首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
根据对TMV高效复制和基因表达的顺式作用元件的分析,在体外重组包装了2个缺失型TMV粒子:TMVRP和TMVCP。前者缺失了TMV外壳蛋白CP基因的3′端及后序区域,后者缺失了大部分复制酶基因。把两者分别或共同电击感染烟草原生质体:1.用CP抗体进行免疫印渍检测,单独感染的原生质体内的CP在16小时内无增加,而在共同感染的原生质体内,CP在感染2小时后就开始明显增加。2.用RT一两次PCR法专一地检测新生负链RNA的合成情况,在单独感染的原生质体内没有检测到,但在混合感染的原生质体内在感染1小时后就检测到CP基因特异的负链RNA的形成,并用Southern杂交得到进一步验证。这些结果表明,复制酶缺失型TMVCP内的CP基因不能表达,但可以在TMVRP存在时,通过其所表达的复制酶互补作用得到复制从而有效表达.  相似文献   

2.
M Ishikawa  T Meshi  T Ohno    Y Okada 《Journal of virology》1991,65(2):861-868
The time course of accumulation of viral plus-strand RNAs (genomic RNA and subgenomic mRNA for the coat protein) and minus-strand RNA in tobacco protoplasts synchronously infected with tobacco mosaic virus (TMV) RNA was examined. In protoplasts infected with the wild-type TMV L RNA, the plus and minus strands accumulated differently not only in quantity but also in the outline of kinetics. The time courses of accumulation of the genomic RNA and coat protein mRNA were similar: they became detectable at 2 or 4 h postinoculation (p.i.), and their accumulation increased until 14 to 18 h p.i. The accumulation rate reached the maximum at about 4 h p.i. and then gradually decreased. In contrast, accumulation of the minus-strand RNA ceased at 6 to 8 h p.i., at which time the plus-strand accumulation was already about 100 times greater and still continued vigorously. This specific halt of minus-strand accumulation was not caused exclusively by encapsidation of the genomic RNA, because a similar halt was observed upon infection with a deletion mutant that lacks the 30K and coat protein genes. Upon infection with a mutant that could not produce the 130K protein (one of the two proteins that are thought to be involved in viral RNA replication), the accumulation levels of both plus and minus strands were lower than that of the parental wild-type virus. Given these observations, possible mechanisms of TMV replication are discussed.  相似文献   

3.
以绿色荧光蛋白(green fluorescent protein, GFP)为报告基因,将含TMV表达载体的质粒p35S-30B:GFP转化农杆菌EHA 105,通过渗透法把经MMA诱导后的农杆菌悬浮液注射到本氏烟叶片内,测定了鸦胆子素D (Bruceine D) 对烟草植株内TMV的增殖和运动的抑制作用;通过PEG介导法把p35S-30B:GFP转化到本氏烟叶肉细胞原生质体内,测定了Bruceine D对烟草原生质体中TMV增殖的抑制效果.结果表明,在10 μg/mL浓度下,Bruceine D不仅可抑制烟草叶肉细胞原生质体中TMV的增殖,还可以抑制烟草接种叶中TMV向茎部及植株上部叶片移动,且对寄主植物不造成明显的毒害.  相似文献   

4.
Tobacco mosaic virus (TMV) encodes a 30-kDa movement protein (MP) which enables viral movement from cell to cell. It is, however, unclear whether the 126- and 183-kDa replicase proteins are involved in the cell-to-cell movement of TMV. In the course of our studies into TMV-R, a strain with a host range different from that of TMV-U1, we have obtained an interesting chimeric virus, UR-hel. The amino acid sequence differences between UR-hel and TMV-U1 are located only in the helicase-like domain of the replicase. Interestingly, UR-hel has a defect in its cell-to-cell movement. The replication of UR-hel showed a level of replication of the genome, synthesis, and accumulation of MP similar to that observed in TMV-U1-inoculated protoplasts. Such observations support the hypothesis that the replicase coding region may in some fashion be involved in cell-to-cell movement of TMV.  相似文献   

