首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aflatoxins produced by Aspergillus flavus are potent carcinogens that contaminate agricultural crops. Recent efforts to reduce aflatoxin concentrations in crops have focused on biological control using nonaflatoxigenic A. flavus strains AF36 (=NRRL 18543) and NRRL 21882 (the active component of afla‐guard®). However, the evolutionary potential of these strains to remain nonaflatoxigenic in nature is unknown. To elucidate the underlying population processes that influence aflatoxigenicity, we examined patterns of linkage disequilibrium (LD) spanning 21 regions in the aflatoxin gene cluster of A. flavus. We show that recombination events are unevenly distributed across the cluster in A. flavus. Six distinct LD blocks separate late pathway genes aflE, aflM, aflN, aflG, aflL, aflI and aflO, and there is no discernable evidence of recombination among early pathway genes aflA, aflB, aflC, aflD, aflR and aflS. The discordance in phylogenies inferred for the aflW/aflX intergenic region and two noncluster regions, tryptophan synthase and acetamidase, is indicative of trans‐species evolution in the cluster. Additionally, polymorphisms in aflW/aflX divide A. flavus strains into two distinct clades, each harbouring only one of the two approved biocontrol strains. The clade with AF36 includes both aflatoxigenic and nonaflatoxigenic strains, whereas the clade with NRRL 21882 comprises only nonaflatoxigenic strains and includes all strains of A. flavus missing the entire gene cluster or with partial gene clusters. Our detection of LD blocks in partial clusters indicates that recombination may have played an important role in cluster disassembly, and multilocus coalescent analyses of cluster and noncluster regions indicate lineage‐specific gene loss in A. flavus. These results have important implications in assessing the stability of biocontrol strains in nature.  相似文献   

2.
    
The impact of intergenic recombination on the population genetics of plant mitochondrial genomes is unknown. In an effort to study this in the gynodioecious plant Silene vulgaris three-locus PCR/RFLP genotypes (based on the mitochondrial genes atpA, cox1, and cob) were determined for 239 individuals collected from 20 North American populations. Seventeen three-locus PCR/RFLP genotypes were found. Recombination was indicated by observation of each of the four two-locus genotypes possible when the two most common alleles are considered for each of two loci. Based on these common alleles the absolute values of standardized linkage disequilibrium |D'| between pairs of loci range from 0.17 to 0.78. This indicates modest disequilibrium, rather than the maximum value expected in the absence of recombination |D'=1|, or the linkage equilibrium expected if recombination is pervasive (D'=0). Values of D' did not depend on which pair of loci contributed alleles to the analysis. The direction of D' obtained for the common atpA and cox1 alleles was comparable in sign and magnitude to that obtained by examining similar information obtained in a prior study of European samples. All three loci indicated a high degree of population structure (average FST=0.63), which would limit the within-population genetic diversity required for intergenic recombination to create novel genotypes, if most mating is local. Thus, population structure acts as a constraint on the approach to linkage equilibrium.  相似文献   

3.
    
The ubiquity of recombination in nature is a paradox because it breaks up combinations of alleles favored by natural selection. Theoretical work has shown that antagonistic coevolution between hosts and parasites can result in rapid fluctuations in epistasis that can create a short‐term advantage to recombination. Here, we show that another kind of antagonistic coevolution, interlocus sexually antagonistic coevolution (SAC), can also create indirect selection for modifiers that increase the rate of recombination, and that it can lead to very high levels of recombination at equilibrium. Recombination is favored because interlocus SAC creates heterogeneity in the strength and direction of selection, both within and between generations, which maintains an excess of disadvantageous haplotypes in the population. This result is similar to and consistent with dynamics of fluctuating epistasis produced in models of host–parasite coevolution. However, the conditions under which interlocus SAC provides an advantage to recombination are more permissive.  相似文献   

4.
Linkage disequilibrium for different scales and applications   总被引:2,自引:0,他引:2  
Assessing the patterns of linkage disequilibrium (LD) has become an important issue in both evolutionary biology and medical genetics since the rapid accumulation of densely spaced DNA sequence variation data in several organisms. LD deals with the correlation of genetic variation at two or more loci or sites in the genome within a given population. There are a variety of LD measures which range from traditional pairwise LD measures such as D' or r2 to entropy-based multi-locus measures or haplotype-specific approaches. Understanding the evolutionary forces (in particular recombination) that generate the observed variation of LD patterns across genomic regions is addressed by model-based LD analysis. Marker type and its allelic composition also influence the observed LD pattern, microsatellites having a greater power to detect LD in population isolates than SNPs. This review aims to explain basic LD measures and their application properties.  相似文献   

5.
    
