首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Nitrate, sulfate, and carbonate were used as electron acceptors to examine the anaerobic biodegradability of chlorinated aromatic compounds in estuarine and freshwater sediments. The respective denitrifying, sulfidogenic, and methanogenic enrichment cultures were established on each of the monochlorinated phenol and monochlorinated benzoic acid isomers, using sediment from the upper (freshwater) and lower (estuarine) Hudson River and the East River (estuarine) as source materials. Utilization of each chlorophenol and chlorobenzoate isomer was observed under at least one reducing condition; however, no single reducing condition permitted the metabolism of all six compounds tested. The anaerobic biodegradation of the chlorophenols and chlorobenzoates depended on the electron acceptor available and on the position of the chlorine substituent. In general, similar activities were observed under the different reducing conditions in both the freshwater and estuarine sediments. Under denitrifying conditions, degradation of 3- and 4-chlorobenzoate was accompanied by nitrate loss corresponding reasonably to the stoichiometric values expected for complete oxidation of the chlorobenzoate to CO2. Under sulfidogenic conditions, 3- and 4-chlorobenzoate, but not 2-chlorobenzoate, and all three monochlorophenol isomers were utilized, while under methanogenic conditions all compounds except 4-chlorobenzoate were metabolized. Given that the pattern of activity appears different for these chlorinated compounds under each reducing condition, their biodegradability appears to be more a function of the presence of competent microbial populations than one of inherent molecular structure.  相似文献   

2.
1. Two Pseudomonas strains capable of utilizing 2-phenylbutane, 3-phenylpentane and 4-phenylheptane as the sole carbon and energy source were isolated. 2. Two Nocardia strains capable of utilizing only 3-phenyldodecane as the sole carbon and energy source were isolated. 3. All the isolated strains were unable to grow on the corresponding phenylalkane-p-sulphonates. 4. From liquid cultures of Pseudomonas strains utilizing 2-phenylbutane, 2-(2,3-dihydro-2,3-dihydroxyphenyl)butane was isolated and identified. Evidence for a meta cleavage of the benzene ring was also obtained. 5. From liquid cultures of Pseudomonas strains utilizing 3-phenylpentane, 3-(2,3-dihydro-2,3-dihydroxyphenyl)pentane and 2-hydroxy-7-ethyl-6-oxonona-2,4-dienoic acid were isolated and identified. 6. Evidence for the formation of both a diol and a meta-cleavage compound was obtained from liquid cultures of both Pseudomonas strains utilizing 4-phenylheptane. 7. Liquid cultures of both Nocardia strains utilizing 3-phenyldodecane never formed a diol or a semialdehyde-related compound. 2-Phenylbutyric acid, 3-phenylvaleric acid and 4-phenylhexanoic acid were shown to be present in these cultures.  相似文献   

3.
Pseudomonas aeruginosa JB2 was isolated from a polychlorinated biphenyl-contaminated soil by enrichment culture containing 2-chlorobenzoate as the sole carbon source. Strain JB2 was subsequently found also to grow on 3-chlorobenzoate, 2,3- and 2,5-dichlorobenzoates, 2,3,5-trichlorobenzoate, and a wide range of other mono- and dihalogenated benzoic acids. Cometabolism of 2,4-dichlorobenzoate was also observed. Chlorocatechols were the central intermediates of all chlorobenzoate catabolic pathways. Degradation of 2-chlorobenzoate was routed through 3-chlorocatechol, whereas 4-chlorocatechol was identified from the metabolism of both 2,3- and 2,5-dichlorobenzoate. The initial attack on chlorobenzoates was oxygen dependent and most likely mediated by dioxygenases. Although plasmids were not detected in strain JB2, spontaneous mutants were detected in 70% of glycerol-grown colonies. The mutants were all of the following phenotype: benzoate+, 3-chlorobenzoate+, 2-chlorobenzoate-, 2,3-dichlorobenzoate-, 2,5-dichlorobenzoate-. While chlorocatechols were oxidized by the mutants at wild-type levels, oxidation of 2-chloro- and 2,3- and 2,5-dichlorobenzoates was substantially diminished. These findings suggested that strain JB2 possessed, in addition to the benzoate dioxygenase, a halobenzoate dioxygenase that was necessary for the degradation of chlorobenzoates substituted in the ortho position.  相似文献   

