首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The molecular structure of mutants induced in human lymphoblast cells by 500 cGy X rays in the presence of the radioprotector cysteamine (25 mM) has been compared with that induced by an equally mutagenic treatment of 150 cGy X rays alone. Sets of mutants at the hypoxanthine-guanine phosphoribosyl transferase locus were analyzed by Southern blot. Of 24 mutants induced by X rays in the presence of cysteamine, 67% exhibited no change in the restriction fragment pattern and thus were defined as point mutations; 8% appeared to be total gene deletions and 25% were partial deletions or rearrangements. In contrast, among 28 mutants induced by X rays alone (Liber et al., Mutat. Res. 178, 143-153 (1987)), 46% were point mutations, while 50% were total gene deletions and only 1 mutant (4%) was a partial deletion or rearrangement. Thus mutants isolated in the presence of cysteamine consisted of more point mutations and partial deletions/rearrangements, and considerably fewer total gene deletions. These results suggest that cysteamine may protect selectively against processes which lead to large-scale molecular changes.  相似文献   

2.
Southern blotting techniques were employed to examine the spectrum of molecular alterations in DNA induced by internally emitting iodine isotopes and X-rays at and around the hprt locus in a human lymphoblastoid cell line. We analyzed 165 mutant clones using a cDNA probe for the human hprt locus, and 3 anonymous sequenceprobes for regions of the X-chromosome which are linked to hrpt. The results were compared with those for 35 spontaneously arising mutant clones. The majority of ionizing radiation-induced mutants showed changes in the normal restriction patterns at the hprt locus, whereas very few alterations were seen at linked markers along the X chromosome. Total hprt coding sequence deletions comprised 30–48% of the changes observed at this locus, while partial deletions and rearrangements comprised 14–54% of the observed changes. In the case of mutants induced by [125I]dUrd, a densely ionizing radiation, the spectrum of alterations was dose-dependent; at low doses it was not significantly different from that seen after sparsely ionizing X-ray exposure, whereas a higher proportion of gene deletions and rearrangements occurred after high doses of this incorporated isotope. Changes were rarely observed in the 3 linked markers examined. Overall, these results indicate that the distribution of mutational events at the hprt locus in irradiated human cells may not only be LET-dependent but dose-dependent, and that deletions involving large regions of the X chromosome surrounding the hprt locus are rae events.  相似文献   

3.
G0 phase cultures of human peripheral blood T-lymphocytes from a single individual were exposed to 300 rad of gamma-irradiation from a 137Cs source and cultured in vitro for 8 days to allow phenotypic expression. Thioguanine-resistant (TGr) mutants were isolated by a cell cloning assay in microtiter plates. These mutants were studied by Southern blot analysis to define the gross structural alterations in the hypoxanthine-guanine phosphoribosyl transferase (hprt) gene by use of an hprt cDNA probe. A similar analysis of the T-cell receptor (TCR) gene rearrangement patterns was employed to define the independent nature of each mutant colony by use of TCR beta and gamma cDNA probes. 74 mutants were isolated in 5 separate experiments. TCR gene rearrangement analysis showed these to represent 24 independent mutations, of which 18 contained hprt structural alterations. These alterations included simple deletions (10/18) as well as more complex rearrangements resulting in molecular weight changes of restriction fragments representing both the 5' and 3' regions of the hprt gene (4/18 and 4/18, respectively). These results demonstrate that gamma-irradiation primarily induces TGr mutations through gross structural alterations in the hprt gene and that these alterations are randomly distributed across the gene. This approach to mutation analysis will provide information on the types of alterations induced by this irradiation, especially the extent of deletions involving the hprt gene. These results also demonstrate the feasibility of employing in vitro exposure of human T-lymphocytes to a single mutagenic agent as an aid to understanding the mechanisms of mutations occurring in vivo in humans.  相似文献   