L Y Huynh  D L Maney  J W Thomas 《Heredity》2011,106(4):537-546
Chromosomal inversions have been of long-standing interest to geneticists because they are capable of suppressing recombination and facilitating the formation of adaptive gene complexes. An exceptional inversion polymorphism (ZAL2m) in the white-throated sparrow (Zonotrichia albicollis) is linked to variation in plumage, social behavior and mate choice, and is maintained in the population by negative assortative mating. The ZAL2m polymorphism is a complex inversion spanning >100 Mb and has been proposed to be a strong suppressor of recombination, as well as a potential model for studying neo-sex chromosome evolution. To quantify and evaluate these features of the ZAL2m polymorphism, we generated sequence from 8 ZAL2m and 16 ZAL2 chromosomes at 58 loci inside and 4 loci outside the inversion. Inside the inversion we found that recombination was completely suppressed between ZAL2 and ZAL2m, resulting in uniformly high levels of genetic differentiation (FST=0.94), the formation of two distinct haplotype groups representing the alternate chromosome arrangements and extensive linkage disequilibrium spanning ∼104 Mb within the inversion, whereas gene flow was not suppressed outside the inversion. Finally, although ZAL2m homozygotes are exceedingly rare in the population, occurring at a frequency of <1%, we detected evidence of historical recombination between ZAL2m chromosomes inside the inversion, refuting its potential status as a non-recombining autosome.  相似文献   

6.
    
Mitochondrial and nuclear DNA information was analysed among four subspecies of the African Queen butterfly, Danaus (Anosia) chrysippus sensu lato (s.l.), along with four other Danaus species drawn from all three subgenera (D. (Danaus) plexippus, D. (Salatura) genutia, D. (A.) gilippus, D. (A.) eresimus) and two outgroup species from the same tribe, Tirumala septentrionis and Amauris niavius. A mitochondrial phylogeny derived from the 12S rRNA (347 bp) and COI (537 bp) loci indicates two very distinct haplotypes for subspecies D. (A.) c. dorippus, dorippus‐1 and dorippus‐2. Interestingly, dorippus‐1, on the one hand, and all other D. (A.) chrysippus haplotypes, on the other, are the most distantly related clades within the genus and have different most recent ancestors from different subgenera, though sharing the common ancestor of the monophyletic genus. A phylogeny based on the EF1‐α nuclear locus (400 bp) shows that the two well‐separated mitochondrial lineages of dorippus are identical for this gene and reciprocally monophyletic to the other D. (A.) chrysippus lineages. Thus, nuclear and cytoplasmic phylogenies are not only discordant, but also suggest that both D. (A.) chrysippus s.l. and subspecies dorippus are polyphyletic. Paradoxically, four African subspecies, chrysippus‐orange, chrysippus‐brown, alcippus and dorippus, though substantially vicariant, hybridize extensively in East Africa wherever the ranges of two or more of them overlap. Linkage disequilibrium, and hence sexual isolation, in sympatry between colour (nuclear) genes and unlinked mitochondrial (cytoplasmic) loci is consistent across populations and therefore indicates the operation of positive natural selection. Together with data from previous experimental and field work, our results suggest that extensive hybridization occurs among once allopatric or parapatric lineages, that are now nascent species. We deduce that hybridism among lineages in sympatry is currently enforced, in the face of assortative mate choice, by a bacterial symbiont, Spiroplasma, a male‐killer that forces females in female‐biased populations to pair with heterotypic males. In discussion we emphasize that neither D. (A.) chrysippus s.l. as presently circumscribed, nor its component clades, conform to any established concept of species. © 2005 The Linnean Society of London, Biological Journal of the Linnean Society, 2005, 86 , 117–131.  相似文献   

7.
Background Genetic differences between Indian and Chinese rhesus macaques contribute to the phenotypic variance of clinical trials, including infection with SIVmac. The completion of the rhesus genome has facilitated the discovery of several thousand markers. Methods We developed a genome‐wide SNP map for rhesus macaques containing 3869 validated markers with an average distance of 0.88 Mb and used the program VarLD to identify genomic areas with significant differences in linkage disequilibrium (LD) between Indian‐derived and Chinese rhesus macaques. Results Forty‐one statistically significant differences in LD between Chinese and Indian‐origin rhesus were detected on chromosomes 1, 4, 5 and 11. The region of greatest LD difference was located on the proximal end of chromosome one, which also contained the genes ELAVL4, MAST2 and HIVEP3. Conclusion These genomic areas provide entry to more detailed studies of gene function. This method is also applicable to the study of differences in biomarkers between regional populations of other species.  相似文献   

8.
    
