首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effect of phenolic monomers on ruminal bacteria.   总被引:11,自引:10,他引:1       下载免费PDF全文
Ruminal bacteria were subjected to a series of phenolic compounds in various concentrations to acquire fundamental information on the influence on growth and the potential limits to forage utilization by phenolic monomers. Ruminococcus albus 7, Ruminococcus flavefaciens FD-1, Butyrivibrio fibrisolvens 49, and Lachnospira multiparus D-32 were tested against 1, 5, and 10 mM concentrations of sinapic acid, syringaldehyde, syringic acid, ferulic acid, vanillin, vanillic acid, p-coumaric acid, p-hydroxybenzaldehyde, p-hydroxybenzoic acid, and hydrocinnamic acid. Responses were variable and dependent on the phenolic compound and microbial species. Compounds especially toxic (i.e., resulting in poor growth, effect on several species, dose-related response) were p-coumaric acid and p-hydroxybenzaldehyde, and adaptation to the toxins did not occur after three 24-h periods. Syringic, p-hydroxybenzoic, and hydrocinnamic acids stimulated growth of all four species and also stimulated filter paper degradation by R. flavefaciens. None of the stimulatory compounds supported microbial growth in the absence of carbohydrates. In vitro dry matter digestibility of cellulose (Solka-Floc) was not stimulated by any of the phenolic compounds (10 mM), but the cinnamic acids and benzoic aldehydes (10 mM) reduced (P less than 0.05) digestion by the mixed population in ruminal fluid. Growth of R. flavefaciens in the presence of p-hydroxybenzoic acid (10 mM) or p-coumaric acid (5 mM) resulted in recognizable alterations in cell ultrastructure. Both phenolics caused a reduction in cell size (P less than 0.05), and p-coumaric acid caused a reduction in capsular size (P less than 0.05) and produced occasional pleomorphic cells.  相似文献   

2.
Previous studies on biological pretreatment of switchgrass by solid-state fermentation with Acidothermus cellulolyticus 11B have shown that inhibitory compounds prevent growth on untreated switchgrass. A. cellulolyticus was grown in liquid medium containing cellobiose with phenolic monomers added to determine if the phenolic compounds are one possible source of inhibition. Cinnamic acid derivatives (trans-p-coumaric, trans-ferulic, and hydrocinnamic acids), hydroxybenzoic acids (p-hydroxybenzoic, syringic, and vanillic acids), benzaldehydes (vanillin and p-hydroxybenzaldehyde), and condensed tannin monomers (catechin and epicatechin) were tested at levels up to 20 mM. All compounds exhibited a dose-response relationship and strongly inhibited growth at 20 mM. trans-p-Coumaric acid was found to be the strongest inhibitor of A. cellulolyticus growth, with a specific growth rate of 0.004 h(-1) at 1 mM (0.18 h(-1) without phenolic monomer). GC-MS and HPLC methods were used to confirm the presence of these phenolic compounds in switchgrass and measure the amounts extracted using different conditions. The amounts of phenolic compounds measured were found to be higher than the threshold for growth inhibition. Leaching with water at 55°C was inefficient at removing bound phenolics, whereas NaOH treatment improved efficiency. Phenolic compounds spiked into alkaline pretreated switchgrass were also found to inhibit growth of A. cellulolyticus in solid-state fermentation. However, addition of insoluble polyvinylpolypyrrolidone (PVPP) to switchgrass improved growth of A. cellulolyticus in liquid cultures, providing a possible approach for alleviating microbial inhibition due to phenolic compounds in lignocellulose.  相似文献   

3.
AIMS: To investigate the biotransformation of p-coumaric acid into p-hydroxybenzoic acid (p-HBA) by Paecilomyces variotii Bainier MTCC 6581. METHODS AND RESULTS: As a result of p-coumaric acid degradation by P. variotii, three phenolic metabolites, p-hydroxybenzaldehyde (p-HBAld), p-HBA and protocatechuic acid were formed. These phenolics were detected using TLC and HPLC. The identity of p-HBA and p-HBAld was further confirmed by mass spectrometry. Various analyses showed that 10.0 mmol l(-1) concentration of p-coumaric acid produced a maximum amount of p-hydroxybenzoic acid, 200 mg l(-1), into the medium at 37 degrees C with high-density cultures. CONCLUSIONS: A catabolic pathway of p-coumaric acid by the fungus P. variotii is suggested for the first time. During the process of p-coumaric acid degradation, p-HBA accumulated in the medium as the major degradation product. SIGNIFICANCE AND IMPACT OF THE STUDY: Microbial degradation of cinnamic acid and hydroxycinnamic acid has continued to be the focus of intensive study. The main goal was to identify the microbial species capable of converting these substances into commercially value-added products such as benzoic acid derivatives or aromatic aldehydes.  相似文献   

