首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Studies were carried out to assess the influence of nutrients, dissolved oxygen (DO) concentration, and nickel (Ni) on river biofilm development, structure, function, and community composition. Biofilms were cultivated in rotating annular reactors with river water at a DO concentration of 0.5 or 7.5 mg liter−1, with or without a combination of carbon, nitrogen, and phosphorus (CNP) and with or without Ni at 0.5 mg liter−1. The effects of Ni were apparent in the elimination of cyanobacterial populations and reduced photosynthetic biomass in the biofilm. Application of lectin-binding analyses indicated changes in exopolymer abundance and a shift in the glycoconjugate makeup of the biofilms, as well as in the response to all treatments. Application of the fluorescent live-dead staining (BacLight Live-Dead staining kit; Molecular Probes, Eugene, Oreg.) indicated an increase in the ratio of live to dead cells under low-oxygen conditions. Nickel treatments had 50 to 75% fewer ‘live’ cells than their corresponding controls. Nickel at 0.5 mg liter−1 corresponding to the industrial release rate concentration for nickel resulted in reductions in carbon utilization spectra relative to control and CNP treatments without nickel. In these cases, the presence of nickel eliminated the positive influence of nutrients on the biofilm. Other culture-dependent analyses (plate counts and most probable number) revealed no significant treatment effect on the biofilm communities. In the presence of CNP and at both DO levels, Ni negatively affected denitrification but had no effect on hexadecane mineralization or sulfate reduction. Analysis of total community DNA indicated abundant eubacterial 16S ribosomal DNA (rDNA), whereas Archaea were not detected. Amplification of the alkB gene indicated a positive effect of CNP and a negative effect of Ni. The nirS gene was not detected in samples treated with Ni at 0.5 mg liter−1, indicating a negative effect on specific populations of bacteria, such as denitrifiers, resulting in a reduction in diversity. Denaturing gradient gel electrophoresis revealed that CNP had a beneficial impact on biofilm bacterial diversity at high DO concentrations, but none at low DO concentrations, and that the negative effect of Ni on diversity was similar at both DO concentrations. Notably, Ni resulted in the appearance of unique bands in 16S rDNA from Ni, DO, and CNP treatments. Sequencing results confirmed that the bands belonged to bacteria originating from freshwater and marine environments or from agricultural soils and industrial effluents. The observations indicate that significant interactions occur between Ni, oxygen, and nutrients and that Ni at 0.5 mg liter−1 may have significant impacts on river microbial community diversity and function.  相似文献   

2.
Biofilms were cultivated on polycarbonate strips in rotating annular reactors using South Saskatchewan River water during the fall of 1999 and the fall of 2001. The reactors were supplemented with carbon (glucose), nitrogen (NH(4)Cl), phosphorus (KH(2)PO(4)), or combined nutrients (CNP), with or without hexadecane. The impact of these treatments on nitrification and on the exopolysaccharide composition of river biofilms was determined. The results showed that the biofilms had higher NH4(+) oxidation, NO3(-) production, and N2O production activities in fall 1999 than fall 2001 when grown with CNP but had higher activities in fall 2001 than fall 1999 when grown with individual nutrients. The exopolysaccharide amounts and proportions were generally higher in fall 1999 than fall 2001, as a consequence of the higher nutrient levels in the river water in the first year of this study. The addition of P and especially CNP stimulated NH4(+) oxidation by the biofilms, showing a P limitation in this river ecosystem. The presence of hexadecane negatively affected these activities and lowered the amounts of exopolysaccharides in CNP and P biofilms in fall 1999 but increased the biofilm activities and exopolysaccharide amounts in CNP biofilm in fall 2001. Antagonistic, synergistic, and independent effects between nutrients and hexadecane were also observed. This study demonstrated that the biofilm autotrophic nitrification activity in the South Saskatchewan River was limited by P, that this activity and the exopolysaccharide amounts and proportions were dependent on the nutrient concentrations in the river water, and suggested that exopolysaccharides may play a protective role for biofilm microorganisms against toxic pollutants.  相似文献   