4.
Pseudomonas aeruginosa JB2 was isolated from a polychlorinated biphenyl-contaminated soil by enrichment culture containing 2-chlorobenzoate as the sole carbon source. Strain JB2 was subsequently found also to grow on 3-chlorobenzoate, 2,3- and 2,5-dichlorobenzoates, 2,3,5-trichlorobenzoate, and a wide range of other mono- and dihalogenated benzoic acids. Cometabolism of 2,4-dichlorobenzoate was also observed. Chlorocatechols were the central intermediates of all chlorobenzoate catabolic pathways. Degradation of 2-chlorobenzoate was routed through 3-chlorocatechol, whereas 4-chlorocatechol was identified from the metabolism of both 2,3- and 2,5-dichlorobenzoate. The initial attack on chlorobenzoates was oxygen dependent and most likely mediated by dioxygenases. Although plasmids were not detected in strain JB2, spontaneous mutants were detected in 70% of glycerol-grown colonies. The mutants were all of the following phenotype: benzoate+, 3-chlorobenzoate+, 2-chlorobenzoate-, 2,3-dichlorobenzoate-, 2,5-dichlorobenzoate-. While chlorocatechols were oxidized by the mutants at wild-type levels, oxidation of 2-chloro- and 2,3- and 2,5-dichlorobenzoates was substantially diminished. These findings suggested that strain JB2 possessed, in addition to the benzoate dioxygenase, a halobenzoate dioxygenase that was necessary for the degradation of chlorobenzoates substituted in the ortho position.  相似文献   

5.
Mixed bacterial cultures capable of using 2-methyl-4-chIorophenoxyacetic acid (MCPA) and 2, 4-dichlorophenoxyacetic acid (2, 4-D) as the sole source of carbon and energy were isolated from field soil treated with the herbicide (±)2-(2-methyl-4-chloro)phenoxypropionic acid (mecoprop). An enrichment technique with two aromatic compounds as sources of carbon was used. Effects of temperature and substrate concentration were studied. The mixed cultures retained their ability to degrade MCPA although the bacteria were grown for 3 months (32 successive passages) with glucose as the sole source of carbon and energy. With benzoic acid as co-substrate, one of the cultures was also able to degrade mecoprop and (±)2-(2, 4-dichloro)phenoxypropionic acid (dichlorprop). This ability was not maintained, however, over more than 10 passages.  相似文献   

6.
It has been shown that Listeria monocytogenes produces acetoin from glucose under aerobic conditions. A defined medium with glucose as the sole carbon source was used in an aerobic shake flask culture to reliably produce acetoin. Acetoin, the reactive compound in the Voges-Proskauer test, was assayable in the medium and was used to quantify the metabolic response when inhibitors were added to the medium. Inhibitors such as lactic, acetic, propionic and benzoic acids were used to demonstrate the utility of acetoin production as an indicator of metabolic disruption. With increasing levels of inhibitor, the metabolic and growth responses were measured by acetoin production and optical density change, respectively. Both measurements decreased in a similar manner with increasing inhibitor concentrations. The data also showed the apparent mode of action of the inhibitors. A bacteriostatic effect was observed for the protonated organic acids, acetic (4 mmol l(-1)) and propionic (4 mmol l(-1)), whereas protonated lactic (4 mmol l(-1)) and benzoic (0.16 mmol l(-1)) acids gave an irreversible (apparent bacteriocidal) effect. Lactic, acetic, and propionic acids showed stimulation of metabolic activity at low concentrations, but benzoic did not. Acetoin production is a novel method for quantifying and assessing the mode of action of inhibitors against L. monocytogenes. This system can be used to screen inhibitors for applications in food safety.  相似文献   