4.
B K?berle  G Speit 《Mutation research》1991,249(1):161-167
The molecular basis of bleomycin (BLM)-induced mutations in the absence and presence of inhibitors of DNA repair was investigated in V79 cells with Southern hybridization techniques. 43% of the BLM-induced thioguanine-resistant mutants suffer from large alterations of hprt DNA sequences. To understand the role of DNA repair in the process of mutagenesis, the effect of inhibitors of DNA repair on the frequency and types of BLM-induced mutations was tested. The inhibitors used were arabinofuranosyl cytosine (araC), didesoxythymidine (ddThd) and 3-aminobenzamide (3AB), which inhibit different steps of excision repair. Only 3AB caused a comutagenic effect. The increased mutation frequency was mainly due to additionally induced gene deletions. In the presence of 3AB, 70% of the HPRT-deficient mutants revealed partial or total deletions of the hprt coding sequences. Thus, it could be shown that BLM induces a broad range of types of mutation and that inhibited repair of BLM-induced DNA damage leads to specific types of mutations.  相似文献   

5.
The capacity of the topoisomerase I inhibitor camptothecin (CPT) to induce single locus mutations at the hypoxanthine-guanine phosphoribosyltransferase (hprt) gene and the DNA changes underlying induced mutations were analysed in Chinese hamster ovary cells. Camptothecin treatments increased hprt mutations up to 50-fold over the spontaneous levels at highly cytotoxic doses. Genomic DNA was isolated from 6-thioguanine resistant clones and subjected to multiplex PCR to screen for gross alterations in the gene structure. The molecular analysis revealed that deletion mutants represented 80% of the analysed clones, including total hprt deletion, multiple and single exon deletions. Furthermore, a fraction of the analysed clones showed deletions of more than one exon that were characterised by the absence of non-contiguous exons. These data show that single locus mutations induced by camptothecin are characterised by large deletions or complex rearrangements rather than single base substitutions and suggest that the recombinational repair of camptothecin-induced strand breaks at replication fork may be involved in the generations of these alterations at the chromatin structure level.  相似文献   

6.
Human T-lymphocytes have been treated with benzo[a]pyrene diolepoxide (BPDE) in vitro and T-cell clones mutated in the hprt gene have been isolated. The mutant frequencies in BPDE-treated T-cell cultures were on average 24-fold higher than those of untreated cultures. Thus, BPDE is a potent inducer of gene mutation in this system. In order to examine which types of mutations are induced by BPDE in human cells, 41 spontaneous and 44 BPDE-induced mutant clones have been characterized using the Southern blot technique. In addition, rearrangements of the T-cell-receptor beta and gamma loci have been used to determine the proportion of isolated clones that are unique, and thus likely to represent independent mutational events. Out of 23 independent spontaneous mutants 4 had large hprt alterations that could be detected on Southern blots. Two of these alterations, deletions of exons 2-6, have been confirmed using PCR of hprt cDNA and direct sequencing of the PCR product. All 33 independent BPDE-induced mutants had normal hprt restriction patterns which indicates that BPDE is mainly a point mutagen in this system.  相似文献   

7.
DNA double-strand breaks (DSBs) are the most severe lesions induced by ionizing radiation, and unrejoined or misrejoined DSBs can lead to cell lethality, mutations and the initiation of tumorigenesis. We have investigated X-ray- and alpha-particle-induced mutations that inactivate the hypoxanthine guanine phosphoribosyltransferase (HPRT) gene in human bladder carcinoma cells and in hTERT-immortalized human fibroblasts. Fifty to 80% of the mutants analyzed exhibited partial or total deletions of the 9 exons of the HPRT locus. The remaining mutants retained unaltered PCR products of all 9 exons but often displayed a failure to amplify the HPRT cDNA. Hybridization analysis of a 2-Mbp NotI fragment spanning the HPRT gene with a probe 200 kbp distal to the HPRT locus indicated altered fragment sizes in most of the mutants with a wild-type PCR pattern. These mutants likely contain breakpoints for genomic rearrangements in the intronic sequences of the HPRT gene that allow the amplification of the exons but prevent HPRT cDNA amplification. Additionally, mutants exhibiting partial and total deletions of the HPRT exons also frequently displayed altered NotI fragments. Interestingly, all mutations were very rarely associated with interchromosomal exchanges analyzed by FISH. Collectively, our data suggest that intrachromosomal genomic rearrangements on the Mbp scale represent the prevailing type of radiation-induced HPRT mutations.  相似文献   