3.
In this study, an experiment was carried out to study the process of stress adaptation in Lemna gibba grown under nickel stress (0-20 mg Ni L(-1)). The results showed that Ni concentrations in plants increased with increasing Ni supply levels and reached a maximum of 142.82 mg.kg1 DW at 0.5 mg x L(-1) Ni treatments. The level of photosynthetic pigments (Chl a, Chi b, and total Chl) and soluble proteins increased upon exposure to high Ni concentrations. At the same time, the level of malondialdehyde (MDA) increased with increasing Ni concentration. These results suggested an alleviation of stress that was presumably the results of antioxidants such as superoxide dismutase (SOD), catalase (CAT) which generally increased linearly with increasing Ni levels. In addition, the proline content in L. gibba increased with increasing nickel levels. Our present work concluded that Lemna gibba has a high level of nickel tolerance and accumulation. We also found that moderate nickel treatment (0.05-5 mg x L(-1)) alleviated oxidative stress in plants, while the addition of higher amounts of nickel (10-20 mg x L(-1)) could cause an increasing generation of ROS, which was effectively scavenged by the antioxidative system. Therefore, L. gibba may be used as a phytoremediator in moderately polluted aquatic ecosystems.  相似文献   

4.
The effect of phototrophic biofilm activity on advective transport of cadmium (Cd), copper (Cu), nickel (Ni), and lead (Pb) in sandy sediments was examined using percolated columns. Cd and Ni in the effluent exhibited clear diel cycles in biofilm-containing columns, with concentrations at the end of dark periods exceeding those during illumination by up to 4.5- and 10-fold for Ni and Cd, respectively. Similar cycles were not observed for Pb or Cu. Breakthrough of the latter metals was greatly retarded and incomplete relative to Cd and Ni, and trends in biofilm treatments did not differ greatly from those in control columns. Inhibition of photosystem II by DCMU (3-(3,4-dichlorophenyl)-1,1-dimethylurea) proved that diel cycles of Cd and Ni were controlled by oxygenic photosynthesis, and microsensor measurements showed that metal cycles closely matched metabolic activity-driven pH variations. The sorption edge pH for the sand/biofilm substrate followed the order Ni > Cd > Cu > Pb, and for Ni and Cd, was within the pH 7?C10 range observed in the biofilm-containing column. Adsorption dynamics over the light periods matched pH increases, but desorption during dark periods was incomplete and slower than the rate of change of pH. Over a diel cycle, desorption was less than adsorption, resulting in net binding of dissolved metals due to the biofilm metabolic activity. Extraction with selective reagents indicated that the adsorbed metals were readily exchangeable, and potentially bioavailable. Thus, phototrophic benthic biofilms can control the transport of some metals across the sand?Cwater interface, and processes in this very thin surficial layer should be considered when evaluating chemical fluxes in permeable sediments.  相似文献   

5.
In this study, individual treatments of human lymphocytes with Ni(II) [0.5–25 μM], Cr(VI) [0.65–1.30 μM], UV-light or X-rays induced SCEs in a dose-dependent fashion, and combined treatments of Ni(II) with Cr(VI), UV-light or X-rays interacted antagonistically. Nickel, at environmentaly relevant exposure levels, cna have the effect in complex mixtures of reducing an otherwise positive SCE response and could lead to underestimating human exposures to certain classes of chemicals or radiation. Furthermore, our data indicate that antagonism may occure when human lymphocytes are exposed simultaneously to Ni(II) and Cr(VI), suggesting an explanation for epidemiological studies reporting conflicting results for cytogenetic effects in lymphocytes of workers exposed to chromium and nickel.  相似文献   