7.
A strain ofPseudomonas stutzeri KS25 utilizing 2-chlorobenzoic and 2,5-dichlorobenzoic acids as the sole carbon and energy source was isolated from polychlorophenol-contaminated soil and sewage, using the method of enrichment cultures. This strain was also able to grow on 2-fluoro-, 2-iodo-, 2-bromo- and 2,5-dihydroxybenzoate, but did not utilize 3-, 4-chloro-, 2,4- and 2,6-dichlorobenzoates as the sole carbon and energy source, however, it cometabolized 3-chloro-, 2,4-and 2,6-dichlorobenzoates, but not 4-chlorobenzoate. The yield of released chlorine during utilization of 2-chloro- and 2,5-dichlorobenzoates amounted to 100 % of the theoretical. The concentration of 2-chloro- and 2,5-dichlorobenzoates, not substantially inhibiting the isolated microorganism, was within the range 0.25–0.5 and 2.5–3.0 g/L, respectively.  相似文献   

8.
The thermophilic aerobic bacterium Bacillus thermoleovorans Hamburg 2 grows at 60 degrees C on naphthalene as the sole source of carbon and energy. In batch cultures, an effective substrate degradation was observed. The carbon balance, including naphthalene, metabolites, biomass, and CO(2), was determined by the application of [1-(13)C]naphthalene. The incorporation of naphthalene-derived carbon into the bulk biomass as well as into specified biomass fractions such as fatty acids and amino acids was confirmed by coupled gas chromatography-mass spectrometry (GC-MS) and isotope analyses. Metabolites were characterized by GC-MS; the established structures allow tracing the degradation pathway under thermophilic conditions. Apart from typical metabolites of naphthalene degradation known from mesophiles, intermediates such as 2, 3-dihydroxynaphthalene, 2-carboxycinnamic acid, and phthalic and benzoic acid were identified for the pathway of this bacterium. These compounds indicate that naphthalene degradation by the thermophilic B. thermoleovorans differs from the known pathways found for mesophilic bacteria.  相似文献   

9.
Decomposition of β-Naphthol by a Soil Pseudomonad   总被引:1,自引:1,他引:0  
Summary: A pseudomonad resembling Pseudomonas fluorescens , which grows with β-naphthol as sole source of carbon, was isolated from soil. It did not grow on either naphthalene, α-naphthol, 1,2- or 2,3 dihydroxynaphthalene. Phenol, benzoic acid, o-, p - and (to a small extent) m -hydroxybenzoic acids supported growth of the organism. A maroon coloured substance was produced from β-naphthol in cultures and by washed organisms. β-Naphthol oxidation depended on an induced enzyme system. β-Naphthol-grown organisms oxidized β-naphthol and 2,3- and 2,6-dihydroxynaphthalene immediately and several mono- and di-hydroxybenzoic acids, including salicylic acid, only after a lag. 2,3-Dihydroxynaphthalene may be a metabolite of β-naphthol.  相似文献   

10.
Stenotrophomonas maltophilia KB2 is known to produce different enzymes of dioxygenase family. The aim of our studies was to determine activity of these enzymes after induction by benzoic acids in cometabolic systems with nitrophenols. We have shown that under cometabolic conditions KB2 strain degraded 0.25–0.4 mM of nitrophenols after 14 days of incubation. Simultaneously degradation of 3 mM of growth substrate during 1–3 days was observed depending on substrate as well as cometabolite used. From cometabolic systems with nitrophenols as cometabolites and 3,4-dihydroxybenzoate as a growth substrate, dioxygenases with the highest activity of protocatechuate 3,4-dioxygenase were isolated. Activity of catechol 1,2- dioxygenase and protocatechuate 4,5-dioxygenase was not observed. Catechol 2,3-dioxygenase was active only in cultures with 4-nitrophenol. Ability of KB2 strain to induce and synthesize various dioxygenases depending on substrate present in medium makes this strain useful in bioremediation of sites contaminated with different aromatic compounds.  相似文献   

