首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A Th2 cytokine, IL-4, induces various chemokines from epidermal keratinocytes which play crucial roles in the pathogenesis of skin disorders such as atopic dermatitis. In contrast, the role of IFN-γ, a Th1 cytokine, on eosinophilic skin inflammation is unclear. This study investigated the effects of IFN-γ on IL-4-induced production of eotaxin-3/CCL26, a potent chemoattractant to eosinophils, in normal human epidermal keratinocytes (NHEK). When the cells were stimulated with IL-4 and IFN-γ simultaneously, IL-4-induced CCL26 production was attenuated. In contrast, prior stimulation with IFN-γ enhanced IL-4-induced CCL26 production. NHEK constitutively expressed type 1 IL-4 receptor, and expression at the cell surface was upregulated by stimulation with IFN-γ. This upregulation resulted in an enhanced IL-4-mediated cellular signal. These results indicate that IFN-γ has opposite effects on IL-4-induced CCL26 production in NHEK depending on the time of exposure. Thus, changes in IL-4R expression by IFN-γ might modulate eosinophilic skin inflammation.  相似文献   

2.
Garat C  Arend WP 《Cytokine》2003,23(1-2):31-40
Interleukin-1 (IL-1) plays a pivotal role in the pathogenesis of inflammatory bowel disease (IBD). IL-1 action is regulated in part by its naturally occurring inhibitor, the IL-1 receptor antagonist (IL-1Ra). Four splice variants of IL-1Ra gene product have been described, one secreted (sIL-1Ra) and three intracellular (icIL-1Ra1, 2, 3). Although sIL-1Ra and icIL-1Ra1 bind to type I IL-1 receptor with equal affinity, icIL-1Ra1 may carry out unique functions inside cells. The goal of this study was to determine the role of icIL-1Ra1 in regulation of cytokine-induced IL-6 and IL-8 production in Caco-2 intestinal epithelial cells. icIL-1Ra1 inhibited IL-1-induced IL-6 and IL-8 production. IL-1 activated all three mitogen-activated protein (MAP) kinase family members: p38 MAP kinase, extracellular-regulated kinases (ERK), and c-Jun amino-terminal kinases (JNK). Specific inhibitors of each MAP kinase pathway decreased IL-1-induced IL-6 and IL-8 production. Overexpression of icIL-1Ra1 inhibited p38 MAP kinase phosphorylation, but had no effect on ERK and JNK phosphorylation. In addition, icIL-1Ra1 inhibited nuclear translocation of NF-kappaB after IL-1 stimulation. In conclusion, these data indicate that icIL-1Ra1, acting in the cytoplasm of Caco-2 cells, decreased IL-1-induced IL-6 and IL-8 production. This intracellular anti-inflammatory activity of icIL-1Ra1 was mediated through inhibition of p38 MAP kinase and NF-kappaB signal transduction pathways.  相似文献   

3.
The interleukin-1 receptor antagonist (IL-1ra) inhibits the binding of interleukin-1 (IL-1) to T-cell lines possessing the type I IL-1 receptor; evidence has been published (Carter, D. B., Deibel, M. R. J., Dunn, C. J., Tomich, C. S., Laborde, A. L., Slightom, J. L., Berger, A. E., Bienkowski, M. J., Sun, F. F., McEwan, R. N., Harris, P. K. W., Yem, A. W., Waszak, G. A., Chosay, J. G., Sieu, L. C., Hardee, M. M., Zurcher-Neely, H. A., Reardon, I. M., Heinrickson, R. L., Truesdell, S. E., Shelly, J. A., Eessalu, T. E., Taylor, B. M., and Tracey, D. E. (1990) Nature 344, 633-638; Hannum, C. H., Wilcox, C. J., Arend, W. P., Joslin, F. G., Dripps, D. J., Heimdal, P. L., Armes, L. G., Sommer, A., Eisenberg, S. P., and Thompson, R. C. (1990) Nature 343, 336-340) that IL-Ira does not bind to the type II IL-1 receptor (IL-1RtII). In this study we examined the ability of human recombinant IL-1ra to block the binding of IL-1 to the IL-1RtII on human polymorphonuclear leukocytes (PMN) and Raji human B-lymphoma cells. The binding of 125I-IL-1 beta to PMN was competively inhibited by IL-1ra. IL-1 beta was more potent in inhibiting the binding of 125I-IL-1 beta than IL-1ra. Incubating PMN with 125I-IL-1ra in the presence of increasing concentrations of IL-1 beta or IL-1ra showed that IL-1 beta was an approximately 40-fold more potent inhibitor of binding of 125I-IL-1ra than unlabeled IL-1ra. The IL-1ra was approximately 500-fold less potent in inhibiting the binding of 125I-IL-1 alpha than IL-1 alpha. IL-1ra was also able to competitively inhibit binding of 125I-IL-1 beta to Raji cells. PMN or Raji cells were also incubated with 125I-IL-1 in the absence or presence of IL-1 or IL-1ra. After cross-linking of IL-1 to cells followed by specific immunoprecipitation, sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed a band at 85 kDa corresponding to the 68-kDa IL-1RtII. However, in the presence of an excess of either unlabeled IL-1 or IL-1ra, the 85-kDa IL-1.IL-1RtII complex was not present. These findings demonstrate that the IL-1ra recognizes and blocks IL-1 binding to the IL-1RtII.  相似文献   

