首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A pollen diagram was constructed for the early- to mid-Holocene transition (ca. 7350–5600 cal. b.p./5400–3650 b.c.) from the Burmarrad ria located in NW Malta. The vegetation at ca. 7350–6960 cal. b.p./5400–5010 b.c. was characterized by an almost tree-less steppe-like open landscape. Early Holocene dry climatic conditions were most probably due to intensification of the subtropical monsoon circulation that strengthened the subtropical anticyclonic descent over the central Mediterranean and blocked the penetration of humid air masses from the North Atlantic Ocean. At ca. 6950 cal. b.p./5000 b.c., the steppe-like vegetation was suddenly replaced by a Mediterranean evergreen forest or dense scrub dominated by Pistacia cf. lentiscus trees. This event, which has simultaneously been recorded in southern Sicily, was most probably caused by the southward shift of the ITCZ permitting the eastward movement of the North Atlantic cyclonic systems. Traces of human activities are evident in the pollen diagram since the beginning of the record but become more pronounced from the onset of the Temple Cultural Phase at ca. 6050 cal. b.p./4100 b.c. with a gradual decline of tree pollen. We suggest that the early- to mid-Holocene vegetation transformation was mainly controlled by a regional climatic change that occurred in a landscape only slightly impacted by human activities.  相似文献   

2.
Detailed pollen analysis and pine megafossils from the immediate area of Rødalen in Central Norway have revealed new knowledge of Holocene alpine environments. A period of about 1,000 years characterised by pioneer herbs, dwarf-shrubs (Betula nana, Empetrum) and Juniperus followed the Holocene climatic amelioration. Local birch forest became established around 10.3 ka b.p., ca 150 years earlier than the local pine rise. Pine dominated at 1,100 m a.s.l. from 9.9 to 8.5 ka b.p., followed by birch forests until 1.3 ka b.p. when deforestation occurred. Slightly after 6 ka b.p., pine forests disappeared from the valley floor (930 m a.s.l.), an area that today is dominated by birch forest. Three short-lasting vegetational set-backs at ca 10.7, 10.5 and 10.3 ka b.p. may indicate climate oscillations. A temporary reduction of local forests reflects the Erdalen 2/9.7 ka b.p. event. The influence of the 8.2 event, superimposed on a cooling trend, lasted ca 400 years and involved a two-step vegetational regression: (1) A strong reduction of pine forests due to cooling and (2) reduction of alder due to cold and drought. Winter stress preventing pine regeneration may have caused scarcity of pine megafossils from the latter period. In the early Holocene, vegetation in the present alpine region was not in equilibrium with temperature development. It is suggested that the birch forest establishment lagged by about 1,000 years due to drought, whereas winter stress may have delayed the establishment of pine even longer.  相似文献   

3.
Litho-, chrono- and biostratigraphical methods were applied in the examination of a 9.9 m thick sequence of laminated sediments in Verijärv, a lake in southeast Estonia. The vegetation history, which covers at least the time from 10300 cal b.p. to the present, was inferred from the core, which was taken from the deepest part of the lake and correlated with the studied and dated pollen diagrams nearby. Reconstruction of the past vegetation dynamics is based on pollen percentage, accumulation rate and human impact diagrams. During the Holocene two main shifts in vegetation dynamics occurred, the first one at about 7700 cal b.p. when the pine-birch forest was replaced by deciduous mixed forest, and the second at about 3200 cal b.p. marked by the regeneration of pine-birch-spruce forest. A catastrophic forest fire at about 3450 cal b.p. opened up the landscape and gave rise to erosion and the sedimentation of a thick clayey layer. The steep decline in the Alnus curve between 1500–1650 cal b.p. coincides with the start of the continuous Secale curve and evidence of extensive land-use.  相似文献   