8.
In a previous report, herpes simplex virus type 2 (HSV-2) was shown to increase the frequency of mutation at the hypoxanthine phosphoribosyltransferase (hprt) locus of nonpermissive rat XC cells (L. Pilon, A. Royal, and Y. Langelier, J. Gen. Virol. 66:259-265, 1985). A series of 17 independent mutants were isolated after viral infection together with 12 spontaneous noninfected mutants to characterize the nature of the mutations induced by the virus at the molecular level. The DNA of the mutants isolated after viral infection was probed with cloned HSV-2 fragments representing the entire genome. In these mutants, no authentic HSV-2 hybridization could be detected. This was indicative of a mechanism of mutagenesis which did not require the permanent integration of viral sequences in the host genome. The structure of the hprt gene was determined by the method of Southern (J. Mol. Biol. 98:503-517, 1975), and the level of hprt mRNA was analyzed by Northern blots. Except for the identification of one deletion mutant in each of the two groups, the HPRT- clones showed no evidence of alteration in their hprt gene. A total of 7 of 12 spontaneous mutants and 11 of 15 mutants isolated from the infected population transcribed an hprt mRNA of the same size and abundance as did the wild-type cells. Thus, the majority of the mutants seemed to have a point mutation in their hprt structural gene. Interestingly, the proportion of the different types of mutations was similar in the two groups of mutants. This analysis revealed that HSV-2 infection did not increase the frequency of rearrangements but rather that it probably induced a general increase of the level of mutations in the cells. This type of response is thought to be compatible with the biology of the virus, and the possible mechanisms by which HSV-2 induces somatic mutations in mammalian cells are discussed.  相似文献   

9.
We have isolated a series of 14 spontaneously arising and 28 X-ray-induced mutants at the hypoxanthine-guanine phosphoribosyltransferase (hgprt) locus in human lymphoblastoid cells. Among the spontaneous mutants, 5/14 (36%) had detectable alterations in their restriction fragment pattern after hybridization with a human cDNA probe for hgprt. Of the 10 remaining mutants, 4 had partial HGPRT enzyme activity, which suggested that they contained point mutations. Among the 28 mutants induced by 150 rad of X-rays, 15 (54%) had deletions of part or all of the hgprt gene. 5 of the remaining 13 (18% overall) had partial HGPRT enzyme activity, which suggested that they contained point mutations. These data imply that in this human cell system, X-rays induce both point mutants which have residual enzyme activity as well as mutations involving relatively large deletions of DNA.  相似文献   

10.
Spontaneous and methyl methanesulphonate-induced HPRT-deficient mutants were analysed for changes in the hprt gene structure using multiplex polymerase chain reaction. The PCR amplification pattern of 21 MMS-induced mutations revealed one total deletion of the hprt coding exons and one small deletion within exon 5, while 19 mutants showed the V79 wild-type pattern. Molecular analysis of 30 spontaneous mutations revealed no mutants with amplification patterns which differed from those of wild-type cells. We further analysed MMS-induced mutants in a different V79 cell line with a high (40%) spontaneous deletion frequency. MMS caused a dose-dependent increase in the mutant frequency but the incidence of deletions was reduced to 6% at 2 × 10−4 M and to 13% at 5 × 10−4 M indicating that mainly point mutations were induced. The repair inhibitor cytosine arabinoside (araC) enhanced mutation induction by MMS but did not change the proportion of deletions in the mutation spectrum. The results indicate that different V79 cell lines spontaneously produce different amounts of deletion mutations. The frequency of MMS-induced deletions does not depend on the frequency of spontaneous deletions in a given cell line. The MMS-induced mutation spectrum seems to be unchanged even at high concentrations with a strong cytotoxic effect. Deletions are not increased as a consequence of araC-inhibited repair of MMS-inducd lesions.  相似文献   