5.
The replication of tobacco mosaic virus (TMV) RNA involves synthesis of a negative-strand RNA using the genomic positive-strand RNA as a template, followed by the synthesis of positive-strand RNA on the negative-strand RNA templates. Intermediates of replication isolated from infected cells include completely double-stranded RNA (replicative form) and partly double-stranded and partly single-stranded RNA (replicative intermediate), but it is not known whether these structures are double-stranded or largely single-stranded in vivo. The synthesis of negative strands ceases before that of positive strands, and positive and negative strands may be synthesized by two different polymerases. The genomic-length negative strand also serves as a template for the synthesis of subgenomic mRNAs for the virus movement and coat proteins. Both the virus-encoded 126-kDa protein, which has amino-acid sequence motifs typical of methyltransferases and helicases, and the 183-kDa protein, which has additional motifs characteristic of RNA-dependent RNA polymerases, are required for efficient TMV RNA replication. Purified TMV RNA polymerase also contains a host protein serologically related to the RNA-binding subunit of the yeast translational initiation factor, eIF3. Study of Arabidopsis mutants defective in RNA replication indicates that at least two host proteins are needed for TMV RNA replication. The tomato resistance gene Tm-1 may also encode a mutant form of a host protein component of the TMV replicase. TMV replicase complexes are located on the endoplasmic reticulum in close association with the cytoskeleton in cytoplasmic bodies called viroplasms, which mature to produce 'X bodies'. Viroplasms are sites of both RNA replication and protein synthesis, and may provide compartments in which the various stages of the virus mutiplication cycle (protein synthesis, RNA replication, virus movement, encapsidation) are localized and coordinated. Membranes may also be important for the configuration of the replicase with respect to initiation of RNA synthesis, and synthesis and release of progeny single-stranded RNA.  相似文献   

6.
The tobacco etch potyvirus (TEV) polyprotein is proteolytically processed by three viral proteinases (NIa, HC-Pro, and P1). While the NIa and HC-Pro proteinases each provide multiple functions essential for viral infectivity, the role of the P1 proteinase beyond its autoproteolytic activity is understood poorly. To determine if P1 is necessary for genome amplification and/or virus movement from cell to cell, a mutant lacking the entire P1 coding region (delta P1 mutant) was produced with a modified TEV strain (TEV-GUS) expressing beta-glucuronidase (GUS) as a reporter, and its replication and movement phenotypes were assayed in tobacco protoplasts and plants. The delta P1 mutant accumulated in protoplasts to approximately 2 to 3% the level of parental TEV-GUS, indicating that the P1 protein may contribute to but is not strictly required for viral RNA amplification. The delta P1 mutant was capable of cell-to-cell and systemic (leaf-to-leaf) movement in plants but at reduced rates compared with parental virus. This is in contrast to the S256A mutant, which encodes a processing-defective P1 proteinase and which was nonviable in plants. Both delta P1 and S256A mutants were complemented by P1 proteinase expressed in a transgenic host. In transgenic protoplasts, genome amplification of the delta P1 mutant relative to parental virus was stimulated five- to sixfold. In transgenic plants, the level of accumulation of the delta P1 mutant was stimulated, although the rate of cell-to-cell movement was the same as in nontransgenic plants. Also, the S256A mutant was capable of replication and systemic infection in P1-expressing transgenic plants. These data suggest that, in addition to providing essential processing activity, the P1 proteinase functions in trans to stimulate genome amplification.  相似文献   

7.
The experimental host range of Odontoglossum ringspot virus (ORSV), a member of the tobamoviruses, includes several species of Nicotiana , but not N. sylvestris . However, ORSV was able to replicate in protoplasts from N. sylvestris leaves. By using the green fluorescent protein (GFP) as a marker inserted into ORSV, it was found that a small number of single epidermal cells became infected in mechanically inoculated leaves, but the virus did not move cell to cell. The ORSV movement protein (MP) and coat protein (CP) were examined for their ability to effect movement by substitution into Tobacco mosaic virus (TMV) hybrids. Both proteins and the 3' non-translated region (NTR) of ORSV allowed movement of TMV hybrids in N. sylvestris . These results suggested that the inability of ORSV to move in N. sylvestris was due to the replicase gene or the 5'NTR. One possibility was that the replicase gene could indirectly affect movement by failing to produce subgenomic (sg) RNAs for expression of MP or CP, but this appeared not to be the case as ORSV replicated and produced MP and CP sgRNAs, both of which were translated in N. sylvestris protoplasts. Additionally, genomic RNA was encapsidated into virions in N. sylvestris protoplasts. Because the 5'NTR permitted efficient replication and production of replicase proteins, these findings suggest that the replicase of ORSV is responsible for the defect in cell-to-cell movement of ORSV in N. sylvestris .  相似文献   