4.
Effect of phenolic compounds on the germination of six weeds species   总被引:8,自引:0,他引:8  
Low molecular weight phenolic compounds have been identified in fresh leaves and in soils in which leaves of five varieties of Capsicum annuum L. were decomposing. Six phenolic compounds were tested in laboratory bioassays for their allelopathic effects on germination and seedling growth of six weeds. Ferulic acid, gallic acid, p-coumaric acid, p-hydroxybenzoic acid, vanillic acid, and p-vanillin were bioassayed in concentrations of 10, 1, 0.1, and 0.01 mM. Equimolar mixtures containing all these phenolics were prepared at the final total concentration of 10, 1, 0.1, and 0.01 mM to test for possible interactive effects. Chenopodium album L., Plantago lanceolata L., Amaranthus retroflexus L., Solanum nigrum L., Cirsium sp. and Rumex crispus L. were the selected target weeds. The highest concentration of the compounds inhibited the germination of all these weeds, but lower concentrations had no effect or were stimulatory. However, effects varied with the weed species, the concentration of the compound tested and the compound itself. In assays with the mixture of phenolics we found evidence of some additive effects.  相似文献   

5.
High concentrations of hydroxycinnamic acids in the hemicellulosic fraction of dry season tropical grasses may influence the rate of microbial degradation of arabinoxylans by ruminant animals. The ability of 22 strains of Butyrivibrio fibrisolvens, other ruminal bacteria (Ruminococcus albus SY3, Ruminococcus flavefaciens RF1,Prevotella ruminicola AR20) and the ruminal phycomycete Neocallimastix patriciarum CX to digest the tropical grass Heteropogon contortus(spear grass) and hydrolyse esterified ferulic and p-coumaric acid was examined. Significant digestion (8-36%) of spear grass occurred with the B. fibrisolvens strains H17c, A38, LP92-1-1, 49,R. albus SY3 and N. patriciarum. Hydrolysis of ester-linked ferulic and p-coumaric acid occurred with all organisms except B. fibrisolvens strains GS113, OB156 and LP1028 and P. ruminicola AR20. The ratio of ferulic to p-coumaric acid hydrolysed by different strains of Butyrivibrio spp. varied markedly from 0.96 for AR 51 to 0.16 for A38. Butyrivibrios which were fibrolytic (H17c and A38) had higher extracellular cinnamoyl esterase activity than bacteria that did not digest spear grass fibre (LP 91-4-1 and AR 20) which had low activities or only produced cell associated enzyme. Cell associated and extracellular esterase activity were induced when Butyrivibrio spp. strains H17c, A38 and E14 and the Ruminococcus spp. were grown on birchwood xylan but induction did not occur to the same extent with N. patriciarum. This is the first reported observation of cinnamoyl esterase activity in the genus Ruminococcus. The fungus N. patriciarum had significantly higher digestibility of spear grass and solubilisation of phenolic acids than the bacteria. The study shows that high levels of extracellular cinnamoyl esterases are characteristic of a selection of fibre-degrading ruminal bacteria and fungi which probably indicates that these enzymes are common amongst xylanolytic ruminal microorganisms.  相似文献   

6.
Seven-day-old seedlings of cucumber (Cucumis sativus L.) cv. Wisconsin were treated with 0.1 mM solutions of cinnamic acid (ferulic and p-coumaric acids) and benzoic acid (p-hydroxybenzoic and vanillic acids) derivatives as stressors. The content of free and glucosylated soluble phenols and the activity of phenylalanine ammonia-lyase (E.C.4.3.1.5), phenol-β-glucosyltransferase (E.C.2.4.1.35.), and β-glucosidase (E.C.3.2.1.21.) in seedling roots as well as their length and fresh weight were examined. Changes in glucosylated phenolic content and phenol-β-glucosyltranspherase activity were observed under the influence of all phenolics applied. Treatment with ferulic and p-coumaric acids stimulated the increase of phenylalanine ammonia-lyase and β-glucosidase activity and slightly inhibited cucumber root growth.  相似文献   