11.
Independent spontaneous or ethyl methanesulphonate (EMS)-induced mutants lacking HPRT enzyme activity were analysed for changes in hprt gene structure. Of 21 spontaneous mutants, 6 had total gene deletions, 2 had partial gene deletions, and 13 were indistinguishable from wild-type by Southern analysis. In contrast a sample of 23 EMS-induced mutants, each of which showed potentially interesting characteristics (e.g. high reversion frequency, X-chromosome rearrangement), showed no detectable hprt gene changes. RNA isolated from 59 mutants with presumptive point mutations (13 spontaneous, 46 EMS-induced) was analysed on dot blots for changes in the amount of hprt mRNA. A wide range of mRNA levels was found, from mutants with undetectable amounts to those with more than wild-type amounts. However, Northern blots of all these mutant RNAs revealed only one (EMS-induced) mutation with a change in hprt mRNA size. Taken with our previously-published data on these mutants, it is argued that they represent a broad range of mutational types, and that the hprt gene mutation system provides a sensitive means of distinguishing mutational spectra of different DNA-damaging agents.  相似文献   

12.
The mutagenic epoxide metabolite of acrylonitrile, 2-cyanoethylene oxide (ANO), was used to treat human TK6 lymphoblasts (150 microM x 2 h ANO). A collection of hypoxanthine-phosphoribosyltransferase (hprt) mutants was isolated and characterized by dideoxy sequencing of cloned hprt cDNA. Base-pair substitution mutations in the hprt coding region were observed in 19/39 of hprt mutants: 11 occurred at AT base pairs and 8 at GC base pairs. Two -1 frameshift mutations involving GC bases were also observed. Approximately half (17/39) of the hprt mutants displayed the complete loss of single and multiple exons from hprt cDNA, as well as small deletions, some extending from exon/exon junctions. Southern blot analysis of 5 mutants with single exon losses revealed no visible alterations. Analysis of 1 mutant missing exons 3-6 in its hprt mRNA revealed a visible deletion in the corresponding region in its genomic DNA. The missing exon regions of 4 mutants (one each with exons 6, 7 and 8 loss and one mutant with a 17-base deletion of the 5' region of exon 9) were PCR amplified from genomic DNA and analyzed by Southern blot using exon-specific probes. The exons missing from the hprt mRNA were present in the genomic hprt sequence. DNA sequencing of the appropriate intron/exon regions of hprt genomic DNA from a mutant with exon 8 loss and a mutant exhibiting aberrant splicing in exon 9 revealed point mutations in the splice acceptor site of exon 8 (T----A) and exon 9 (A----G), respectively.  相似文献   

13.
DNA was analysed from a large set of hamster hprt gene mutants, some induced by ionising radiations and others occurring naturally, to identify those with large alterations in part of the gene. DNA from these mutants was restricted further with different endonucleases and probed to establish the patterns of restriction fragments remaining. Of 15 mutants characterized, one showed a duplication of part of the 5' end of the gene, and the remainder showed deletions of various sizes. It was possible to approximately locate the breakpoints of the deletions by comparison of fragment patterns to a recently-established map of the hamster gene. The relatively small number of mutants examined precludes rigorous analysis of the distribution of breakpoints in the hprt gene, but taken with other recent studies of deletion mutagenesis it is suggested that non-random induction or selection of this type of mutation may occur.  相似文献   