6.
Nickel deficiency diminishes sperm quantity and movement in rats   总被引:3,自引:0,他引:3  
Early studies on nickel essentiality with rats and goats indicated that nickel deprivation impaired reproductive performance. Nickel also has been found to influence cyclic nucleotide gated channels (CNG); these types of channels are important in sperm physiology. Thus, two experiments were conducted to test the hypothesis that nickel deficiency affects sperm physiology in a manner consistent with nickel having an essential function related to CNG channel functions. The experiments were factorially arranged with four treatment groups of eight weanling rats in each. In experiment 1, the treatments were supplemental dietary nickel of 0 and 1 mg/kg and N ω -nitro-l-arginine methyl ester (l-NAME, a nitric oxide synthase inhibitor) added to the drinking water (50 mg/100 mL) the last 3 wk of an 8-wk experiment. In experment 2, the treatments were supplemental dietary nickel at 0 and 1 mg/kg and supplemental dietary sodium chloride (NaCl) at 0 and 80 g/kg. The NaCl and l-NAME variables were included to act as stressors affecting CNG channel activity. The basal diet contained per kilogram about 27 μg of nickel and 1 g of sodium. After 8 wk in experiment 1 and 16 wk in experiment 2, urine while fasting and testes and epididymis in both experiments, and seminal vesicles and prostates in experiment 2 were harvested for analysis. Nickel deprivation significantly decreased spermatozoa motility and density in the epididymides, epididymal transit time of spermatozoa, and testes sperm production rate. Nickel deficiency also significantly decreased the weights of the seminal vesicles and prostate glands. Excessive NaCl had no effect on sperm physiology; however, it decreased prostate gland weights. The findings support the hypothesis that nickel has an essential function that possibly could affect reproductive performance in higher animals, perhaps through affecting a CNG channel function. Part of the data was presented at the Experimental Biology 2001 Meeting, Orlando, FL, March 31–April 4, 2001. (F. H. Nielsen, E. O. Uthus and K. Yokoi, Dietary nickel deprivation decreases sperm motility and evokes hypertension in rats, FASEB J. 15, A972 (2001), and K. Yokoi, E. O. Uthus and F. H. Nielsen, Nickel deficiency induces renal damages and hypertension in rats which is augmented by sodium chloride, FASEB J. 15, A973 (2001). The US Department of Agriculture, Agricultural Research Service, Northern Plains Area, is an equal opportunity/affirmative action employer and all agency services are available without discrimination. Mention of a trademark or proprietary product does not constitute a guarantee or warranty of the product by the US Department of Agriculture and does not imply its approval to the exclusion of the products that may also be suitable.  相似文献   

7.
Biofilms were cultivated on polycarbonate strips in rotating annular reactors using South Saskatchewan River water during the fall of 1999 and the fall of 2001, supplemented with carbon (glucose), nitrogen (NH4Cl), phosphorus (KH2PO4), or combined nutrients (CNP), with or without hexadecane, a model compound representing aliphatic hydrocarbons used to simulate a pollutant. In fall 1999 and fall 2001, comparable denitrification activities and catabolic potentials were observed in the biofilms, implying that denitrifying populations showed similar activity patterns and catabolic potentials during the fall from year to year in this river ecosystem, when environmental conditions were similar. Both nirS and nirK denitrification genes were detected by PCR amplification, suggesting that both denitrifying bacterial subpopulations can potentially contribute to total denitrification. Between 91.7 and 99.8% of the consumed N was emitted in the form of N2, suggesting that emission of N2O, a major potent greenhouse gas, by South Saskatchewan River biofilms is low. Denitrification was markedly stimulated by the addition of CNP, and nirS and nirK genes were predominant only in the presence of CNP. In contrast, individual nutrients had no impact on denitrification and on the occurrence of nirS and nirK genes detected by PCR amplification. Similarly, only CNP resulted in significant increases in algal and bacterial biomass relative to control biofilms. Biomass measurements indicated a linkage between autotrophic and heterotrophic populations in the fall 1999 biofilms. Correlation analyses demonstrated a significant relationship (P < or = 0.05) between the denitrification rate and the biomass of algae and heterotrophic bacteria but not cyanobacteria. At the concentration assessed (1 ppb), hexadecane partially inhibited denitrification in both years, slightly more in the fall of 2001. This study suggested that the response of the anaerobic heterotrophic biofilm community may be cyclic and predictable from year to year and that there are interactive effects between nutrients and the contaminant hexadecane.  相似文献   