4.
The geomorphological analysis of the river Tocantins alluvial area was carried out by remote sensing techniques, jointly with studies of sedimentary facies, mineralogy and geochemistry, pollen and spores, C and N isotopes data and radiocarbon dating of a sediment core from a floodplain lake, near the river Tocantins in the southeastern Amazon region. The aim was to identify and discuss the relationship between the main geomorphological processes and climatic factors, as well as their influence on vegetation patterns. The data indicate three phases of sediment and organic matter accumulation associated with vegetation changes during the Holocene: in Phase 1 (>7760 ± 80 cal yrs b.p.), the channel was gradually being disconnected from its main course, accumulating organic matter from terrestrial woody plants; in Phase 2 (>7760 ± 80 to 5145 ± 175 cal yrs b.p.), the very low energy flows allowed the deposition of autochthonous organic mud from suspension. Herbaceous vegetation and a Mauritia palm-swamp dominated the study area, followed by an increase in the contribution of freshwater dissolved organic carbon (DOC) to the lake; Phase 3 (5145 ± 175 cal yrs b.p. until present) records the expansion of ferns and arboreal plants, and greater freshwater organic matter input into the lake with anoxic water conditions. The development of the studied lake occurred by geomorphological changes and the filling process of an abandoned channel according to hydrodynamics and vegetation changes which were probably influenced by climatic changes during the Holocene.  相似文献   

5.
The radiocarbon-dated palaeoecological study of Lago Riane (Ligurian Apennines, NW Italy) presented here forms part of a wider investigation into the relationships between Holocene vegetation succession, climate change and human activities in the northern Apennines. The record of vegetation history from Lago Riane indicates that, since the end of the last glaciation, climate change and prehistoric human activities, combined with several local factors, have strongly influenced the pattern and timing of natural vegetation succession. The pollen record indicates an important change in vegetation cover at Lago Riane at ~8500–8200 cal. years b.p., coincident with a well-known period of rapid climate change. At ~6100 cal. years b.p., Fagus woodland colonised Lago Riane during a period of climate change and expansion of Late Neolithic human activities in the upland zone of Liguria. A marked decline in Abies woodland, and the expansion of Fagus woodland, at ~4700 cal. years b.p., coincided with further archaeological evidence for pastoralism in the mountains of Liguria during the Copper Age. At ~3900–3600 cal. years b.p. (Early to Middle Bronze Age transition), a temporary expansion of woodland at Lago Riane has been provisionally attributed to a decline in human pressure on the environment during a period of short-term climate change.  相似文献   

6.
We present the postglacial history of vegetation, human activities and changes in lake level in the context of climate change in northeast Poland from ~14,000 cal. b.p. to the present day. The palaeoecological reconstruction is based on the results of high-resolution plant macrofossil analyses as well as records from pollen, Cladocera and radiocarbon dating. Climate fluctuations and human activity have caused many changes in vegetation development in Jezioro Linówek and in the vicinity of this lake. The Early Holocene warming that occurred at ~9500 b.c. caused an increase in Betula and the colonisation of Linówek by Potamogeton lucens, Nymphaea alba and Chara sp. At ~2300 b.c., climate cooling was accompanied by the spread of Picea abies and the appearance of Potamogeton alpinus and Nuphar pumila in the lake. The first traces of farming in the form of Cerealia pollen have been dated back to ~2100 b.c. The cultivation of Triticum began at ~250 b.c., Secale at ~a.d. 550, and Fagopyrum at ~a.d. 1720. The rapid increase in human activity at ~a.d. 1700 and the simultaneous loss of woodland is associated with the establishment of villages in the area and is expressed by the decline of tree curves. In Linówek, which was formed ~14,000 cal. b.p., three periods of high water level occurred (12000–9400, 7000–4000 and 1450 b.c.a.d. 650), and two periods of low water level (9400–7100 and 3700–1700 b.c.). The changes of water level correspond well with other sites in central and northern Europe.  相似文献   