Both classical and recent studies suggest that chromosomal inversion polymorphisms are important in adaptation and speciation. However, biases in discovery and reporting of inversions make it difficult to assess their prevalence and biological importance. Here, we use an approach based on linkage disequilibrium among markers genotyped for samples collected across a transect between contrasting habitats to detect chromosomal rearrangements de novo. We report 17 polymorphic rearrangements in a single locality for the coastal marine snail, Littorina saxatilis. Patterns of diversity in the field and of recombination in controlled crosses provide strong evidence that at least the majority of these rearrangements are inversions. Most show clinal changes in frequency between habitats, suggestive of divergent selection, but only one appears to be fixed for different arrangements in the two habitats. Consistent with widespread evidence for balancing selection on inversion polymorphisms, we argue that a combination of heterosis and divergent selection can explain the observed patterns and should be considered in other systems spanning environmental gradients.  相似文献   

9.
Aflatoxins are toxic and carcinogenic polyketides produced by several Aspergillus species that are known to contaminate agricultural commodities, posing a serious threat to animal and human health. Aflatoxin (AF) biosynthesis is almost fully characterized and involves the coordinated expression of approximately 25 genes clustered in a 70-kb DNA region. Aspergillus parasiticus is an economically important and common agent of AF contamination. Naturally occurring nonaflatoxigenic strains of A. parasiticus are rarely found and generally produce O-methylsterigmatocystin (OMST), the immediate precursor of AF. To elucidate the evolutionary forces acting to retain AF and OMST pathway extrolites (chemotypes), we sequenced 21 intergenic regions spanning the entire cluster in 24 A. parasiticus isolates chosen to represent the genetic diversity within a single Georgia field population. Linkage disequilibrium analyses revealed five distinct recombination blocks in the A. parasiticus cluster. Phylogenetic network analyses showed a history of recombination between chemotype-specific haplotypes, as well as evidence of contemporary recombination. We performed coalescent simulations of variation in recombination blocks and found an approximately twofold deeper coalescence for cluster genealogies compared to noncluster genealogies, our internal standard of neutral evolution. Significantly deeper cluster genealogies are indicative of balancing selection in the AF cluster of A. parasiticus and are further corroborated by the existence of trans-species polymorphisms and common haplotypes in the cluster for several closely related species. Estimates of Ka/Ks for representative cluster genes provide evidence of selection for OMST and AF chemotypes, and indicate a possible role of chemotypes in ecological adaptation and speciation.  相似文献   

10.
  总被引:10,自引:0,他引:10  
A number of tests have been developed to detect positive selection at the molecular level. These tests are based on DNA polymorphism within and divergence between species. Applications of these tests have revealed a large collection of genes that have evolved under positive selection and some general insights into adaptive evolution. Recently, these tests have been applied on a genomic scale and have provided estimates of the frequency of adaptive substitutions and a critical test of the neutral theory.  相似文献   

11.
Average levels of nucleotide diversity are ten-fold lower in humans than in the fruitfly, Drosophila melanogaster. Despite this difference, apparently as a result of a lower population size, patterns of genomic diversity are strikingly similar in being correlated with local rates of recombination, and influenced by similar interactions between positive natural selection and recombination. Both species also show lower levels of variation on average in non-African compared to African populations, reflecting a similar evolutionary history and perhaps both natural selection and founder effects in new environments.  相似文献   

12.
Recently, several statistical methods for estimating fine-scale recombination rates using population samples have been developed. However, currently available methods that can be applied to large-scale data are limited to approximated likelihoods. Here, we developed a full-likelihood Markov chain Monte Carlo method for estimating recombination rate under a Bayesian framework. Genealogies underlying a sampling of chromosomes are effectively modelled by using marginal individual single nucleotide polymorphism genealogies related through an ancestral recombination graph. The method is compared with two existing composite-likelihood methods using simulated data.Simulation studies show that our method performs well for different simulation scenarios. The method is applied to two human population genetic variation datasets that have been studied by sperm typing. Our results are consistent with the estimates from sperm crossover analysis.  相似文献   

13.
    