4.
The COP9 signalosome (CSN) is a complex of eight proteins first identified as a repressor of plant photomorphogenesis. A protein kinase activity associated with the COP9 signalosome has been reported but not identified; we present evidence for inositol 1,3,4-trisphosphate 5/6-kinase (5/6-kinase) as a protein kinase associated with the COP9 signalosome. We have shown that 5/6-kinase exists in a complex with the eight-component COP9 signalosome both when purified from bovine brain and when transfected into HEK 293 cells. 5/6-kinase phosphorylates the same substrates as those of the COP9 signalosome, including IkappaBalpha, p53, and c-Jun but fails to phosphorylate several other substrates, including c-Jun 1-79, which are not substrates for the COP9-associated kinase. Both the COP9 signalosome- associated kinase and 5/6-kinase are inhibited by curcumin. The association of 5/6-kinase with the COP9 signalosome is through an interaction with CSN1, which immunoprecipitates with 5/6-kinase. In addition, the inositol kinase activity of 5/6-kinase is inhibited when in a complex with CSN1. We propose that 5/6-kinase is the previously described COP9 signalosome-associated kinase.  相似文献   

5.
COP1 and COP9 signalosome (CSN) are key regulators of plant light responses and development. Deficiency in either COP1 or CSN causes a constitutive photomorphogenic phenotype. Through coordinated actions of nuclear- and cytoplasmic-localization signals, COP1 can respond to light signals by differentially partitions between nuclear and cytoplasmic compartments. Previous genetic analysis in Arabidopsis indicated that the nuclear localization of COP1 requires CSN, an eight-subunit heteromeric complex. However the mechanism underlying the functional relationship between COP1 and CSN is unknown. We report here that COP1 weakly associates with CSN in vivo . Furthermore, we report on the direct interaction involving the coiled-coil domain of COP1 and the N-terminal domain of the CSN1 subunit. In onion epidermal cells, expression of CSN1 can stimulate nuclear localization of GUS-COP1, and the N-terminal domain of CSN1 is necessary and sufficient for this function. Moreover, CSN1-induced COP1 nuclear localization requires the nuclear-localization sequences of COP1, as well as its coiled-coil domain, which contains both the cytoplasmic localization sequences and the CSN1 interacting domain. We also provide genetic evidence that the CSN1 N-terminal domain is specifically required for COP1 nuclear localization in Arabidopsis hypocotyl cells. This study advances our understanding of COP1 localization, and the molecular interactions between COP1 and CSN.  相似文献   

6.
The COP9 Signalosome (CSN) is a highly conserved eight subunit protein complex associated with a wide range of essential biological functions in eukaryotic cells, and directly involved in processes including deneddylation, phosphorylation, and ubiquitination. Despite its significant role, very few studies have been undertaken to reveal the interactions between the CSN and its binding partners, and none in human T cells. Here we present a purification method for the CSN and binding proteins via the Streptavidin-Binding Peptide (SBP) fused to CSN Subunit 1 (CSN1). Using this method, coupled with liquid chromatography-mass spectrometry analysis, we identified all eight subunits of the CSN, as well as expected and putative novel binding partners such as a tumor suppressor under the control of Cullin4a-ligase complex; Neurofibromin 2 (Merlin). This work presents a method for fast, reliable, and specific affinity-based purification of a protein complex from a nonadherent cell line. The purification of the CSN and binding partners from T cells can elucidate the roles of CSN in a cell type where it has never been studied before. This proteomic-based approach can broaden our understanding of the functions of the CSN in contexts such as viral-host interactions or immune activation in their natural milieu.  相似文献   

7.

Background

Variation at the PPARG locus may influence susceptibility to type 2 diabetes and related traits. The Pro12Ala polymorphism may modulate receptor activity and is associated with protection from type 2 diabetes. However, there have been inconsistent reports of its association with obesity. The silent C1431T polymorphism has not been as extensively studied, but the rare T allele has also been inconsistently linked to increases in weight. Both rare alleles are in linkage disequilibrium and the independent associations of these two polymorphisms have not been addressed.

