.8. The mutant F1 was more unstable than wild-type F1: on storage at -80 degrees C for 2 weeks, about 80% of its activity (dependent on Ca2+ or Mg2+) was lost, whereas none of the activity of the wild-type F1 was lost. The following results indicate that the mutation is in the beta subunit. (i) High Mg2+-ATPase activity (about 20 units/mg protein) was reconstituted when the beta subunit from wild type F1 was added to dissociated mutant F1 and the mixture was dialyzed against buffer containing ATP and Mg2+. (ii) Low ATPase activity having the same ratio of Ca2+-ATPase to Mg2+-ATPase as the mutant F1 was reconstituted when a mixture of the beta subunit from the mutant F1 and the alpha and gamma subunits from wild-type F1 was dialyzed against the same buffer. (iii) Tryptic peptide analysis of the beta subunit of the mutant showed a difference in a single peptide compared with the wild-type strain.  相似文献   

10.
11.
J A Lee  P A Fortes 《Biochemistry》1985,24(2):322-330
Sodium plus potassium activated adenosinetriphosphatase [(Na,K)ATPase] is composed of a catalytic subunit (alpha) and a glycoprotein subunit (beta) of unknown function. A method has been developed to label the beta subunit of purified dog kidney (Na,K)ATPase with fluorescent probes. The method consists of oxidation of beta-subunit oligosaccharides, reaction of the resulting aldehydes with fluorescent hydrazides, and reduction of the hydrazones and unreacted aldehydes with NaBH4. Two oxidation methods were compared. Simultaneous treatment with neuraminidase and galactose oxidase did not inhibit significantly (Na,K)ATPase activity and allowed insertion of up to 11 mol of probe per mol of beta. In contrast, oxidation of (Na,K)ATPase oligosaccharides with periodate resulted in 50-80% inhibition of the (Na,K)ATPase activity with low or undetectable labeling. Eleven commercial probes and two novel hydrazides were tested for labeling of (Na,K)ATPase treated with galactose oxidase and neuraminidase. Eight probes did not label (Na,-K)ATPase but labeled red cell ghosts oxidized with periodate. Four probes labeled beta specifically but either adsorbed to the membrane tightly, or cross-linked the beta subunits, or formed unstable adducts. Lucifer yellow CH labeled beta specifically without membrane adsorption. Labeling stoichiometries from 1 to 11 mol of lucifer yellow CH per mol of beta were obtained without inhibition of (Na,K)ATPase activity and without significant alteration of the anthroylouabain binding capacity or its association and dissociation kinetics. Anthroylouabain specifically bound to the lucifer-labeled (Na,K)ATPase had a decreased quantum yield, probably due to resonance energy transfer. This suggests that the sites of lucifer attachment on beta are within energy transfer distance from the cardiac glycoside site on alpha.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The F(1) component of mitochondrial ATP synthase is an oligomeric assembly of five different subunits, alpha, beta, gamma, delta, and epsilon. In terms of mass, the bulk of the structure ( approximately 90%) is provided by the alpha and beta subunits, which form an (alphabeta)(3) hexamer with adenine nucleotide binding sites at the alpha/beta interfaces. We report here ultrastructural and immunocytochemical analyses of yeast mutants that are unable to form the alpha(3)beta(3) oligomer, either because the alpha or the beta subunit is missing or because the cells are deficient for proteins that mediate F assembly (e.g. Atp11p, Atp12p, or Fmc1p). The F(1) alpha(1) and beta subunits of such mutant strains are detected within large electron-dense particles in the mitochondrial matrix. The composition of the aggregated species is principally full-length F(1) alpha and/or beta subunit protein that has been processed to remove the amino-terminal targeting peptide. To our knowledge this is the first demonstration of mitochondrial inclusion bodies that are formed largely of one particular protein species. We also show that yeast mutants lacking the alpha(3)beta(3) oligomer are devoid of mitochondrial cristae and are severely deficient for respiratory complexes III and IV. These observations are in accord with other studies in the literature that have pointed to a central role for the ATP synthase in biogenesis of the mitochondrial inner membrane.  相似文献   

13.
Escherichia coli mutants defective in the uncH gene.   总被引:17,自引:14,他引:3       下载免费PDF全文
Plasmids carrying cloned segments of the unc operon of Escherichia coli have been used in genetic complementation analyses to identify three independent mutants defective in the uncH gene, which codes for the delta subunit of the ATP synthetase. Mutations in other unc genes have also been mapped by this technique. ATPase activity was present in extracts of the uncH mutants, but the enzyme was not as tightly bound to the membrane as it was in the parental strain. ATP-dependent membrane energization was absent in membranes isolated from the uncH mutants and could not be restored by adding normal F1 ATPase from the wild-type strain. F1 ATPase prepared from uncH mutants could not restore ATP-dependent membrane energization when added to wild-type membranes depleted of F1. Membranes of the uncH mutants were not rendered proton permeable as a result of washing with low-ionic-strength buffer.  相似文献   