Mitochondrial DNA (mtDNA) is a pivotal tool in molecular ecology, evolutionary and population genetics. The power of mtDNA analyses derives from a relatively high mutation rate and the apparent simplicity of mitochondrial inheritance (maternal, without recombination), which has simplified modelling population history compared to the analysis of nuclear DNA. However, in biology things are seldom simple, and advances in DNA sequencing and polymorphism detection technology have documented a growing list of exceptions to the central tenets of mitochondrial inheritance, with paternal leakage, heteroplasmy and recombination now all documented in multiple systems. The presence of paternal leakage, recombination and heteroplasmy can have substantial impact on analyses based on mtDNA, affecting phylogenetic and population genetic analyses, estimates of the coalescent and the myriad of other parameters that are dependent on such estimates. Here, we review our understanding of mtDNA inheritance, discuss how recent findings mean that established ideas may need to be re‐evaluated, and we assess the implications of these new‐found complications for molecular ecologists who have relied for decades on the assumption of a simpler mode of inheritance. We show how it is possible to account for recombination and heteroplasmy in evolutionary and population analyses, but that accurate estimates of the frequencies of biparental inheritance and recombination are needed. We also suggest how nonclonal inheritance of mtDNA could be exploited, to increase the ways in which mtDNA can be used in analyses.  相似文献   

14.
Although the analysis of linkage disequilibrium (LD) plays a central role in many areas of population genetics, the sampling variance of LD is known to be very large with high sensitivity to numbers of nucleotide sites and individuals sampled. Here we show that a genome-wide analysis of the distribution of heterozygous sites within a single diploid genome can yield highly informative patterns of LD as a function of physical distance. The proposed statistic, the correlation of zygosity, is closely related to the conventional population-level measure of LD, but is agnostic with respect to allele frequencies and hence likely less prone to outlier artifacts. Application of the method to several vertebrate species leads to the conclusion that >80% of recombination events are typically resolved by gene-conversion-like processes unaccompanied by crossovers, with the average lengths of conversion patches being on the order of one to several kilobases in length. Thus, contrary to common assumptions, the recombination rate between sites does not scale linearly with distance, often even up to distances of 100 kb. In addition, the amount of LD between sites separated by <200 bp is uniformly much greater than can be explained by the conventional neutral model, possibly because of the nonindependent origin of mutations within this spatial scale. These results raise questions about the application of conventional population-genetic interpretations to LD on short spatial scales and also about the use of spatial patterns of LD to infer demographic histories.  相似文献   

15.
    
Recombination and selection drive the extent of linkage disequilibrium (LD) among loci and therefore affect the reshuffling of adaptive genetic variation. However, it is poorly known to what extent the enrichment of transposable elements (TEs) in recombinationally‐inert regions reflects their inefficient removal by purifying selection and whether the presence of polymorphic TEs can modify the local recombination rate. In this study, we investigate how TEs and recombination interact at fine scale along chromosomes and possibly support linked selection in natural populations. Whole‐genome sequencing data of 304 individuals from nearby alpine populations of Arabis alpina were used to show that the density of polymorphic TEs is specifically correlated with local LD along chromosomes. Consistent with TEs modifying recombination, the characterization of 28 such LD blocks of up to 5.5 Mb in length revealed strong evidence of selective sweeps at a few loci through either site frequency spectrum or haplotype structure. A majority of these blocks were enriched in genes related to ecologically relevant functions such as responses to cold, salt stress or photoperiodism. In particular, the S‐locus (i.e., supergene responsible for strict outcrossing) was identified in a LD block with high levels of polymorphic TEs and evidence of selection. Another such LD block was enriched in cold‐responding genes and presented evidence of adaptive loci related to photoperiodism and flowering being increasingly linked by polymorphic TEs. These results are consistent with the hypothesis that TEs modify recombination landscapes and thus interact with selection in driving blocks of linked adaptive loci in natural populations.  相似文献   