7.
通过室内培养法,研究了不同浓度的阿魏酸、对羟基苯甲酸及其混合液对土壤氮素、与氮素转化相关的微生物和酶的影响。结果表明,10-4mol/L阿魏酸和对羟基苯甲酸使土壤铵态氮降低了11.18%和10.87%,硝态氮降低了6.33%和3.95%;10-3mol/L阿魏酸、对羟基苯甲酸及其混合液分别使可溶性有机氮降低了6.59%、10.16%和10.39%。阿魏酸、对羟基苯甲酸及其混合液抑制了氨化细菌、硝化细菌和反硝化细菌的生长,削弱了土壤脲酶与蛋白酶的活性。与对照相比,10-4mol/L混合液降低了26.04%的氨化细菌、30.79%的硝化细菌和16.74%的反硝化细菌。10-3mol/L阿魏酸减少了3.33%的土壤脲酶和20.87%的蛋白酶活性;10-3mol/L对羟基苯甲酸降低了土壤脲酶6.63%,蛋白酶22.94%;10-3mol/L混合液减少了土壤脲酶7.47%和蛋白酶23.79%。混合液对土壤氮素转化的抑制作用最强,表明阿魏酸和对羟基苯甲酸存在协同作用。阿魏酸和对羟基苯甲酸等酚酸类化合物通过抑制土壤氮素转化微生物及其酶活性,从而影响土壤氮素转化。  相似文献   

8.
Anti-oxidative compounds in barley tea   总被引:1,自引:0,他引:1  
Five phenolic compounds, p-hydroxyacetophenone, 5,7-dihydroxychromone, naringenin, quercetin, and iso-americanol A, were found first time in the barley tea, together with the known compounds, p-hydroxybenzaldehyde, 3,4-dihydroxybenzaldehyde, p-hydroxybenzoic acid, vanillic acid, and p-coumaric acid. The anti-oxidative properties were evaluated by measuring their peroxynitrite-scavenging activities. Among these compounds, 3,4-dihydroxybenzaldehyde, p-coumaric acid, quercetin, and isoamericanol A showed stronger activities than that of BHT (butylated hydroxytoluene) at 400 microM.  相似文献   

9.
AIM: To examine the effect of sulfur-containing compounds on the growth of anaerobic rumen fungi and the fibrolytic rumen bacteria Ruminococcus albus, Ruminococcus flavefaciens and Fibrobacter succinogenes in pure culture and within the cattle rumen. METHODS AND RESULTS: The effect of two reduced sulfur compounds, 3-mercaptopropionic acid (MPA) or 3-mercapto-1-propanesulfonic acid as the sole S source on growth of pure fibroyltic fungal and bacterial cultures showed that these compounds were capable of sustaining growth. An in vivo trial was then conducted to determine the effect of sulfur supplements (MPA and sodium sulfate) on microbial population dynamics in cattle fed the roughage Dichanthium aristatum. Real-time PCR showed significant increases in fibrolytic bacterial and fungal populations when cattle were supplemented with these compounds. Sulfate supplementation leads to an increase in dry matter intake without a change in whole tract dry matter digestibility. CONCLUSIONS: Supplementation of low S-containing diets with either sodium sulfate or MPA stimulates microbial growth with an increase in rumen microbial protein supply to the animal. SIGNIFICANCE AND IMPACT OF THE STUDY: Through the use of real-time PCR monitoring, a better understanding of the effect of S supplementation on discrete microbial populations within the rumen is provided.  相似文献   

10.
Seven-day-old seedlings of cucumber (Cucumis sativus L.) cv. Wisconsin were treated with 0.01, 0.1 and 0.5 mM solutions of derivatives of cinnamic acid (ferulic and p-coumaric acids) and benzoic acid (p-hydroxybenzoic and vanillic acids) as stress factors. In cucumber roots phenolics (free and glucosylated), phenol β-glucosyltransferase (E.C. 2.4.1.35) activity as well as membrane permeability were examined. The most intensive glucosylation took place in the first hour of stress duration in roots treated with 0.01 mM ferulic and p-coumaric acids and with 0.01 and 0.1 mM p-hydroxybenzoic and vanillic acids. At these concentrations a high phenol β-glucosyltransferase activity was found. The deterioration of capacity for phenolic glucosylation as well as the decrease of the phenol β-glucosyltransferase was observed at the higher concentrations. It was associated with increased membrane permeability.  相似文献   

11.
The stem borer Sesamia nonagrioides (Lefèbvre) is the most important insect pest of maize, Zea mays L., in northwestern Spain. Among the metabolites present in maize, phenolic compounds could play an important role in resistance. The objective of this work was to determine whether a relationship between phenols and the amount of resistance exists. Amounts of free phenolic compounds in the pith of 13 inbred maize lines that differ in resistance were measured. The phenolic compounds identified were p-coumaric acid, cafeic acid, ferulic acid, vanillic acid, syringic acid, chorogenic acid, sinapic acid, p-hydroxybenzoic acid, and vanillin. The amount of free p-coumaric acid was correlated with the resistance level. Higher quantities of p-coumaric in the pith could contribute to general resistance to stem borer attack. Jointly with ferulic acid, p-coumaric could provide resistance mechanisms through cell wall fortification and lignification. The other compounds showed no or an unclear relationship with resistance. The vanillic acid showed a decreased tendency after silking, when maize is most attractive for S. nonagrioides, suggesting this acid could act as a chemoattractant for S. nonagrioides larvae or adults. Future studies that focus on these phenolic compounds could be useful in understanding S. nonagrioides resistance.  相似文献   