14.
In contrast to wild-type F1 adenosine triphosphatase, the beta subunits of soluble ATPase from Escherichia coli mutant strains AN120 (uncA401) and AN939 (uncD412) were not labeled by the fluorescent thiol-specific reagents 5-iodoacetamidofluorescein, 2-(4'-iodoacetamidoanilino)naphthalene-6-sulfonic acid or 4-[N-(iodoacetoxy)ethyl-N-methyl]amino-7-nitrobenzo-2-oxa-1,3-diazole. The mutation in the alpha subunit (uncA401) of F1 ATPase thus influences the accessibility of the single cysteinyl residue in the beta subunit. Following reaction of ATPase with 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole or N,N'-dicyclohexylcarbodiimide, the alpha and beta subunits of the uncA401, but not of the uncD412 mutant F1 ATPase were intensely labeled by a fluorescent thiol reagent. The mutation in the beta subunit (uncD412) thus influences the accessibility of the cysteinyl residues in the alpha subunit. In other work [Stan-Lotter, H. and Bragg, P.D. (1986) Arch. Biochem. Biophys. 248] we have shown that 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole and 2-(4'-iodoacetamidoanilino)naphthalene-6-sulfonic acid react with a different beta subunit from that labeled by N,N'-dicyclohexylcarbodiimide. This asymmetry with respect to modification by 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole and N,N'-dicyclohexylcarbodiimide was seen in both mutant enzymes. In addition, the modification of one beta subunit of the uncA401 F1 ATPase induced the previously unreactive sulfhydryl group of another beta subunit to react with 2-(4'-iodoacetamidoanilino-naphthalene-6-sulfonic acid. These results provide evidence for at least three types of conformational interactions of the major subunits of F1 ATPase: from alpha to beta, from beta to alpha, and from beta to beta. As in wild-type ATPase, labeling of membrane-bound unc mutant ATPase by a fluorescent thiol reagent modified the alpha subunits. This suggests that a conformational change of yet a different type occurs when the enzyme binds to the membrane.  相似文献   

15.
Cloned atp genes for the proton-translocating ATPase of the obligate aerobe Bacillus megaterium have been demonstrated to be capable of complementing Escherichia coli ATPase (unc) mutants (Hawthorne, C. A., and Brusilow, W. S. A. (1986) J. Biol. Chem. 261, 5245-5248). To determine the minimum subunit requirements for cross-species complementation, we constructed all combinations of B. megaterium atpA, G, D, and C genes (coding for the alpha, gamma, beta, and epsilon subunits, respectively) and tested their abilities to complement two uncA (alpha subunit) and two uncD (beta subunit) mutants of E. coli. The results indicated that complementation of either uncD mutant required atpD (beta) only. Complementation of one of the uncA (alpha) mutants required atpA, G, and D (alpha, gamma, and beta) and possibly atpE (epsilon) as well. The other uncA mutant was not complemented by any combination of B. megaterium ATPase genes. Complementation of a beta mutant by atpD (beta) or atpD and C (beta epsilon) produced cells which could grow aerobically on a nonfermentable carbon source (succinate) but not anaerobically on rich medium containing glucose. These E. coli therefore had become obligate aerobes. The ability to grow anaerobically could be restored to the mutant complemented by atpD alone by growth at pH 7.5 or pH 8 in the presence of 0.1 M potassium.  相似文献   

16.
A procedure for the preparation of coupling factor 1 (F1) from Escherichia coli lacking subunits delta and epsilon is described. Using chloroform and dimethyl sulfoxide, we can isolate F1 containing only subunits alpha, beta, and gamma [F1(alpha beta gamma)] directly from membrane vesicles in 10-mg quantities. Pure and active subunits delta and epsilon were prepared from five-subunit F1 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. After addition of these subunits, F1(alpha beta gamma) is as active in reconstituting ATP-dependent transhydrogenase as five-subunit F1. The ATPase activity of F1 (alpha beta gamma) is inhibited by subunit epsilon in a 1:1 stoichiometry to the same extent (approximately equal to 90%) and with the same affinity (Ki = 0.2-0.8 nM) as reported earlier [Dunn, S.D. (1982) J. Biol. Chem. 257, 7354-7359]. In the presence of either delta or epsilon, F1(alpha beta gamma) binds to F1-depleted membrane vesicles and to liposomes containing the membrane sector (F0) of the ATP synthase to an extent commensurate with the F0 content. The binding ratios epsilon/F1 (alpha beta gamma) and probably also delta/F1 (alpha beta gamma) are close to unity. The specific, delta- or epsilon-deficient F1.F0 complexes presumably formed show ATPase activities sensitive to subunit epsilon but not to dicyclohexylcarbodiimide, and no energy-transfer capabilities. Binding studies at different pH values suggest that F1-F0 interactions in the presence of both subunits delta and epsilon are similar to a combination of those mediated by delta or epsilon alone.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The structural genes for the two major subunits of the mitochondrial ATPase were isolated among genomic clones from the yeast Schizosaccharomyces pombe by transformation and complementation of mutants unable to grow on glycerol and lacking either the alpha or the beta subunits. The plasmid pMa1 containing a 2.3-kilobase genomic insert transformed the mutant A23-13 lacking a detectable alpha subunit. The transformant grew on glycerol and contained an alpha subunit of normal electrophoretic mobility. The plasmid pMa2 containing a 5.4-kilobase genomic insert transformed the mutant B59-1 lacking the beta subunit. The transformant grew on glycerol and contained a beta subunit of normal mobility. The structural gene for the beta ATPase subunit for the fission yeast S. pombe was localized within the pMa2 insert by hybridization to a probe containing the beta ATPase gene from the budding yeast Saccharomyces cerevisiae (Saltzgaber, J., Kunapuli, S., and Douglas, M. G. (1983) J. Biol. Chem. 258, 11465-11470). The mRNAs which hybridized to pMa1 and pMa2 were translated by a reticulocyte lysate into polypeptides of Mr = 59,000 and 54,000, respectively. These genes products reacted with an anti-F1-ATPase serum and therefore correspond most probably to precursors of the alpha and beta subunits.  相似文献   