7.
Palaeoecological reconstructions from the region of southwestern Bulgaria were used for inferring the human impact on the vegetation and landscape during the last 8 millennia. They are based on data from pollen analyses of lakes and peat-bogs, plant macrofossils, archaeobotanical finds and radiocarbon dating. During the early Holocene, after 7900?cal. b.p. (5950?cal. b.c.) the climate changed to cooler summers, milder winters and higher precipitation resulting in the formation of a coniferous belt dominated by Pinus sp. and Abies alba. These favorable environmental pre-conditions had a positive influence on the Neolithisation of the Balkans after the 8200?cal. b.p. (6250?cal. b.c.) cold event, which caused drought in the Eastern Mediterranean. Direct evidence from wood charcoal records from the Neolithic settlement layers in the study area shows a slight modification of the surrounding woodlands and an increase of the light-demanding components, probably expressed through larger forest border zones and thinning out of the wood stands. The increase in the number of settlements in the valleys of southwestern Bulgaria intensified the human activity visible in the palaeobotanical record from 6950?cal. b.p. (5000?cal. b.c.) onwards. Between ca. 5700–5100?cal. b.p. (3800–3200?cal. b.c.) signs of anthropogenic influence on the vegetation are virtually absent. The intensity of human impact increased notably after 3200?cal. b.p. (1400–1250?cal. b.c., approx. Late Bronze Age), documented by a rise of pollen anthropogenic indicators. The final transformations in the natural forest cover after 2750?cal. b.p. (800?cal. b.c. onset of the Iron Age) marked the reduction of the coniferous forests dominated by Abies alba and Pinus sp. and the expansion of Fagus sylvatica and Picea abies. These vegetation changes are contemporaneous with increase of the palaeofire activities and the next peak of anthropogenic indicators. The changes in the landscape during the Roman period and the medieval period reflect regional environmental features and were forced by the diversification of anthropogenic activity.  相似文献   

8.
A 17.81 m sediment core from Lake Naleng, a freshwater lake in the south-eastern part of the Tibetan Plateau was examined for its non-pollen palynomorph (NPP) composition. The frequencies of 15 NPPs and three aquatic pollen types were determined in 160 samples. Since the origin of several NPP types is still unknown, multivariate analysis, supported by findings from the corresponding fossil pollen flora, was carried out to extract information about their ecological environments. The analysis allowed a classification of all microfossils in four groups of environmental response, which provided an approach to tracing lake history and palaeoclimatic changes in the area since the Late Glacial (since 17,700 cal years b.p.). Unstable lake conditions and a low organic productivity were reconstructed for the Late Glacial before 14,600 cal years b.p. with high inputs of terrestrial material. Climate conditions became wetter during the Bølling/Allerød interval indicated by high productivity in the lake. After a short climate deterioration (12,500–11,500 cal years b.p.), stable lake conditions were inferred from the record. During the late Holocene (since 2,700 cal years b.p.) changes in the NPP composition might be related to human impact, the latter being inferred from the pollen data through the presence of grazing indicators.  相似文献   

9.
A palaeoecological study including pollen, macrofossils, and chemical analyses of an organic sediment separating two series of aeolian cover sands has enabled us to reconstruct environmental changes during the Allerød/Younger Dryas transition in Wolin Island, northwest Poland. The Allerød woodland dominated by Pinus sylvestris became more open at the beginning of the Younger Dryas, when aeolian (wind) activity resulted in instability of the soil. During the early phase of the Younger Dryas the water level in the local basin distinctly raised, indicating a change to a wetter climate. This short-lasting phase was followed by an increased frequency and intensity of aeolian processes. However, the main aeolian event took place before the major expansion of Juniperus, not later than 10,780±120 b.p. Frequent woodland fires, probably due to the activities of Palaeolithic people, have been documented both for the Allerød and the Younger Dryas periods. Macrofossils of Alnus sp. found in the Allerød layer are of special interest in showing the presence of alder trees in northwest Poland as early as the Late-glacial.  相似文献   