Results

We have genotyped a large population with type 2 diabetes (n = 1107), two populations of non-diabetics from Glasgow (n = 186) and Dundee (n = 254) and also a healthy group undergoing physical training (n = 148) and investigated the association of genotype with body mass index. This analysis has demonstrated that the Ala12 and T1431 alleles are present together in approximately 70% of the carriers. By considering the other 30% of individuals with haplotypes that only carry one of these polymorphisms, we have demonstrated that the Ala12 allele is consistently associated with a lower BMI, whilst the T1431 allele is consistently associated with higher BMI.

Conclusion

This study has therefore revealed an opposing interaction of these polymorphisms, which may help to explain previous inconsistencies in the association of PPARG polymorphisms and body weight.  相似文献   

8.
In the last several years, multiple lines of evidence have suggested that the COP9 signalosome (CSN) plays a significant role in the regulation of multiple cancers and could be an attractive target for therapeutic intervention. First, the CSN plays a key role in the regulation of Cullin-containing ubiquitin E3 ligases that are central mediators of a variety of cellular functions essential during cancer progression. Second, several studies suggest that the individual subunits of the CSN, particularly CSN5, might regulate oncogenic and tumor suppressive functions independently of, or coordinately with, the CSN holocomplex. Thus, deregulation of CSN subunit function can have a dramatic effect on diverse cellular functions, including the maintenance of DNA fidelity, cell cycle control, DNA repair, angiogenesis, and microenvironmental homeostasis that are critical for tumor development. Additionally, clinical studies have suggested that the expression or localization of some CSN subunits correlate to disease progression or clinical outcome in a variety of tumor types. Although the study of CSN function in relation to tumor progression is in its infancy, this review will address current studies in relation to cancer initiation, progression, and potential for therapeutic intervention.  相似文献   

9.
10.
11.
Mice lacking the gene for the IL-1R antagonist (IL-1ra) show abnormal development and homeostasis as well as altered responses to infectious and inflammatory stimuli. A reduction in the level of IL-1 signaling, either by deletion of the receptor or increased expression of IL-1ra, does not affect development or homeostasis, but does alter immune responses. In this study we use genetic epistasis to investigate the interdependence of selected genes in the IL-1 family in the regulation of these developmental and immunological processes. Deletion of the gene encoding the type I IL-1R (IL-1RI) is epistatic to deletion of the IL-1ra gene. Therefore, all functions of IL-1ra depend upon the presence of a functional receptor; there is no other target. Similarly, overexpression of the mRNA encoding the secreted form of IL-1ra is epistatic to deletion of the receptor antagonist, leaving the role of the intracellular splice variants of IL-1ra unknown. The abnormal development of IL-1ra-deficient mice is probably due to chronic overstimulation of the proinflammatory pathway via IL-1, but a clear single pathological defect is not apparent. These results support the model that the only essential function of IL-1ra in both health and disease is competitive inhibition of the IL-1RI.  相似文献   

12.
13.
Interleukin (IL)-17 is a proinflammatory cytokine that is produced by activated memory CD4 T cells, which regulates pulmonary neutrophil emigration by the induction of CXC chemokines and cytokines. IL-17 constitutes a potential target for pharmacotherapy against exaggerated neutrophil recruitment in airway diseases. As a cytoprotective and anti-inflammatory gaseous molecule, carbon monoxide (CO) may also regulate IL-17-induced inflammatory responses in pulmonary cells. Herein, we examine the production of cytokine IL-6 induced by IL-17 and the effect of CO on IL-17-induced IL-6 production in human pulmonary epithelial cell A549. We first show that IL-17 can induce A549 cells to release IL-6 and that CO can markedly inhibit IL-17-induced IL-6 production. IL-17 activated the ERK1/2 MAPK pathway but did not affect p38 and JNK MAPK pathways. CO exposure selectively attenuated IL-17-induced ERK1/ERK2 MAPK activation without significantly affecting either JNK or p38 MAPK activation. Furthermore, in the presence of U0126 and PD-98059, selective inhibitors of MEK1/2, IL-17-induced IL-6 production was significantly attenuated. We conclude that CO inhibits IL-17-stimulated inflammatory response via the ERK1/2-dependent pathway.  相似文献   