8.
Virus expression vectors based on the tobacco mosaic virus (TMV) genome are powerful tools for foreign gene expression in plants. However, the inclusion of increased genetic load in the form of foreign genes limits the speed of systemic plant invasion and host range of these vectors due to reduced replication and movement efficiencies. To improve these properties of TMV vectors, the gene encoding the 30-kDa movement protein was subjected to mutagenesis and DNA shuffling. A vector that expresses the green fluorescent protein was used to allow simple visual discrimination of mutants with enhanced movement phenotypes. An initial round of mutagenesis produced 53 clones with a faster local movement phenotype. Two subsequent rounds of DNA shuffling produced additional clones that showed further increased rates of cell-to-cell movement and degrees of systemic invasion in restrictive hosts. Surprisingly, sequence analysis of the best performing shuffled genes revealed alterations resulting in coding and silent changes in the movement protein gene. Separation of these coding and silent alterations into distinct gene backgrounds revealed that each contributes to improved movement protein function to differing degrees. The resulting vectors demonstrate that the complex activities of the movement protein genes of viruses can be evolved to have improved movement phenotypes, as evidenced by cell-to-cell and systemic invasion. The experiments produced improved vectors that will be of use both for in planta functional screening and for therapeutic protein production and demonstrated the power of shuffling for plant virus vector improvement.  相似文献   

9.
Tobacco etch potyvirus engineered to express the reporter protein beta-glucuronidase (TEV-GUS) was used for direct observation and quantitation of virus translocation in plants. Four TEV-GUS mutants were generated containing capsid proteins (CPs) with single amino acid substitutions (R154D and D198R), a double substitution (DR), or a deletion of part of the N-terminal domain (delta N). Each modified virus replicated as well as the parental virus in protoplasts, but was defective in cell-to-cell movement through inoculated leaves. The R154D, D198R and DR mutants were restricted essentially to single, initially infected cells. The delta N variant exhibited slow cell-to-cell movement in inoculated leaves, but was unable to move systemically due to a lack of entry into or replication in vascular-associated cells. Both cell-to-cell and systemic movement defects of each mutant were rescued in transgenic plants expressing wild-type TEV CP. Cell-to-cell movement, but not systemic movement, of the DR mutant was rescued partially in transgenic plants expressing TEV CP lacking the C-terminal domain, and in plants expressing CP from the heterologous potyvirus, potato virus Y. Despite comparable levels of accumulation of parental virus and each mutant in symptomatic tissue of TEV CP-expressing transgenic plants, virions were detected only in parental virus- and delta N mutant-infected plants, as revealed using three independent assays. These data suggest that the potyvirus CP possesses distinct, separable activities required for virion assembly, cell-to-cell movement and long-distance transport.  相似文献   

10.
Thirteen mutations were introduced in the movement protein (MP) gene of Alfalfa mosaic virus (AMV) fused to the green fluorescent protein (GFP) gene and the mutant MP-GFP fusions were expressed transiently in tobacco protoplasts, tobacco suspension cells, and epidermal cells of tobacco leaves. In addition, the mutations were introduced in the MP gene of AMV RNA 3 and the mutant RNAs were used to infect tobacco plants. Ten mutants were affected in one or more of the following functions of MP: the formation of tubular structures on the surface of protoplasts, association with the endoplasmic reticulum (ER) of suspension cells and epidermal cells, targeting to punctate structures in the cell wall of epidermis cells, movement from transfected cells to adjacent cells in epidermis tissue, cell-to-cell movement, or long-distance movement in plants. The mutations point to functional domains of the MP and support the proposed order of events in AMV transport. Studies with several inhibitors indicate that actin or microtubule components of the cytoskeleton are not involved in tubule formation by AMV MP. Evidence was obtained that tubular structures on the surface of transfected protoplasts contain ER- or plasmalemma-derived material.  相似文献   

11.
p30, the protein required for cell-to-cell movement of tobacco mosaic virus (TMV), has a slightly reduced mobility on SDS-polyacrylamide gels when isolated by immunoprecipitation from TMV-infected protoplasts compared with that of p30 translated from viral RNA in vitro . Further investigation established a probable cause for the difference in mobility between the two: protoplasts incorporate [32P]orthophosphate into p30 at multiple sites, predominantly as phosphoserine. Tryptic peptide mapping reveals at least five internal phosphopeptides in p30, besides the C-terminal tryptic phosphopeptide already reported, involving at least two distinct domains of the protein (at residues 61–114 and residues 212–231), which may be substrates for different protein kinases. These structural results are consistent with a three-domain model for the TMV movement protein with two regulatory domains similar to that recently proposed on genetic grounds for dianthovirus movement proteins.  相似文献   