10.
The present study reveals palaeoenvironmental changes in the coastal southern Brazilian highlands during the last 39720 b.p., by the means of pollen, charcoal and multivariate data analyses. The isolated mountain range of Serra do Tabuleiro corresponds to the southern distribution limit of many tropical plant species and is therefore sensitive to climate change. Palaeoenvironmental reconstructions from the Ciama 2 core at 860 m a.s.l. indicate that Campos (subtropical grassland) covered extensive areas on the highlands throughout the recorded glacial period, thus suggesting cold and dry climatic conditions. The initial development of the Atlantic rainforest occurred after the glacial period, whereas plant diversity began to increase at the beginning of the Holocene due to climate change towards warmer and wetter conditions. At about 10400 cal. b.p., the Atlantic rainforest started to move over the slopes and Campos retracted. Multivariate data analysis showed a change of vegetation dynamics after 11200 cal. b.p. with the initial development of the Atlantic rainforest continuing until the mid-Holocene. Major vegetation changes, including the further expansion of the Atlantic rainforest and the initial development of the Araucaria forest in the higher regions of the Serra do Tabuleiro, occurred during the late Holocene after about 3600 cal. b.p. These changes reflect higher precipitation levels without an annual dry season. Multivariate data analysis reveals a clearly directional change of vegetation dynamics corresponding to the progressive expansion of the Atlantic rainforest from 3850 to 1600 cal. b.p. A second directional change of vegetation dynamics occurred from 320 to 160 cal. b.p. (a.d. 1630 to 1790) with a further development of the Atlantic rainforest and the partial replacement of Campos by Araucaria forest and Atlantic rainforest. Thereafter, an ecosystem disturbance, which resulted in forest opening, took place. Palaeofires probably did not occur during glacial times, whereas fire events, which were probably caused by Amerindians, were common in the Serra do Tabuleiro region from ca. 10400 until 3600 cal. b.p.  相似文献   

11.
To better understand the response of forest vegetation to climate and fire regimes with reference to human activities over the last deglacial period in the Aso Caldera, central Kyushu, southwestern Japan, a 33.9 m long sediment core was examined in order to reconstruct the vegetational and fire history using pollen and charcoal analyses. The results show that a cool temperate broad-leaved deciduous forest, dominated by Quercus (deciduous oaks) with Carpinus and Fagus, prevailed in the Aso Valley from ca. 14.6 ka cal. b.p., indicating warming since the last glacial period. The landscape was presumably covered by a mosaic of deciduous Quercus forests and terrestrial Artemisia communities. Around 12.8–11.7 ka cal. b.p., Quercus dominated the forest and fires occurred frequently. Co-expansion of distinctive UlmusZelkova and CeltisAphananthe forests coupled with a progressive retreat of Quercus in the early Holocene could reflect a strengthening of the East Asian summer monsoon under mild and humid climate conditions. Around 8 ka cal. b.p., significant increases in Cyclobalanopsis (evergreen oaks), Castanopsis/Castanea and Podocarpus indicate a further warming, in particular an increased winter temperature. Warm temperate lucidophyllous forests, dominated by Cyclobalanopsis, flourished after 7.3 ka cal. b.p., probably corresponding to the “Holocene Climatic Optimum” interval. Progressive expansion of Quercus at the expense of Cyclobalanopsis began around 6.4 ka cal. b.p. and paralleled an increase in charcoal until ca. 4.8 ka cal. b.p.; this could be evidence of fire disturbance induced by the early-middle Jomon people. The disturbed evergreen forest experienced a temporary recovery but then opened again from 3.6 ka cal. b.p. due to extensive fire deforestation, as suggested by the high charcoal levels during this time. Human exploitation and buckwheat (Fagopyrum) agriculture may have contributed to the opening of the forest, which allowed secondary forests (primarily Pinus and Quercus) and herbaceous communities (mainly Poaceae) to spread. These results are discussed in comparison with other high-resolution pollen data from western Japan to better elucidate the vegetation and fire history over the last deglacial in the Aso Caldera.  相似文献   