18.
Mutation of Galpha(q) or Galpha(s) N-terminal contact sites for Gbetagamma resulted in alpha subunits that failed to localize at the plasma membrane or undergo palmitoylation when expressed in HEK293 cells. We now show that overexpression of specific betagamma subunits can recover plasma membrane localization and palmitoylation of the betagamma-binding-deficient mutants of alpha(s) or alpha(q). Thus, the betagamma-binding-defective alpha is completely dependent on co-expression of exogenous betagamma for proper membrane localization. In this report, we examined the ability of beta(1-5) in combination with gamma(2) or gamma(3) to promote proper localization and palmitoylation of mutant alpha(s) or alpha(q). Immunofluorescence localization, cellular fractionation, and palmitate labeling revealed distinct subtype-specific differences in betagamma interactions with alpha subunits. These studies demonstrate that 1) alpha and betagamma reciprocally promote the plasma membrane targeting of the other subunit; 2) beta(5), when co-expressed with gamma(2) or gamma(3), fails to localize to the plasma membrane or promote plasma membrane localization of mutant alpha(s) or alpha(q); 3) beta(3) is deficient in promoting plasma membrane localization of mutant alpha(s) and alpha(q), whereas beta(4) is deficient in promoting plasma membrane localization of mutant alpha(q); 4) both palmitoylation and interactions with betagamma are required for plasma membrane localization of alpha.  相似文献   

19.
Effects of the antiarrhythmic drugs (propranolol, perhexiline maleate, lidoflazine and iproveratril) on energy-linked reactions and on membrane potential were studied. Propranolol, perhexiline maleate and lidoflazine inhibit the ATPase activity of undamaged and broken mitochondria, and of submitochondrial particles. All drugs are inhibitors of either ATP-driven or of succinate-driven reduction of NADP+. The antiarrhythmics promote a decrease in the membrane potential upon energization of the mitochondrial membrane by alpha-ketoglutarate, succinate, or ATP. It was suggested that these drugs have a primary action on the mitochondrial membrane, thus altering the activities of membrane proteins (channels and enzymes).  相似文献   

20.
1. In addition to the previously studied 8-azido-ATP, 8-azido-ADP is a suitable photoaffinity label for beef-heart mitochondrial ATPase (F1). 2. Photolysis at 350 nm of 8-azido-ADP in the presence of isolated F1 leads to inactivation of ATPase activity. Both ATP and ADP (but not AMP) protect against the inactivation. 3. In the absence of Mg2+, 8-azido-ADP binds almost equally to the alpha and beta subunits of F1, whereas in the presence of Mg2+ the alpha subunits are predominantly labelled. 4. The ATPase activity is completely inhibited when two molecules of 8-azido-ADP are bound per molecule F1. 5. 8-Azido-ATP and ATP are competitive substrates for F1, indicating that in the presence of Mg2+ 8-azido-ATP binds to the same site as ATP. 6. The amount of tightly bound nucleotides in F1 is not significantly changed upon incubation with 8-azido-ATP either in the light or the dark. 7. 8-Azido-ATP is also a suitadrial particles, photolabelling leading to inactivation of ATPase activity. 9. Oxidative phosphorylation and the ATP-driven reduction of NAD+ by succinate are also inhibited by photolabelling Mg-ATP particles with 8-azido-ATP. 10. In contrast to the uncoupled ATPase activity, where the two ATP-binding sites do not interact, cooperation between the two sites is required for ATP hydrolysis coupled to reduction of NAD+ by succinate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号