12.
M Ishikawa  S Naito    T Ohno 《Journal of virology》1993,67(9):5328-5338
For the multiplication of RNA viruses, specific host factors are considered essential, but as of yet little is known about this aspect of virus multiplication. To identify such host factors, we previously isolated PD114, a mutant of Arabidopsis thaliana, in which the accumulation of the coat protein of tobacco mosaic virus (TMV) in uninoculated leaves of an infected plant was reduced to low levels. The causal mutation, designated tom1, was single, nuclear, and recessive. Here, we demonstrate that the tom1 mutation affects the amplification of TMV-related RNAs in a single cell. When protoplasts were inoculated with TMV RNA by electroporation, the percentage of TMV-positive protoplasts (detected by indirect immunofluorescence staining with anti-TMV antibodies) was lower (about 1/5 to 1/10) among PD114 protoplasts than among wild-type protoplasts. In TMV-positive PD114 protoplasts, the amounts of the positive-strand RNAs (the genomic RNA and subgenomic mRNAs) and coat protein reached levels similar to, or slightly lower than, those reached in TMV-positive wild-type protoplasts, but the accumulation of the positive-strand RNAs and coat protein occurred more slowly than with the wild-type protoplasts. The parallel decrease in the amounts of the coat protein and its mRNA suggests that the coat protein is translated from its mRNA with normal efficiency. These observations support the idea that the TOM1 gene encodes a host factor necessary for the efficient amplification of TMV RNA in an infected cell. Furthermore, we show that TMV multiplication in PD114 protoplasts is severely affected by the coinoculation of cucumber mosaic virus (CMV) RNA. When PD114 protoplasts were inoculated with a mixture of TMV and CMV RNAs by electroporation, the accumulation of TMV-related molecules was approximately one-fifth of that in PD114 protoplasts inoculated with TMV RNA alone. No such reduction in the accumulation of TMV-related molecules was observed when wild-type protoplasts were inoculated with a mixture of TMV and CMV RNAs or when wild-type and PD114 protoplasts were inoculated with a mixture of TMV and turnip crinkle virus RNAs. These observations are compatible with a hypothetical model in which a gene(s) that is distinct from the TOM1 gene is involved in both TMV and CMV multiplication.  相似文献   

13.
Mutational analysis of the 5'-untranslated leader sequence (omega) of tobacco mosaic virus (TMV) was carried out to determine those sequences necessary for the translational enhancement associated with omega. Five deletion mutants, a single base substitution, and a 25 base replacement mutant were tested for alterations in omega's ability to enhance expression of beta-glucuronidase (GUS) mRNA in tobacco mesophyll protoplasts and Escherichia coli or chloramphenicol acetyltransferase (CAT) mRNA in Xenopus laevis oocytes. Alteration of an eight base subsequence required for the binding of a second ribosome resulted in the loss of translational enhancement in X. laevis oocytes but not in protoplasts. Substantial increases in enhancement were observed for several of the mutants in E. coli.  相似文献   

14.
应用电激法和聚乙二醇法以及脂质体协调的上述两种方法对烟草和青菜原生质体进行烟草花叶病毒TMV-RNA的导入试验,并应用酶标免疫技术、电镜观察、半叶接种和十二烷基磺酸钠-聚丙烯酰胺凝胶电泳(SDS-PAGE)等方法对在原生质体中增殖的TMV进行鉴定。实验证明,虽然电激法和聚乙二醇法均能有效地将外源病毒基因导入植物原生质体,但经阳离子脂质体处理后的TMV-RNA,其转染效率可提高10倍以上。TMV在原生质体转染48小时后达到复制高峰。SDS-PAGE显示,原生质体转染48小时后,除出现TMV外壳蛋白明显条带外,尚有1条分子量在50~55kd蛋白质条带也明显增强。这些研究结果对植物遗传工程和抗病毒基因有种研究提供重要的数据和基础。  相似文献   