12.
The Setesdal valley in South Norway runs north to south for 200 km, from alpine vegetation at 1200 m, passing the tree-line at around 1000 m, through Boreal forests, to Nemoral forest at sea level. The Holocene vegetation history and its altitudinal differentiation were reconstructed using pollen percentages and influx and plant macrofossil concentration records from four lakes along an altitudinal transect. During the early Holocene (c. 10500–8000 cal b.p.) Betula pubescens, Pinus sylvestris, Alnus, and Corylus expanded in the lowlands. Only Pinus and B. pubescens reached 1000 m asl (Lille Kjelavatn). Only B. pubescens reached Holebudalen (1144 m asl) at about the same time as it arrived in the lowlands. Between c. 8000–3000 cal b.p. mixed deciduous forest developed around Dalane (40 m asl) and to a lesser extent around Grostjørna (180 m asl), birch woodland with pine surrounded Lille Kjelavatn and birch woodland occurred at Holebudalen. From c. 3000 cal b.p. to present, the vegetation at Dalane hardly changed except for slight human impact and the immigration of Picea abies. At Grostjørna Pinus expanded. At Lille Kjelavatn Pinus disappeared and Betula became sparse as at the tree-line today. Betula retreated from Holebudalen thus leaving it above the tree-line in low-alpine vegetation. The strengths and weaknesses of pollen and plant macrofossil data were assessed for forest reconstructions. Where local pollen production is low, as near the tree-line, percentages of long-distance tree pollen can be misleadingly high. Pollen influxes of Betula and Pinus were much smaller near their altitudinal limits than at lower altitudes, although their macrofossils were equally abundant. The limited dispersal capacity of macrofossils documents the local presence of species and the character of the local vegetation, although macrofossils of some tree taxa are rarely found. Pollen and plant macrofossil evidence complement each other to provide a more complete reconstruction of Holocene tree-limits and tree-lines and hence climate changes, than either form of evidence alone.  相似文献   

13.
Cystinuria is an autosomal recessive disease that causes l-cystine precipitation in urine and nephrolithiasis. Disease severity is highly variable; it is known, however, that cystinuria has a more severe course in males. The aim of this study was to compare l-cystine metastability in first-morning urine collected from 24 normal female and 24 normal male subjects. Samples were buffered at pH 5 and loaded with l-cystine (0.4 and 4 mM final concentration) to calculate the amount remaining in solution after overnight incubation at 4 °C; results were expressed as Z scores reflecting the l-cystine solubility in each sample. In addition, metabolomic analyses were performed to identify candidate compounds that influence l-cystine solubility. l-cystine solubility Z score was +0.44 ± 1.1 and ?0.44 ± 0.70 in female and male samples, respectively (p < 0.001). Further analyses showed that the l-cystine solubility was independent from urine concentration but was significantly associated with low urinary excretion of inosine (p = 0.010), vanillylmandelic acid (VMA) (p = 0.015), adenosine (p = 0.029), and guanosine (p = 0.032). In vitro l-cystine precipitation assays confirmed that these molecules induce higher rates of l-cystine precipitation in comparison with their corresponding dideoxy molecules, used as controls. In silico computational and modeling analyses confirmed higher binding energy of these compounds. These data indicate that urinary excretion of nucleosides and VMA may represent important factors that modulate l-cystine solubility and may represent new targets for therapy in cystinuria.  相似文献   

14.
Palynological investigations on two well-dated peat profiles provide insights into Neolithic vegetation and settlement history from Hümmling in north-western Germany. The site selections allow comparisons between local and regional vegetation changes and are used to estimate the extent of Neolithic influence on the vegetation. The interpretation of the fossil spectra relied on radiocarbon dating, evaluation of pollen indicator taxa, non-pollen palynomorphs and multivariate techniques. During the late Mesolithic the vegetation was dominated by mixed oak forests while openings in forest cover were detected, with a decline in elm reflected in the regional pollen record around 4250 cal. b.c. The presence of humans is shown by settlement indicators that are first recorded at ca. 3800 cal. b.c. Vegetation changes were small between 4300 and 3600 cal. b.c. This suggests that regional vegetation was relatively resilient to small-scale disturbances. Possible indications of grazing were recorded in the spectra of the local pollen profile but there is no clear-cut evidence for Neolithic activity. Between 3520 and 2260 cal. b.c. decreases in forest cover were inferred from both profiles and increases in settlement indicators reflect farming activity. These changes coincide with the emergence in the area of the Funnel Beaker Culture and the subsequent Single Grave Culture. Both profiles suggest that settlement probably ceased between ca. 3230 and 3050 cal. b.c. This lull or cessation in activity was probably regional in character. After 2260 cal. b.c. human impact on the vegetation decreases and woodlands regenerate. The longevity of the regeneration phase—ca. 690 years—was probably connected with the low resilient capability of the vegetation on the poor soils.  相似文献   