8.
Chlorhexidine is a common-use antibacterial agent found in a range of personal-care products. We used rotating annular reactors to cultivate river biofilms under the influence of chlorhexidine or its molar equivalent in nutrients. Studies of the degradation of [(14)C]chlorhexidine demonstrated that no mineralization of the compound occurred. During studies with 100 microg liter(-1) chlorhexidine, significant changes were observed in the protozoan and micrometazoan populations, the algal and cyanobacterial biomass, the bacterial biomass, and carbon utilization. Denaturing gradient gel electrophoresis (DGGE) in combination with statistical analyses showed that the communities developing under control and 100 microg liter(-1) chlorhexidine were significantly different. At 10 microg liter(-1) chlorhexidine, there was significantly increased algal and cyanobacterial biomass while the bacterial biomass was not significantly affected (P < 0.05). No significant effects on protozoan or metazoan grazing were detected at the 10-microg liter(-1) chlorhexidine level. Fluorescent in situ hybridization indicated a significant reduction in the abundance of betaproteobacteria and gammaproteobacteria (P < 0.05). Archaeal cell counts were significantly reduced by both chlorhexidine and nutrient treatments. DGGE and statistical analyses indicated that 10 microg liter(-1) chlorhexidine and molar equivalent nutrient treatments were significantly different from control communities. In contrast to community level observations, toxicological testing with a panel of cyanobacteria, algae, and protozoa indicated no detectable effects at 10, 50, and 100 microg liter(-1) chlorhexidine. Thus, community level assessment indicated a risk of low levels of chlorhexidine in aquatic habitats while conventional approaches did not.  相似文献   

9.
An experiment was performed to determine the effect of a mild magnesium deprivation on calcium metabolism and bone composition, shape, and strength in rats, and whether nickel deprivation exacerbated or alleviated any changes caused by the magnesium deprivation. Weanling male rats were assigned to groups of 10 in a factorial arrangement, with variables being supplemental nickel at 0 and 1 mg/kg and magnesium at 250 and 500 mg/kg of diet. The basal diet contained about 30 ng Ni/g. Urine was collected for 24 h during wk 8 and 12, and rats were euthanized 13 wk after dietary treatments began. Mild magnesium deprivation decreased the urinary excretion of calcium and increased the tibia concentration of calcium but did not affect femur shape or strength (measured by a three-point bending test). Dietary nickel did not alter these effects of magnesium deficiency. Nickel deprivation increased the urinary excretion of phosphorus and the femur strength variables maximum force and moment of inertia. Strength differences might have been the result of changes in bone shape. Magnesium deprivation did not alter the effects of nickel deprivation on bone. The findings indicate that a mild magnesium deficiency affects calcium metabolism but that this does not markedly affect bone strength or shape, and these effects are not modified by dietary nickel. Also, nickel deprivation affects phosphorus metabolism and bone strength and shape; these effects apparently are not caused by changes in magnesium metabolism or utilization.  相似文献   

10.
Domshlak MG  Elakov AL  Osipov AN 《Genetika》2005,41(7):894-901
We examined the effects of nickel sulfate at doses 0.5 to 5.0 mg/kg (LD50) on the frequency of dominant lethal mutations and two-strand DNA breaks (TSBs) in germline cells and on an increase in frequency in gene mutations W(y) in pigment cells of first-generation mice. The results indicated that spermatogenesis stages most sensitive to nickel sulfate (at a dose of 1.0 mg/kg) are spermatozoids, early spermatids, late spermatocytes, and stem spermatogonia. No statistically significant increase in the total TSB level was detected in spermatozoids 4 weeks after exposure. At the same time, a significant (P < 0.05) increase in percentage of cells with an extremely high level of DNA fragmentation (supposedly apoptotic cells) was observed upon exposure at a dose of 0.5 mg/kg. Nickel sulfate at doses of 5.0 and 1.0 mg/kg induced a marked increase in the c-kit gene expression in pigment cells of heterozygous first-generation WR mice as compared to control (P < 0.001). It was shown that the nonobservable adverse effect level (NOAEL) of nickel sulfate on the dominant lethal mutation frequency and gene mutations was 1/200 LD50, while the lowest observable adverse effect level (LOAEL) was 1/100 LD50.  相似文献   