11.
1. Filtrates from cultures of a strain of Pseudomonas aeruginosa, grown in a basal glucose-ammonium chloride-vitamins-salts medium, possessed biotin activity as detected by microbiological assays. Exponential-phase culture filtrates contained biotin and desthiobiotin in the approximate ratio 1:3, with smaller amounts of biotin sulphoxide and three unidentified compounds with biotin activity. 2. The addition of malonate, adipate or pimelate to the basal medium stimulated the production of compounds with biotin activity; this effect was enhanced when these compounds were included in the medium as the major carbon source. Succinate, glutarate, suberate, fumarate or oxaloacetate did not stimulate the production of compounds with biotin activity. The ratio of biotin to desthiobiotin in filtrates from cultures grown in medium containing malonate as the carbon source was about 1:1. Experiments in which mixtures of malonate and pimelate were included in the medium as the carbon sources showed that these acids probably make a similar contribution in biotin biosynthesis. 3. A number of heterocyclic compounds, including several containing the ureido group (-NH-CO-NH-), were included in the basal medium but none of them stimulated the production of compounds with biotin activity to any marked degree. 4. Several amino acids, particularly cysteine (or cystine) and lysine, when added individually as supplements to the basal medium, stimulated the production of compounds with biotin activity. Filtrates from cultures grown in medium supplemented with cysteine contained approximately equal proportions of biotin and desthiobiotin. A much greater stimulation in the production of compounds with biotin activity was obtained when certain amino acids were included in the medium as the major source of nitrogen or carbon and nitrogen; ornithine, citrulline and argininosuccinate had the most marked effect. The ratio of biotin to desthiobiotin in filtrates from these cultures was usually greater than in filtrates from cultures grown in basal medium. 5-Aminovalerate also caused some stimulation when used as the nitrogen source, but urea was inactive. The effect of binary mixtures of certain amino acids was also examined. 5. The results are discussed in relation to the possible role of the stimulatory compounds during biotin biosynthesis.  相似文献   

12.
The physiological activity of complete series of mono- and di-substituted chloro-and methyl-phenoxyacetic and benzoic acids have been investigated using the wheat cylinder, pea segment and pea curvature tests. In the phenoxyacetic acids, high activity was associated with substitution in the 3-, 4-, 2:4-, 2:5- and 3:4-positions and in general, chlorine had a greater effect than methyl in conferring activity.
With the benzoic acids, 2:3-, 2:5- and 2:6-, disubstitution gave active compounds, the chloro-derivatives again being the more active. The 2:5-compound was the most active in the dichloro- series, all members of which were less active than the 2:3:6-trichloro- and 2:3:5:6-tetrachloro-acids. Benzoic acids substituted in the 4- position were either inactive or exhibited only weak growth-promoting activity.
The results are discussed in relation to recent theories which attempt to relate growth-promoting activity with the position of substituents in the aromatic ring.  相似文献   

13.
The relative importance of the liver and kidney for glycine conjugation of ortho-substituted benzoic acids was investigated. Glycine conjugation of ortho-substituted benzoic acids was investigated in mouse liver and kidney mitochondria. The extent of glycine conjugation of benzoic acids with the halogen group decreased in the order F > Cl > Br > I. The conjugation of salicylic acid with glycine took place in only the kidney. 2-Methoxybenzoic acid exhibited no activity in the liver and kidney. The difference in glycine conjugation of ortho-substituted benzoic acids was observed between liver and kidney. The kidney was more active in glycine conjugation of ortho-substituted acids than the liver. In addition, the relationship between glycine conjugation and the chemical structure of ortho-substituted acids was examined in the liver and kidney. The size of the substituent had a far greater influence over glycine conjugation in the liver and kidney. Glycine conjugation was also dependent on the substituent electronegativity. It may be important that the substrates undergoing glycine conjugation contain a flat region coplanar to the carboxylate group.  相似文献   

14.
When grown on glucose as principal carbon source the culture medium of Polyporus hispidus was found to contain phenolic acids, including p-coumaric and caffeic acids. 14C-Studies indicated that phenylalanine is converted to cinnamic acid as well as to phenylpyruvic acid and tyrosine in cultures. Cell-free preparations of mycelium contained phenylalanine and tyrosine ammonia-lyse activities and were capable of effecting the hydroxylation of cinnamic, p-coumaric and benzoic acids.  相似文献   