14.
Spontaneous and X-ray-induced mutants at the hypoxanthine phosphoribosyl transferase (HPRT) locus have been isolated from V79 Chinese hamster cells and characterized at the biochemical and cytogenetic levels. Fourteen spontaneous and 24 X-ray-induced clones were azaguanine and thioguanine resistant, did not grow in HAT medium (AZRTGRHATS) and failed to incorporate significant levels of [14C]hypoxyanthine. Cytogenetic analysis of two spontaneous and eight X-ray-induced mutants revealed no major X chromosome rearrangements. In two induced mutants, one of which was hypotetraploid (mode 35-39) with 2 X chromosomes, the short arm of the chromosome (Xp) was slightly shorter than normal. A third mutant was hyperdiploid (mode 22-23) compared with the parental clone (mode 21). When compared with wild-type clones, no other cytogenetic changes were evident in the remaining mutants. Analysis at the DNA level using a Chinese hamster HPRT cDNA probe showed major deletion of HPRT sequences in two and partial deletion in another two induced mutants. In two of the mutants with deletions of HPRT sequences there was a visible shortening of the Xp arm. In the other six mutants two spontaneous and four induced) no karyotypic changes or alterations in restriction fragment patterns were detected suggesting that they carry small deletions or point mutations at the HPRT locus.  相似文献   

15.
The human lymphoblast cell line TK6 was exposed to the alpha-particle-emitting radon daughter 212Bi by adding DTPA-chelated 212Bi directly to the cell suspension. Cytotoxicity and mutagenicity at two genetic loci were measured, and the molecular nature of mutant clones was studied by Southern blot analysis. Induced mutant fractions were 2.5 x 10(-5)/Gy at the hprt locus and 3.75 x 10(-5)/Gy at the tk locus. Molecular analysis of HPRT- mutant DNAs showed a high frequency (69%) of clones with partial or full deletions of the hprt gene among radiation-induced mutants compared with spontaneous mutants (31%). Chi-squared analyses of mutational spectra show a significant difference (P < or = 0.005) between spontaneous mutants and alpha-particle-induced mutants. Comparison with published studies of accelerator-produced heavy-ion exposures of TK6 cells indicates that the induction of mutations at the hprt locus, and perhaps a subset of mutations at the tk locus, is a simple linear function of particle fluence regardless of the ion species or its LET.  相似文献   

16.
We examined the influence of dose on the spectrum of mutations induced at the hypoxanthine guanine phosphoribosyltransferase (Hprt) locus in Chinese hamster ovary (CHO) cells. Independent CHO-K1 cell mutants at the Hprt locus were isolated from cells exposed to 0, 0.5, 1.5, 3.0 and 6.0 Gy (137)Cs gamma rays, and the genetic changes responsible for the mutations were determined by multiplex polymerase chain reaction (PCR)-based exon deletion analysis. We observed dose-dependent changes in mutation spectra. At low doses, the principal radiation-induced mutations were point mutations. With increasing dose, multibase deletion mutations became the predominant mutation type such that by 6.0 Gy, there were almost three times more deletion mutations than point mutations. The dose response for induction of point mutations was linear while that for multibase deletions fit a linear-quadratic response. There was a biphasic distribution of deletion sizes, and different dose responses for small compared to large deletions. The frequency of large (>36 kb) total gene deletions increased exponentially, implying that they develop from the interaction between two independent events. In contrast, the dose response for deletion mutations of less than 10 kb was nearly linear, suggesting that these types of mutations develop mostly from single events and not the interactions between two independently produced lesions. The observation of dose-dependent changes in radiation-induced mutation spectra suggests that the types of alterations and therefore the risks from low-dose radiation exposure cannot be easily extrapolated from high-dose effects.  相似文献   