11.
The effect of the washing aid T-128 (generally recognized as safe [GRAS] formulation, composed mainly of phosphoric acid and propylene glycol) on inactivation of Salmonella and Pseudomonas populations in biofilms on stainless steel was evaluated under conditions of increasing organic matter loads in chlorinated wash solutions dominated by hypochlorous acid. Biofilms were formed statically on stainless steel coupons suspended in 2% lettuce extract after inoculation with Salmonella enterica serovar Thompson or Newport or with Pseudomonas fluorescens. Coupons with biofilms were washed in chlorine solutions (0, 0.5, 1, 2, 5, 10, or 20 mg/liter at pH 6.5, 5.0 and 2.9), with or without T-128, and with increasing loads of organic matter (0, 0.25, 0.5, 0.75, or 1.0% lettuce extract). Cell populations on coupons were dispersed using intermittent, pulsed ultrasonication and vortexing and enumerated by colony counts on XLT-4 or Pseudomonas agars. Cell responses to fluorescent viability staining of biofilm treatment washing solutions were examined using confocal laser scanning microscopy. Results showed that 0.1% T-128 (without chlorine) reduced P. fluorescens biofilm populations by 2.5 log(10) units but did not reduce Salmonella populations. For both Salmonella and Pseudomonas, the sanitizing effect of free chlorine (1.0 to 5.0 mg/liter) was enhanced (P < 0.05) when it was combined with T-128. Application of T-128 decreased the free chlorine depletion rate caused by increasing organic matter in wash waters and significantly (P < 0.05) augmented inactivation of bacteria in biofilms compared to treatments without T-128. Image analysis of surfaces stained with SYTO and propidium iodide corroborate the cultural assay results showing that T-128 can aid in reducing pathogen viability in biofilms and thus can aid in sanitizing stainless steel contact surfaces during processing of fresh-cut produce.  相似文献   

12.
Anabaena inaequalis was sensitive to nickel ion in the order of decreasing sensitivity of growth, photosynthesis, and acetylene reduction. At a culture density of 9 x 10(4) cells per millilitre, growth after 12 days was completely inhibited by 0.125 ppm (microgram/mL) Ni2+. Nickel caused the increase of both the lag phase of growth and the culture doubling time, and caused the retardation phase to be sooner. Photosynthesis and acetylene reduction were completely inhibited by 10 and 20 ppm Ni2+, respectively, at a cell concentration of 1.3 x 10(6) cells per millilitre. Preincubation for 24 h in the presence of nickel ion significantly increased the sensitivity of photosynthesis and acetylene reduction. Under these conditions acetylene reduction was more sensitive than photosynthesis. Nickel ion reduced culture growth by 35% at a level of 0.05 ppm and inhibited that culture's acetylene-reducing ability by 29% while leaving photosynthesis unaffected. Nickel caused some damage to filament apical cells and induced pigment bleaching in aged cultures. Nickel toxicity was proposed to be due to poisoning of intracellular enzyme systems by nickel ions.  相似文献   

13.
Tissue copper concentration in whole Cambarus bartoni, exposed for four weeks to 0.125, 0.25 and 0.5 mg Cu/litre and 0.2, 0.4 and 0.8 mg Ni/litre in the laboratory at 18 degrees C, showed a linear relationship with exposure time at 0.25 and 0.5 mg Cu/litre; the regression slope at 0.5 mg Cu/litre (r2 = 0.218; 0.001 less than P less than or equal to 0.05) was approximately two times higher than that at 0.25 mg Cu/litre (r2 = 0.148; 0.025 less than P less than or equal to 0.05). Regression analysis of nickel concentrations in whole crayfish as a function of exposure time showed a third degree polynomial relationship at 0.4 (y = 49.989 + 14.77x - 15.395x2 + 3.194x3) and 0.8 (y = 52.053 + 37.05x - 28.933x2 + 5.133x3) mg Ni/litre, as well as in the control (y = 49.126 + 27.253x - 23.468x2 + 4.168x3) (y = Ni concentration; x = exposure time in weeks), suggesting the occurrence of a Ni flux every 4 weeks.  相似文献   