15.
Carbon isotopic fractionation in heterotrophic microbial metabolism.   总被引:10,自引:4,他引:6       下载免费PDF全文
Differences in the natural-abundance carbon stable isotopic compositions between products from aerobic cultures of Escherichia coli K-12 were measured. Respired CO2 was 3.4% depleted in 13C relative to the glucose used as the carbon source, whereas the acetate was 12.3% enriched in 13C. The acetate 13C enrichment was solely in the carboxyl group. Even though the total cellular carbon was only 0.6% depleted in 13C, intracellular components exhibited a significant isotopic heterogeneity. The protein and lipid fractions were -1.1 and -2.7%, respectively. Aspartic and glutamic acids were -1.6 and +2.7%, respectively, yet citrate was isotopically identical to the glucose. Probable sites of carbon isotopic fractionation include the enzyme, phosphotransacetylase, and the Krebs cycle.  相似文献   

16.
Carbon isotopic fractionation in heterotrophic microbial metabolism   总被引:2,自引:0,他引:2  
Differences in the natural-abundance carbon stable isotopic compositions between products from aerobic cultures of Escherichia coli K-12 were measured. Respired CO2 was 3.4% depleted in 13C relative to the glucose used as the carbon source, whereas the acetate was 12.3% enriched in 13C. The acetate 13C enrichment was solely in the carboxyl group. Even though the total cellular carbon was only 0.6% depleted in 13C, intracellular components exhibited a significant isotopic heterogeneity. The protein and lipid fractions were -1.1 and -2.7%, respectively. Aspartic and glutamic acids were -1.6 and +2.7%, respectively, yet citrate was isotopically identical to the glucose. Probable sites of carbon isotopic fractionation include the enzyme, phosphotransacetylase, and the Krebs cycle.  相似文献   

17.
Pseudomonas acidovorans M3GY is a recombinant bacterium with the novel capacity to utilize a biphenyl congener chlorinated on both rings, 3,4'-dichlorobiphenyl (3,4'-DCBP), as a sole carbon and energy source. Strain M3GY was constructed with a continuous amalgamated culture apparatus (L. Kr?ckel and D. D. Focht, Appl. Environ. Microbiol. 53:2470-2475, 1987) with P. acidovorans CC1(19), a chloroacetate and biphenyl degrader, and Pseudomonas sp. strain CB15(1), a biphenyl and 3-chlorobenzoate degrader. Genetic and phenotypic data showed the recipient parental strain to be P. acidovorans CC1 and the donor parental strain to be Pseudomonas sp. strain CB15. In growth experiments with 3,4'-DCBP as a sole source of carbon, cultures of strain M3GY increased in absorbance from 0.07 to 0.39 in 29 days while reaching a protein concentration of 58 mug ml and 67% substrate dehalogenation. 4-Chlorobenzoate was identified from culture supernatants of strain M3GY by gas chromatography-infrared spectrometry-mass spectrometry; this would be consistent with the oxidation of the m-chlorinated ring through the standard biphenyl pathway. 4-Chlorobenzoate was converted to 4-chlorocatechol, which was metabolized through the meta-fission pathway. The construction of P. acidovorans M3GY, with the novel capability to utilize 3,4'-DCBP, thus involves the complete use of meta-fission pathways for sequential rupture of the biphenyl and chlorobenzoate rings.  相似文献   

18.
When grown on 3,4,5-trimethoxycinnamic acid, a strain of Pseudomonas putida oxidized this compound and also 3,4,5-trimethoxybenzoic, 3,5-dimethoxy-4-hydroxybenzoic (syringic), and 3,4-dihydroxy-5-methoxybenzoic (3-O-methylgallic) acids, but 3,5-dimethoxy-4-hydroxycinnamic and other acids bearing structural resemblances to the growth substrate were oxidized only slowly. These results indicate that two carbon atoms of the side chain of 3,4,5-trimethoxycinnamate were released before oxidative demethylation occurred to give the ring-fission substrate, 3-O-methylgallate. Oxidation of 3,4,5-trimethoxycinnamate by intact cells gave equimolar amounts of methanol, which was derived from the methoxyl group of 3-O-methylgallate. The tricarboxylic acids, 4-carboxy-2-keto-3-hexenedioic and 4-carboxy-4-hydroxy-2-ketoadipic acids, were shown to be formed by the action of a cell extract upon 3-O-methylgallate; therefore, methanol was released either during or immediately after fission of the benzene nucleus. Cell extracts, prepared from several independent soil isolates after growth on 3,4,5-trimethoxy derivatives of benzoic, cinnamic, and beta-phenylpropionic acids, rapidly oxidized 3-O-methylgallate without added cofactors. It is concluded that the reactions investigated serve generally as a source of methanol in nature.  相似文献   