15.
High concentrations of acetate, the main by-product of Escherichia coli (E. coli) high cell density culture, inhibit bacterial growth and l-threonine production. Since metabolic overflux causes acetate accumulation, we attempted to reduce acetate production by redirecting glycolysis flux to the pentose phosphate pathway by deleting the genes encoding phosphofructokinase (pfk) and/or pyruvate kinase (pyk) in an l-threonine-producing strain of E. coli, THRD. pykF, pykA, pfkA, and pfkB deletion mutants produced less acetate (9.44 ± 0.83, 3.86 ± 0.88, 0.30 ± 0.25, and 6.99 ± 0.85 g/l, respectively) than wild-type THRD cultures (19.75 ± 0.93 g/l). THRDΔpykF and THRDΔpykA produced 11.05 and 5.35 % more l-threonine, and achieved a 10.91 and 5.60 % higher yield on glucose, respectively. While THRDΔpfkA grew more slowly and produced less l-threonine than THRD, THRDΔpfkB produced levels of l-threonine (102.28 ± 2.80 g/l) and a yield on glucose (0.34 g/g) similar to that of THRD. The dual deletion mutant THRDΔpfkBΔpykF also achieved low acetate (7.42 ± 0.81 g/l) and high l-threonine yields (111.37 ± 2.71 g/l). The level of NADPH in THRDΔpfkA cultures was depressed, whereas all other mutants produced more NADPH than THRD did. These results demonstrated that modification of glycolysis in E. coli THRD reduced acetate production and increased accumulation of l-threonine.  相似文献   

16.
Holocene mangrove dynamics are reconstructed from pollen, sediment and radiocarbon analyses of three cores (ANR, BNR, CNR) located across a 20 km transect in the Rufiji Delta, Tanzania. At the base of the sediment sequence, dated to about 5600 cal. year b.p., the mangroves which are present suggest a low intertidal ecosystem in response to wet conditions and a higher sea level than at the present day. After around 5600 cal. year b.p. in core BNR, mangroves retreated seaward probably due to a lower sea level and drier environmental conditions. At around 4640 cal. year b.p., mangroves shifted landward suggesting a phase of sea level rise. In the late Holocene, mangroves became established at higher elevations of the Rufiji Delta, which is now a paddy field. Mangrove taxa decreased after 1170 cal. year b.p., suggesting drier conditions and less inundation frequency, possibly due to a lower sea level. Marked vegetation changes from mangroves to terrestrial vegetation occurred after around 750 cal. year b.p., possibly related to sea level regression and/or a desiccation phase recorded during the late Holocene. Paddy fields replaced mangroves in the landward part of the transect, reflecting an increase in human settlement in this area, a trend that continues to the present day. The recent decrease of mangrove species, particularly Rhizophora mucronata, could suggest less inundation by saline water and a lower sea level, although these changes may also be due to human activities during the last millennia as indicated by charcoal analysis.  相似文献   

17.
A palynological and sedimentological record from the Mahwaqa Mountain in KwaZulu-Natal, South Africa, provides evidence of the vegetation dynamics in this part of the Grassland Biome during the last c. 18,000 years. The wetland is located at 1,850 m on an isolated outlier of the Ukhahlamba–Drakensberg Mountain range on an ecotone along a climatic gradient. The vegetation responded to humidity and temperature changes during the late Pleistocene and Holocene. The period c. 18,000–13,500 cal. bp is characterized by high Ericaceae and Restionaceae percentages and decreasing values of charred particles, indicating cool conditions. Around 13,500–8,500 cal. bp, Ericaceae were gradually replaced by Poaceae, signaling climate warming. Growing environmental wetness during the same time period is inferred from Phragmites-type and Cliffortia pollen percentages. Since c. 8,500 cal. bp, Cliffortia, Restionaceae, and Phragmites-type percentages have maintained low levels. Ericaceae were almost completely replaced by grasses and Asteraceae by c. 7,500 cal. bp. All indications are that warm and fluctuating moisture conditions followed until 4,600 cal. bp but they became driest between c. 4,600 and 3,500 cal. bp, when high Asteraceae, Pentzia-type and Scabiosa percentages were prominent. From c. 3,500–800 cal. bp, the increase of sedges, Aponogeton and grass pollen (including Phragmites-type) at the expense of Asteraceae pollen suggests the return of slightly more humid conditions. Since c. 1,000 cal. bp an increase of water demanding Podocarpus and Cliffortia occurred. Pine pollen indicates the recent introduction of alien plants in the 19th and 20th centuries.  相似文献   