14.
The information content and responsiveness of microbial biofilm community structure, as an integrative indicator of water quality, was assessed against short-term changes in oxygen and nutrient loading in an open-water estuarine setting. Biofilms were grown for 7-day periods on artificial substrates in the Pensacola Bay estuary, Florida, in the vicinity of a wastewater treatment plant (WWTP) outfall and a nearby reference site. Substrates were deployed floating at the surface and near the benthos in 5.4 m of water. Three sampling events covered a 1-month period coincident with declining seasonal WWTP flow and increasing dissolved oxygen (DO) levels in the bottom waters. Biomass accumulation in benthic biofilms appeared to be controlled by oxygen rather than nutrients. The overriding effect of DO was also seen in DNA fingerprints of community structure by terminal restriction fragment length polymorphism (T-RFLP) of amplified 16S rRNA genes. Ribotype diversity in benthic biofilms at both sites dramatically increased during the transition from hypoxic to normoxic. Terminal restriction fragment length polymorphism patterns showed pronounced differences between benthic and surface biofilm communities from the same site in terms of signal type, strength, and diversity, but minor differences between sites. Sequencing of 16S rRNA gene clone libraries from benthic biofilms at the WWTP site suggested that low DO levels favored sulfate-reducing prokaryotes (SRP), which decreased with rising oxygen levels and increasing overall diversity. A 91-bp ribotype in the CfoI-restricted 16S rRNA gene T-RFLP profiles, indicative of SRP, tracked the decrease in relative SRP abundance over time.  相似文献   

15.
BackgroundNickel has been identified as an important newer trace mineral playing essential role in animals however, its precise mechanism of action in the body is yet to be determined. Interaction of Ni with other essential minerals is suggested in reports limited to lab animals and needs to be explored further in large animals.AimThis study was conducted to study the influence of Ni supplementation at different levels, on minerals and health status of crossbred dairy calves.MethodTwenty-four Karan Fries crossbred (Tharparkar × Holstein Friesian) male dairy calves were selected based on body weight (137.09 ± 5.68) and age (10.78 ± 0.61) and were divided into 4 treatment groups (n = 6) given basal diet supplemented with 0 (Ni0), 5 (Ni5), 7.5 (Ni7.5) and 10 (Ni10) ppm Ni/kg of DM. Nickel was supplemented in the form of nickel sulphate hexahydrate (NiSO4.6 H2O) solution. To ensure the intake of the required amount of nickel by each animal, the calculated quantity of solution was mixed with 250 g concentrate mixture and offered individually to the calves. The calves were fed total mixed ration (TMR) consisting of green fodder, wheat straw and concentrate mixture in the ratio of 40:20:40 and the nutritional requirements were met according to NRC (2001) guidelines. Growth performance was recorded at fortnightly interval whereas, plasma minerals, haematology, antioxidant and immunity parameters were studied at monthly interval during the 150-day experimental period. Nutrient utilization and mineral balances were estimated with the help of a metabolism trial conducted at the end of feeding trial.ResultsSupplementation of Ni exhibited no influence on dry matter intake (DMI), body weight, average daily gain (ADG) and nutrient digestibility of dairy calves. However, the absorption and balance of minerals such as Ni, Fe, Cu, Zn and their respective plasma concentration increased (P < 0.05) with Ni supplementation and highest values were observed in calves fed 10 mg Ni/kg DM. The red blood cell (RBC) count, haemoglobin (Hb) concentration, haematocrit (HCT) and activity of superoxide dismutase (SOD) and catalase antioxidant enzymes showed highest increase (P < 0.05) in calves supplemented with Ni at level of 10 mg/kg DM as compared to other treatment groups. However, white blood cell (WBC) count, glutathione peroxidase (GPx), total antioxidant status (TAS), total immunoglobulins and IgG plasma concentration remained unaltered with addition of different levels of Ni in the diet of calves.ConclusionsThe supplementation of Ni at level of 10 mg/kg DM shows a positive effect on status of trace minerals such as Fe, Cu, Zn and improves the physiological conditions and health status of crossbred dairy calves indicated by improved haematology and antioxidant parameters.  相似文献   