14.
15.
16.
In previous studies, we have shown that Th2 cell differentiation is diminished but Th1 cell differentiation is increased in Stat5a-deficient (Stat5a(-/-)) CD4(+) T cells. In the present study, we clarified the molecular mechanisms of Stat5a-mediated Th cell differentiation. We found that enhanced Th1 cell differentiation and the resultant IFN-gamma production played a dominant inhibitory role in the down-regulation of IL-4-induced Th2 cell differentiation of Stat5a(-/-) CD4(+) T cells. We also found that IL-12-induced Stat4 phosphorylation and Th1 cell differentiation were augmented in Stat5a(-/-) CD4(+) T cells. Importantly, the expression of suppressor of cytokine signaling (SOCS)3, a potent inhibitor of IL-12-induced Stat4 activation, was decreased in Stat5a(-/-) CD4(+) T cells. Moreover, a reporter assay showed that a constitutively active form of Stat5a but not Stat6 activated the SOCS3 promoter. Furthermore, chromatin immunoprecipitation assays revealed that Stat5a binds to the SOCS3 promoter in CD4(+) T cells. Finally, the retrovirus-mediated expression of SOCS3 restored the impaired Th cell differentiation of Stat5a(-/-) CD4(+) T cells. These results suggest that Stat5a forces the Th1/Th2 balance toward a Th2-type by preventing IL-12-induced Th1 cell differentiation through the induction of SOCS3.  相似文献   

17.
The COP9 signalosome is a conserved protein complex composed of eight subunits. Individual subunits of the complex have been linked to various signal transduction pathways leading to gene expression and cell cycle control. However, it is not understood how each subunit executes these activities as part of a large protein complex. In this study, we dissected structure and function of the subunit 1 (CSN1 or GPS1) of the COP9 signalosome relative to the complex. We demonstrated that the C-terminal half of CSN1 encompassing the PCI domain is responsible for interaction with CSN2, CSN3, and CSN4 subunits and is required for incorporation of the subunit into the complex. The N-terminal fragment of CSN1 cannot stably associate with the complex but can translocate to the nucleus on its own. We further show that CSN1 or the N-terminal fragment of CSN1 (CSN1-N) can inhibit c-fos expression from either a transfected template or a chromosomal transgene ( fos-lacZ). Moreover, CSN1 as well as CSN1-N can potently suppress signal activation of a AP-1 promoter and moderately suppress serum activation of a SRE promoter, but is unable to inhibit PKA-induced CRE promoter activity. We conclude that the N-terminal half of CSN1 harbors the activity domain that confers most of the repression functions of CSN1 while the C-terminal half allows integration of the protein into the COP9 signalosome.  相似文献   

18.
The hepatic acute phase response induced by the administration of interleukin (IL)-2 is most likely mediated by secondary cytokines. In this investigation, we examined the role of endogenous IL-1 in the synthesis of the hepatic acute phase protein serum amyloid A (SAA) during IL-2 treatment. The injection of IL-2 induced SAA gene expression in the liver. The concurrent administration of an IL-1 receptor antagonist (IL-1RA) markedly reduced hepatic SAA mRNA levels and, to a lesser extent, SAA protein levels in the serum. Although IL-1 is an inducer of IL-6 production, the administration of the IL-1RA had no effect on circulating IL-6 levels in IL-2-treated mice. These findings suggest that the production of IL-1 is an important factor in the induction of SAA mRNA in mice undergoing immunotherapy with IL-2.  相似文献   

19.
Cultured dermal fibroblasts from systemic sclerosis patients express higher levels of intracellular IL-1 alpha than fibroblasts from healthy controls. In this study, we found that systemic sclerosis dermal fibroblasts also express higher levels of the intracellular isoform of IL-1 receptor antagonist (icIL-1Ra) than normal fibroblasts after stimulation with IL-1 beta or TNF-alpha. A possible relationship between elevated precursor IL-1 alpha (preIL-1 alpha) and elevated icIL-1Ra was investigated by transducing normal dermal fibroblasts to overexpress preIL-1 alpha, preIL-1 beta, or icIL-1Ra. Fibroblasts that overexpressed icIL-1Ra did not have elevated levels of IL-1 alpha. On the other hand, fibroblasts that overexpressed preIL-1 alpha had at least 4-fold higher basal levels of icIL-1Ra than control fibroblasts and 4-fold higher levels of icIL-1Ra after induction with IL-1 beta or TNF-alpha. Fibroblasts overexpressing preIL-1 beta did not exhibit elevated icIL-1Ra. The differences in icIL-1Ra protein levels were reflected in differences in mRNA. In contrast, IL-1-stimulated levels of MCP-1 and IL-6 were not different in control and preIL-1 alpha-transduced fibroblasts. Addition of neutralizing anti-IL-1 alpha Abs to fibroblast cultures did not diminish basal or stimulated levels of icIL-1Ra in the preIL-1 alpha-transduced cells, supporting an intracellular site of action of preIL-1 alpha. This is the first report of an association between intracellular levels of these IL-1 family members. We hypothesize that intracellular preIL-1 alpha participates in the regulation of icIL-1Ra.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号