18.
New wood charcoal data from two archaeological sites in western Anatolia (Kumtepe and Troy/Çanakkale province) enabled a review of earlier reconstruction of the mid-Holocene vegetation and land use patterns in the region. Multi-proxy data from archaeology, zooarchaeology and climatology are combined to evaluate the relationship of climate-induced and man-made environmental change for a period spanning the Late Neolithic to the Early Bronze Age (ca. 5000–2450 cal b.c.). During the first settlement period (Kumtepe A: ca. 5000–4600 cal b.c.) lush vegetation with high proportions of deciduous oak and pine prevailed, enabling the intense use of natural resources by the late Neolithic population, which use might be reflected in the first few representatives of maquis vegetation. A settlement hiatus at the site between roughly 4600 and 3500 cal b.c. includes a cooling event in the Aegean and may have supported persistence and/or development of open vegetation units. However, the hiatus may have ended with a period of regeneration of the vegetation. From Kumtepe B2 (ca. 3300 cal b.c.) onward, human impact becomes clearly visible, although the main woodland taxa continue to prevail. In all, environmental and economic dynamics between 5000 and 2300 cal b.c. in the Troad can be characterised as at least two alternating developmental sequences of climate-induced vegetation change and reinforcement of woodland degradation by human activity.  相似文献   

19.
Four potential dehydrogenases identified through literature and bioinformatic searches were tested for l-arabonate production from l-arabinose in the yeast Saccharomyces cerevisiae. The most efficient enzyme, annotated as a d-galactose 1-dehydrogenase from the pea root nodule bacterium Rhizobium leguminosarum bv. trifolii, was purified from S. cerevisiae as a homodimeric protein and characterised. We named the enzyme as a l-arabinose/d-galactose 1-dehydrogenase (EC 1.1.1.-), Rl AraDH. It belongs to the Gfo/Idh/MocA protein family, prefers NADP+ but uses also NAD+ as a cofactor, and showed highest catalytic efficiency (k cat/K m) towards l-arabinose, d-galactose and d-fucose. Based on nuclear magnetic resonance (NMR) and modelling studies, the enzyme prefers the α-pyranose form of l-arabinose, and the stable oxidation product detected is l-arabino-1,4-lactone which can, however, open slowly at neutral pH to a linear l-arabonate form. The pH optimum for the enzyme was pH 9, but use of a yeast-in-vivo-like buffer at pH 6.8 indicated that good catalytic efficiency could still be expected in vivo. Expression of the Rl AraDH dehydrogenase in S. cerevisiae, together with the galactose permease Gal2 for l-arabinose uptake, resulted in production of 18 g of l-arabonate per litre, at a rate of 248 mg of l-arabonate per litre per hour, with 86 % of the provided l-arabinose converted to l-arabonate. Expression of a lactonase-encoding gene from Caulobacter crescentus was not necessary for l-arabonate production in yeast.  相似文献   

20.
(Bellevalia ciliata was recorded in north-east Bulgaria south of the Dobrudsha, within field and steppe vegetation. Vegetation records and a distribution map are presented. Based on taxonomic studies it is proposed to combineB. ciliata, B. sarmatica (Pall.) Wor. andB. speciosa Wor. under the oldest nameB. ciliata (Cyr.) Nees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号