17.
18.
A large series of independent mutants deficient in HPRT enzyme activity, isolated from V79-4 hamster cells (Brown and Thacker, 1984), were assessed for properties which reflect the nature of the genetic changes induced. A total of 88 mutants were screened, 43 isolated from gamma-ray-treated cultures and 45 induced by ethyl methanesulphonate (EMS). Firstly, each mutant was assayed for the presence of protein with the antigenic response of HPRT (cross-reacting material, CRM), using an antibody raised against partially purified V79-4 HPRT enzyme. In a competitive inhibition assay, 31% of EMS-induced mutants were CRM-positive compared to 7% of the gamma-ray series. Secondly, each mutant was tested for ability to revert to HPRT proficiency, either spontaneously or after treatment with the powerful mutagen ethyl nitrosourea (ENU). All except 2 of the EMS-induced mutants reverted with ENU, and many reverted spontaneously, under the given conditions. However reversion was not detected in about 80% of gamma-ray-induced mutants, suggesting that the types of forward mutation caused by ionizing radiation differ qualitatively from those caused by EMS. The EMS-induced mutations are likely to be mostly point mutations, with at least 40% of the missense type, while gamma-ray-induced mutations may arise mostly through larger genetic changes.  相似文献   

19.
DNA strand specificity for UV-induced mutations in mammalian cells.   总被引:29,自引:9,他引:20       下载免费PDF全文
The influence of DNA repair on the molecular nature of mutations induced by UV light (254 nm) was investigated in UV-induced hprt mutants from UV-sensitive Chinese hamster cells (V-H1) and the parental line (V79). The nature of point mutations in hprt exon sequences was determined for 19 hprt mutants of V79 and for 17 hprt mutants of V-H1 cells by sequence analysis of in vitro-amplified hprt cDNA. The mutation spectrum in V79 cells consisted of single- and tandem double-base pair changes, while in V-H1 cells three frameshift mutations were also detected. All base pair changes in V-H1 mutants were due to GC----AT transitions. In contrast, in V79 all possible classes of base pair changes except the GC----CG transversion were present. In this group, 70% of the mutations were transversions. Since all mutations except one did occur at dipyrimidine sites, the assumption was made that they were caused by UV-induced photoproducts at these sites. In V79 cells, 11 out of 17 base pair changes were caused by photoproducts in the nontranscribed strand of the hprt gene. However, in V-H1 cells, which are completely deficient in the removal of pyrimidine dimers from the hprt gene and which show a UV-induced mutation frequency enhanced seven times, 10 out of 11 base pair changes were caused by photoproducts in the transcribed strand of the hprt gene. We hypothesize that this extreme strand specificity in V-H1 cells is due to differences in fidelity of DNA replication of the leading and the lagging strand. Furthermore, we propose that in normal V79 cells two processes determine the strand specificity of UV-induced mutations in the hprt gene, namely preferential repair of the transcribed strand of the hprt gene and a higher fidelity of DNA replication of the nontranscribed strand compared with the transcribed strand.  相似文献   

20.
pSV2gpt-Transformed and wild-type Chinese hamster ovary (CHO) cell lines have been used to study radiation-induced mutation at the molecular level. The transformant, designated AS52, was constructed from a hypoxanthine-guanine phosphoribosyl transferase (HPRT)-deficient CHO cell line and contains a single, functional copy of the Escherichia coli xanthine-guanine phosphoribosyl transferase (XPRT) gene (gpt) stably integrated into the Chinese hamster genome. AS52 and wild-type CHO-K1-BH4 cells exhibit similar cytotoxic responses to uv light and X rays; however, significant differences occur in mutation induction at the gpt and hprt loci. A number of HPRT and XPRT mutants which arose following irradiation were analyzed by Southern-blot hybridization. Most XPRT (21/26) and all HPRT (23/23) mutants induced by uv light exhibited hybridization patterns indistinguishable from their parental cell lines. In contrast, all XPRT (26/26) and most HPRT mutants (15/21) induced by X irradiation contained deletion mutations affecting some or all of the gpt and hprt loci, respectively. These results indicate that X rays induce predominantly deletion mutations, while uv light is likely to induce point mutations at both loci.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号