16.
Chromosomal inversions are common in natural populations and are believed to be involved in many important evolutionary phenomena, including speciation, the evolution of sex chromosomes and local adaptation. While recent advances in sequencing and genotyping methods are leading to rapidly increasing amounts of genome-wide sequence data that reveal interesting patterns of genetic variation within inverted regions, efficient simulation methods to study these patterns are largely missing. In this work, we extend the sequential Markovian coalescent, an approximation to the coalescent with recombination, to include the effects of polymorphic inversions on patterns of recombination. Results show that our algorithm is fast, memory-efficient and accurate, making it feasible to simulate large inversions in large populations for the first time. The SMC algorithm enables studies of patterns of genetic variation (for example, linkage disequilibria) and tests of hypotheses (using simulation-based approaches) that were previously intractable.  相似文献   

17.
The extent and pattern of linkage disequilibrium (LD) between closely spaced markers contain information about population history, including past population size and selection history. Selection signatures can be identified by comparing the LD surrounding a putative selected allele at a locus to the putative non-selected allele. In livestock populations, locations of selection signatures identified in this way should be correlated with QTL affecting production traits, as the populations have been under strong artificial selection for these traits. We used a dense SNP map of bovine chromosome 6 to characterize the pattern of LD on this chromosome in Norwegian Red cattle, a breed which has been strongly selected for milk production. The pattern of LD was generally consistent with strong selection in regions containing QTL affecting milk production traits, including a strong selection signature in a region containing a mutation known to affect milk production. The results demonstrate that in livestock populations, the origin of selection signatures will often be QTL for livestock production traits, and illustrate the value of selection signatures in uncovering new mutations with potential effects on quantitative traits.  相似文献   

18.
Recently, genomic data have revealed a "block-like" structure of haplotype diversity on human chromosomes. This structure is anticipated to facilitate gene mapping studies, because strong associations among loci within a block may allow haplotype variation to be tagged with a limited number of markers. But its usefulness to mapping efforts depends on the consistency of the block structure within and among populations, which in turn depends on how the block structure arises. Recombination hot spots are generally thought to underlie the block structure, but haplotype blocks can also develop stochastically under random recombination, in which case the block structure will show limited consistency among populations. Using coalescent models, which we upscaled to simulate the evolution of haplotypes with many markers at fixed distances, we show that the relationship between block boundaries and historic recombination intensity may be surprisingly weak. The majority of historic recombinations do not leave a footprint in present-day linkage disequilibrium patterns, and the block structure is sensitive to factors that affect the timing of recombination relative to marker mutation events in the genealogy, such as marker frequency bias and historic population size changes. Our results give insight into the potential of stochastic events to affect haplotype block structure, which can limit the usefulness of the block structure to mapping studies.  相似文献   

19.
    
Archeogenetics has been revolutionary, revealing insights into demographic history and recent positive selection. However, most studies to date have ignored the nonrandom association of genetic variants at different loci (i.e. linkage disequilibrium). This may be in part because basic properties of linkage disequilibrium in samples from different times are still not well understood. Here, we derive several results for summary statistics of haplotypic variation under a model with time-stratified sampling: (1) The correlation between the number of pairwise differences observed between time-staggered samples (πΔt) in models with and without strict population continuity; (2) The product of the linkage disequilibrium coefficient, D, between ancient and modern samples, which is a measure of haplotypic similarity between modern and ancient samples; and (3) The expected switch rate in the Li and Stephens haplotype copying model. The latter has implications for genotype imputation and phasing in ancient samples with modern reference panels. Overall, these results provide a characterization of how haplotype patterns are affected by sample age, recombination rates, and population sizes. We expect these results will help guide the interpretation and analysis of haplotype data from ancient and modern samples.  相似文献   

20.
    
Correlated suites of behaviours, or behavioural syndromes, appear to be widespread, and yet few studies have explored how they arise and are maintained. One possibility holds that correlational selection can generate and maintain behavioural syndrome if certain behavioural combinations enjoy greater fitness than other combinations. Here we test this correlational selection hypothesis by comparing behavioural syndrome structure with a multivariate fitness surface based on reproductive success of male water striders. We measured the structure of a behavioural syndrome including dispersal ability, exploration behaviour, latency to remount and sex recognition sensitivity in males. We then measured the relationship between these behaviours and mating success in a range of sex ratio environments. Despite the presence of some significant correlational selection, behavioural syndrome structure was not associated with correlational selection on behaviours. Although we cannot conclusively reject the correlational selection hypothesis, our evidence suggests that correlational selection and resulting linkage disequilibrium might not be responsible for maintaining the strong correlations between behaviours. Instead, we suggest alternative ways in which this behavioural syndrome may have arisen and outline the need for physiological and quantitative genetic tests of these suggestions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号