16.
Biofilms were cultivated on polycarbonate strips in rotating annular reactors using South Saskatchewan River water during the fall of 1999 and the fall of 2001, supplemented with carbon (glucose), nitrogen (NH4Cl), phosphorus (KH2PO4), or combined nutrients (CNP), with or without hexadecane, a model compound representing aliphatic hydrocarbons used to simulate a pollutant. In fall 1999 and fall 2001, comparable denitrification activities and catabolic potentials were observed in the biofilms, implying that denitrifying populations showed similar activity patterns and catabolic potentials during the fall from year to year in this river ecosystem, when environmental conditions were similar. Both nirS and nirK denitrification genes were detected by PCR amplification, suggesting that both denitrifying bacterial subpopulations can potentially contribute to total denitrification. Between 91.7 and 99.8% of the consumed N was emitted in the form of N2, suggesting that emission of N2O, a major potent greenhouse gas, by South Saskatchewan River biofilms is low. Denitrification was markedly stimulated by the addition of CNP, and nirS and nirK genes were predominant only in the presence of CNP. In contrast, individual nutrients had no impact on denitrification and on the occurrence of nirS and nirK genes detected by PCR amplification. Similarly, only CNP resulted in significant increases in algal and bacterial biomass relative to control biofilms. Biomass measurements indicated a linkage between autotrophic and heterotrophic populations in the fall 1999 biofilms. Correlation analyses demonstrated a significant relationship (P ≤ 0.05) between the denitrification rate and the biomass of algae and heterotrophic bacteria but not cyanobacteria. At the concentration assessed (1 ppb), hexadecane partially inhibited denitrification in both years, slightly more in the fall of 2001. This study suggested that the response of the anaerobic heterotrophic biofilm community may be cyclic and predictable from year to year and that there are interactive effects between nutrients and the contaminant hexadecane.  相似文献   

17.
This study was conducted to investigate the beneficial role of naringin on nickel induced nephrotoxicity. Nickel (Ni) (20 mg/kg body weight (b.w.) was administered intraperitoneally (i.p.) for 20 days. Naringin was administered orally (20, 40 and 80 mg/kg b.w.) with i.p. administration of Ni. Ni administration increased the levels of serum urea, uric acid and creatinine with a significant decrease in creatinine clearance and decreased levels of urea, uric acid and creatinine in urine. The levels of lipid peroxidation markers and nickel concentration in blood and kidney were also increased. While, the activities of enzymic and non-enzymic antioxidants were decreased. Treatment with naringin attenuated the alterations in the renal and urine markers, decreasing lipid peroxidation markers, increasing the antioxidant cascade and decreasing the nickel concentration in blood and kidney. All these changes were supported by histopathological observations. These findings demonstrate that naringin exerts a protective effect against nickel toxicity.  相似文献   

18.
Exogenous 63Ni was incorporated into carbon monoxide dehydrogenase when Acetogenium kivui ATCC 33488 was cultivated in the presence of 63NiCl2. The capacity for nickel (63NiCl2) transport was greatest with cells harvested from the mid- to late exponential phases of growth. Nickel transport was linear during the transport assay period and displayed saturation kinetics. The apparent Km and Vmax for nickel transport by H2-cultivated cells approximated 2.3 microM Ni and 670 pmol of Ni transported per min per mg (dry weight) of cells, respectively. The nickel transport system was not appreciably affected by the other divalent cations that were tested, and transported nickel was not readily exchangeable with exogenous nickel. Nickel transport was stimulated by glucose or H2 and was decreased by various metabolic inhibitors; however, nickel uptake by glucose- and H2-cultivated cells displayed differential sensitivities to ATPase inhibitors.  相似文献   

19.
Nickel transport by the thermophilic acetogen Acetogenium kivui.   总被引:3,自引:1,他引:2       下载免费PDF全文
Exogenous 63Ni was incorporated into carbon monoxide dehydrogenase when Acetogenium kivui ATCC 33488 was cultivated in the presence of 63NiCl2. The capacity for nickel (63NiCl2) transport was greatest with cells harvested from the mid- to late exponential phases of growth. Nickel transport was linear during the transport assay period and displayed saturation kinetics. The apparent Km and Vmax for nickel transport by H2-cultivated cells approximated 2.3 microM Ni and 670 pmol of Ni transported per min per mg (dry weight) of cells, respectively. The nickel transport system was not appreciably affected by the other divalent cations that were tested, and transported nickel was not readily exchangeable with exogenous nickel. Nickel transport was stimulated by glucose or H2 and was decreased by various metabolic inhibitors; however, nickel uptake by glucose- and H2-cultivated cells displayed differential sensitivities to ATPase inhibitors.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号