12.
Aims: To determine the effect of several wine-associated, phenolic acids on the growth and viability of strains of Oenococcus oeni and Lactobacillus hilgardii. Methods and Results: Growth was monitored in ethanol-containing medium supplemented with varying concentrations of hydroxybenzoic acids (p-hydroxybenzoic, protocatechuic, gallic, vanillic and syringic acids) and hydroxycinnamic acids (p-coumaric, caffeic and ferulic acids). Progressive inactivation was monitored in ethanol-containing phosphate buffer supplemented in a similar manner to the growth experiments. Hydroxycinnamic acids proved to be more inhibitory to the growth of O. oeni than hydroxybenzoic acids. On the other hand, some acids showed a beneficial effect on growth of Lact. hilgardii. p-Coumaric acid showed the strongest inhibitory effect on growth and survival of both bacteria. Conclusions: Most phenolic acids had a negative effect on growth of O. oeni, for Lact. hilgardii this effect was only noted for p-coumaric acid. Generally, O. oeni was more sensitive to phenolic acid inactivation than Lact. hilgardii. Significance and Impact of the Study: Eight wine-derived, phenolic acids were compared for their effects on wine lactic acid bacteria. Results indicate that phenolic acids have the capacity to influence growth and survival parameters. The differences found between phenolic compounds could be related to their different chemical structures.  相似文献   

13.
Cysteine is commonly employed as the medium reductant for ruminal bacteria, but many ruminal bacteria can use cysteine as a source of nitrogen as well as sulfur. The objective of the present study was to test a combination of dithiothreitol and sulfide as possible reductant substitutes for cysteine in anaerobic media containing ammonia as the nitrogen source. The type of reductant (cysteine versus dithiothreitol-sulfide) and ammonia concentration did not alter growth rates of Prevotella ruminicola strain B,4 (P>0.15). However, growth rates in dithiothreitol-sulfide reduced media varied tremendously between individual organisms ranging from 0.10 h−1 for Ruminococcus flavefaciens to 1.6 h−1 for Streptococcus bovis grown in 1 mM NH3-N. At both 1 and 11 mM NH4Cl, Str. bovis strain JB1 exhibited the greatest growth rate followed by Str. bovis strain C277. Megasphaera elsdenii strain T81 and Ruminococcus flavefaciens strain FD1 had the lowest growth rates at both NH4Cl concentrations. Increasing NH4Cl concentration from 1 to 11 mM resulted in increased growth rates for Ruminobacter amylophilus strains H18 and 70 and Str. bovis strain C277 (P<0.05), and decreased growth rates for S. ruminantium subsp. lactilytica strain HD4 and Str. bovis strain JB1 (P<0.01). These results indicate that dithiothreitol and sulfide can be combined as reductants in nitrogen-free basal media for most ruminal bacterial species.  相似文献   

14.
The phenolic acid profile of honey depends greatly on its botanical and geographical origin. In this study, we carried out a quantitative analysis of phenolic acids in the ethyl acetate extract of 12 honeys collected from various regions in Greece. Our findings indicate that protocatechuic acid, p-hydroxybenzoic acid, vanillic acid, caffeic acid and p-coumaric acid are the major phenolic acids of the honeys examined. Conifer tree honey (from pine and fir) contained significantly higher concentrations of protocatechuic and caffeic acid (mean: 6640 and 397 µg/kg honey respectively) than thyme and citrus honey (mean of protocatechuic and caffeic acid: 437.6 and 116 µg/kg honey respectively). p-Hydroxybenzoic acid was the dominant compound in thyme honeys (mean: 1252.5 µg/kg honey). We further examined the antioxidant potential (ORAC assay) of the extracts, their ability to influence viability of prostate cancer (PC-3) and breast cancer (MCF-7) cells as well as their lowering effect on TNF- α-induced adhesion molecule expression in endothelial cells (HAEC). ORAC values of Greek honeys ranged from 415 to 2129 µmol Trolox equivalent/kg honey and correlated significantly with their content in protocatechuic acid (p<0.001), p-hydroxybenzoic acid (p<0.01), vanillic acid (p<0.05), caffeic acid (p<0.01), p-coumaric acid (p<0.001) and their total phenolic content (p<0.001). Honey extracts reduced significantly the viability of PC-3 and MCF-7 cells as well as the expression of adhesion molecules in HAEC. Importantly, vanillic acid content correlated significantly with anticancer activity in PC-3 and MCF-7 cells (p<0.01, p<0.05 respectively). Protocatechuic acid, vanillic acid and total phenolic content correlated significantly with the inhibition of VCAM-1 expression (p<0.05, p<0.05 and p<0.01 respectively). In conclusion, Greek honeys are rich in phenolic acids, in particular protocatechuic and p-hydroxybenzoic acid and exhibit significant antioxidant, anticancer and antiatherogenic activities which may be attributed, at least in part, to their phenolic acid content.  相似文献   