19.
Pseudomonas cepacia P166 was able to metabolize all monochlorobiphenyls to the respective chlorobenzoates. Although they transiently accumulated, the chlorobenzoate degradation intermediates were further metabolized to chlorocatechols, which in turn were meta cleaved. 2- and 3-Chlorobiphenyl both produced 3-chlorocatechol, which was transformed to an acyl halide upon meta cleavage. 3-Chlorocatechol metabolism was toxic to the cells and impeded monochlorobiphenyl metabolism. In the case of 2-chlorobiphenyl, toxicity was manifested as a diminished growth rate, which nevertheless effected rapid substrate utilization. In the case of 3-chlorobiphenyl, which generates 3-chlorocatechol more rapidly than does 2-chlorobiphenyl, toxicity was manifested as a decrease in viable cells during substrate utilization. 4-Chlorobenzoate was transformed to 4-chlorocatechol, which was metabolized by a meta cleavage pathway leading to dehalogenation. Chloride release from 4-chlorocatechol metabolism, however, was slow and did not coincide with rapid 4-chlorocatechol turnover. Growth experiments with strain P166 on monochlorobiphenyls illustrated the difficulties of working with hydrophobic substrates that generate toxic intermediates. Turbidity could not be used to measure the growth of bacteria utilizing monochlorobiphenyls because high turbidities were routinely measured from cultures with very low viable-cell counts.  相似文献   

20.
【目的】研究嗜盐古菌Haloferax volcanii WFD11菌株以不同芳香酸作为碳源的生长情况;鉴定其通过龙胆酸途径代谢芳香酸过程中的开环酶龙胆酸1,2-双加氧酶的基因,并对其进行生化水平的研究;初步揭示古菌和细菌代谢芳香酸的可能差异。【方法】分别以4 mmol/L的6种不同芳香酸为唯一碳源培养菌株WFD11,利用全自动生长曲线分析仪测定菌株生长情况并绘制生长曲线;利用高效液相色谱检测菌株WFD11代谢3-羟基苯甲酸的中间产物;对菌株WFD11的基因组进行生物信息学分析,寻找潜在的龙胆酸1,2-双加氧酶编码基因,并在Haloferax volcanii H1424中异源表达;通过快速纯化系统(采用Ni2+-NTA亲和层析柱)纯化异源表达的蛋白,以龙胆酸为底物通过紫外分光光度计检测粗酶液和纯化后的龙胆酸1,2-双加氧酶和相关酶学特性;通过实时定量PCR观察hag A的表达类型。【结果】菌株WFD11能以4 mmol/L的3-羟基苯甲酸和3-羟基苯丙酸为唯一碳源和能源生长;高效液相色谱检测证明菌株WFD11通过龙胆酸代谢3-羟基苯甲酸(3HBA);克隆和异源表达了龙胆酸1,2-双加氧酶基因hag A;Hag A粗酶液和纯化蛋白均具龙胆酸1,2-双加氧酶的活性,催化龙胆酸开环生成顺丁二酸单酰丙酮酸;Hag A的龙胆酸1,2-双加氧酶比活力为0.024 8 U/mg,且其活性不依赖于Fe2+;荧光定量PCR实验结果证明hag A是组成型表达。【结论】嗜盐古菌H.volcanii WFD11可能是通过龙胆酸途径代谢芳香酸类物质,为进一步研究古菌和细菌代谢芳香酸的可能差异打下了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号