15.
16.
Virus-encoded movement protein (MP) mediates cell-to-cell spread of tobacco mosaic virus (TMV) through plant intercellular connections, the plasmodesmata. The molecular pathway by which TMV MP interacts with the host cell is largely unknown. To understand this process better, a cell wall-associated protein that specifically binds the viral MP was purified from tobacco leaf cell walls and identified as pectin methylesterase (PME). In addition to TMV MP, PME is recognized by MPs of turnip vein clearing virus (TVCV) and cauliflower mosaic virus (CaMV). The use of amino acid deletion mutants of TMV MP showed that its domain was necessary and sufficient for association with PME. Deletion of the PME-binding region resulted in inactivation of TMV cell-to-cell movement.  相似文献   

17.
Tobacco mosaic virus (TMV) and Tomato mosaic virus (ToMV) are two closely related viruses in the genus Tobamovirus, but they induce obviously different sizes of necrotic lesions in tobacco plants containing the N gene. Comparison of the symptoms produced by TMV, ToMV and a chimaeric virus (T/OMP), in which the TMV movement protein (MP) gene was replaced by the ToMV MP gene, showed T/OMP caused necrotic lesions that were similar in size to those of ToMV in tobacco plants containing the N gene. The coat protein and MP of the three viruses accumulated in planta with similar levels, and the replication level of TMV and T/OMP in protoplasts also had no difference. Comparison of the activities of defense-related enzymes (PAL, POD and PPO) induced by the three viruses also showed that the variability of enzyme activity induced by T/OMP was similar to that induced by TMV, but different from that induced by ToMV. The results indicate that the size difference of necrotic lesions induced by TMV and ToMV in tobacco plants containing the N gene results from the functional difference of their MP genes.  相似文献   

18.
The Rx1 gene in potato confers extreme resistance to potato virus X (PVX). To investigate the mechanism and elicitation of Rx resistance, protoplasts of potato cv. Cara (Rx1 genotype) and Maris Bard (rx1 genotype) were inoculated with PVX and tobacco mosaic virus (TMV). At 24 h post-inoculation in Maris Bard protoplasts there was at least 100-fold more PVX RNA than in protoplasts of Cara. TMV RNA accumulated to the same level in both types of protoplast. However, when the TMV was inoculated together with PVX the accumulation of TMV RNA was suppressed in the Cara (Rx1 genotype) protoplasts to the same extent as PVX. The Rx1 resistance also suppressed accumulation of a recombinant TMV in which the coat protein gene was replaced with the coat protein gene of PVX. It is therefore concluded that Rx1-mediated resistance is elicited by the PVX coat protein, independently of any other proteins encoded by PVX. The domain of the coat protein with elicitor activity was localized by deletion and mutation analysis to the structural core of a non-virion form of the coat protein.  相似文献   

19.
Nicotiana benthamiana plants were transformed with the movement protein (MP) gene of tobacco mosaic virus (TMV), usingAgrobacterium-mediated transformation. Plants regenerated from the transformed cells accumulated 30-kDa MP and complemented the activity of TMV MP when infected with chimeric TMVs containing defective MR These transgenic plants displayed stunting, pale-green leaves, and starch accumulations, indicating that TMV MP altered the carbon partitioning for leaves involved in TMV cell-to-cell movement.  相似文献   

20.
During the systemic infection of plants by viruses, host factors play an important role in supporting virus multiplication. To identify and characterize the host factors involved in this process, we isolated an Arabidopsis thaliana mutant named RB663, in which accumulation of the coat protein (CP) of cucumber mosaic virus (CMV) in upper uninoculated leaves was delayed. Genetic analyses suggested that the phenotype of delayed accumulation of CMV CP in RB663 plants was controlled by a monogenic, recessive mutation designated cum2-1, which is located on chromosome III and is distinct from the previously characterized cum1 mutation. Multiplication of CMV was delayed in inoculated leaves of RB663 plants, whereas the multiplication in RB663 protoplasts was similar to that in wild-type protoplasts. This suggests that the cum2-1 mutation affects the cell-to-cell movement of CMV rather than CMV replication within a single cell. In RB663 plants, the multiplication of turnip crinkle virus (TCV) was also delayed but that of tobacco mosaic virus was not affected. As observed with CMV, the multiplication of TCV was normal in protoplasts and delayed in inoculated leaves of RB663 plants compared to that in wild-type plants. Furthermore, the phenotype of delayed TCV multiplication cosegregated with the cum2-1 mutation as far as we examined. Therefore, the cum2-1 mutation is likely to affect the cell-to-cell movement of both CMV and TCV, implying a common aspect to the mechanisms of cell-to-cell movement in these two distinct viruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号