15.
Glutamate dehydrogenase (GDH) (L-glutamate:NADP+ oxidoreductase, deaminating, EC 1.4.1.4) from the cellulolytic ruminal bacterium Ruminococcus flavefaciens has been purified and characterized. The native enzyme and subunit are 280 and 48 kDa, respectively, suggesting that the native enzyme is a hexamer. The enzyme requires 0.5 M KCl for optimal activity and has a pH optimum of 6.9 to 7.0. The Kms for ammonia, alpha-ketoglutarate, and glutamate are 19, 0.41, and 62 mM, respectively. The sigmoidal NADPH saturation curve revealed positive cooperativity for the binding of this coenzyme. The first residue in the N-terminal amino acid sequence from R. flavefaciens GDH was alanine, suggesting that the protein may be modified posttranslationally. Comparison of the N-terminal sequence with those of Escherichia coli, Salmonella typhimurium, and Clostridium symbiosum revealed only 39% amino acid homologies. The GDH from R. flavefaciens was unique in that its specific activity was highest during ammonia-limited growth but was not affected by ammonia shock treatment (20 mM).  相似文献   

16.
trans-p-Coumaric acid inhibited the growth of Bacteroides ruminicola on both cellobiose and glucose, while trans-ferulic acid and vanillin retarded growth. The phenolic monomers varied in their potential to inhibit the Bacteroides succinogenes beta-glucosidase, carboxymethylcellulase, and xylanase, with p-coumaric acid being the most inhibitory. The B. ruminicola beta-glucosidase was inhibited less than 10% by all three compounds.  相似文献   

17.
A homogeneous preparation of exo-beta-1,4-glucanase A from Ruminococcus flavefaciens FD-1 was competitively inhibited by low concentrations (less than 3 mM) of methylcellulose. The enzyme was also sensitive to the surfactant properties of methylcellulose at high methylcellulose concentrations.  相似文献   

18.
A homogeneous preparation of exo-beta-1,4-glucanase A from Ruminococcus flavefaciens FD-1 was competitively inhibited by low concentrations (less than 3 mM) of methylcellulose. The enzyme was also sensitive to the surfactant properties of methylcellulose at high methylcellulose concentrations.  相似文献   

19.
Glutamate dehydrogenase (GDH) (L-glutamate:NADP+ oxidoreductase, deaminating, EC 1.4.1.4) from the cellulolytic ruminal bacterium Ruminococcus flavefaciens has been purified and characterized. The native enzyme and subunit are 280 and 48 kDa, respectively, suggesting that the native enzyme is a hexamer. The enzyme requires 0.5 M KCl for optimal activity and has a pH optimum of 6.9 to 7.0. The Kms for ammonia, alpha-ketoglutarate, and glutamate are 19, 0.41, and 62 mM, respectively. The sigmoidal NADPH saturation curve revealed positive cooperativity for the binding of this coenzyme. The first residue in the N-terminal amino acid sequence from R. flavefaciens GDH was alanine, suggesting that the protein may be modified posttranslationally. Comparison of the N-terminal sequence with those of Escherichia coli, Salmonella typhimurium, and Clostridium symbiosum revealed only 39% amino acid homologies. The GDH from R. flavefaciens was unique in that its specific activity was highest during ammonia-limited growth but was not affected by ammonia shock treatment (20 mM).  相似文献   

20.
trans-p-Coumaric acid inhibited the growth of Bacteroides ruminicola on both cellobiose and glucose, while trans-ferulic acid and vanillin retarded growth. The phenolic monomers varied in their potential to inhibit the Bacteroides succinogenes beta-glucosidase, carboxymethylcellulase, and xylanase, with p-coumaric acid being the most inhibitory. The B. ruminicola beta-glucosidase was inhibited less than 10% by all three compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号