首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genetic characterization of ad-3B mutants induced in wild-type and UV-sensitive strains has revealed qualitative differences between the spectra of genetic alterations at the molecular level. Ad-3B mutants induced in the two nucleotide excision-repair-deficient strains upr-1 and uvs-2 (Worthy and Epler, 1973) had significantly lower frequencies of nonpolarized complementation patterns and higher frequencies of noncomplementing mutants than ad-3B mutants induced in the wild-type strain in samples induced by either UV, gamma-rays, 4NQO or MNNG. In these same samples ad-3B mutants induced in uvs-4, uvs-5 or uvs-6 did not differ significantly from those induced in the wild-type strain. After ICR-170 treatment, ad-3B mutants induced in the UV-sensitive strains did not differ significantly from those induced in wild-type. The comparisons in the present and previous studies demonstrate that the process of mutation-induction in the ad-3 region is under the control of other loci that not only alter mutant recovery quantitatively (de Serres, 1980; Schüpbach and de Serres, 1981; Inoue et al., 1981a, b) but also qualitatively. These data have important implications for comparative chemical mutagenesis, since the spectrum of genetic alterations produced by a given agent can be modified markedly as a result of defects in DNA repair.  相似文献   

2.
UV-induced inactivation and induction of mutations at the ad-3A and ad-3B loci of Neurospora crassa have been compared among 7 different UV-sensitive strains and a standard wild-type strain. The 7 strains show varying degrees of sensitivity to UV-induced inactivation, with the relative sensitivity being: uvs-2 greater than uvs-3 greater than uvs-4 greater than uvs-6 greater than upr-1 greater uvs-5 greater than uvs-1. Studies on the induction of ad-3 mutants by UV show that the 2 excision-repair deficient mutants uvs-2 and upr-1 exhibit enhanced ad-3 mutant frequencies, while uvs-4 and uvs-5 exhibit reduced ad-3 mutant frequencies, and uvs-3 completely eliminates UV mutagenesis. The ad-3 mutation-induction curves obtained with uvs-1 or uvs-6 are not significantly different from that found with the wild-type strain.  相似文献   

3.
Summary UV damage in a repair-deficient strain has been repaired when a repair-proficient strain has joined it in a heterokaryon. By substituting various repair-deficient mutants for the two components of this system, it has been shown that the rescue is accomplished by means of the excision repair system for pyrimidine dimers. Mutation has been monitored in the rescued nuclei and found to occur with a low frequency. When the rescuing component is replaced by a strain which lacks the excision repair system, there is a low frequency of rescue and the rescued nuclei have a high incidence of mutation. It is concluded that excision repair is relatively mutation-free, but in its absence another repair system is called upon which produces mutations.  相似文献   

4.
H Inoue  C Ishii 《Mutation research》1985,152(2-3):161-168
A mutant, uvs-(SA3B), which shows high sensitivity to UV light segregated among the progeny in a back-cross of a presumptive MMS-sensitive mutant to a wild-type strain. At 37% survival, this mutant was approximately 5 times more sensitive to UV and also 6 times more sensitive to 4-NQO than the wild type. But it was only slightly sensitive to gamma-ray, MMS, MNNG, MTC and histidine. It showed an unusual photoreactivation response. Its time course of photorecovery was similar to the photoreactivation-defective strain upr-1 of Neurospora crassa. Mutation induction by UV at the ad-3 loci in this mutant strain was lower than that at the same loci in the wild-type strain. The uvs-(SA3B) mutant maps between met-1 and col-4 in linkage group IV, and it was not allelic with the mutagen-sensitive mutant mus-8 which is located in this area. We have concluded, therefore, that uvs-(SA3B) has resulted from mutation in a new DNA-repair gene. This new mutant was barren in homozygous crosses.  相似文献   

5.
Three independently isolated ultraviolet light-sensitive (uvs) mutants of Anacystis nidulans were characterized. Strain uvs-1 was most sensitive to UV in the absence of photoreactivation. Pretreatment with caffeine suppressed the dark-survival curve of strain uvs-1, indicating the presence of excision enzymes involved in dark repair. Under "black" and "white" illumination, strain uvs-1 displays photoreactivation properties nearly comparable to wild-type culture. Mutants uvs-35 and uvs-88 appeared to have partial photorecovery capacities. Upon pretreatment with chloramphenicol, photoreactivation properties of strains uvs-1 and uvs-88 were not evident although the partial photoreactivation characteristics of strain uvs-35 remained the same. Data indicate that strains uvs-1, uvs-35, and uvs-88 are probably genetically distinct UV-sensitive mutants.  相似文献   

6.
The frequencies of spontaneous and UV-induced recessive lethal mutations were compared for UV-sensitive and wild-type heterokaryons of Neurospora crassa. These heterokaryons were homokaryotic either for one of two alleles of uvs-3, or for uvs-6 or uvs+. For uvs-3, which is known to have mutator effects, spontaneous recessive lethals were found to be 4-6 times more frequent than observed in uvs+. After correction for clonal distribution of spontaneous mutants, an observed 2-fold increase for uvs-6 was not statistically significant and may have been due to chance occurrence of a few large clones of mutants. Treatment with low doses of UV (50-200 J/m2) produced very similar overall rates of increase for recessive lethals in uvs and uvs+ heterokaryons. This means, that in contrast to results obtained when mutation to ad-3 was measured, both uvs-3 alleles showed highly significant increases for recessive lethals when treated with UV. It is proposed that certain types of UV damage may be processed into recessive lethal mutations by an alternate mechanism from that responsible for viable mutations.  相似文献   

7.
The mutagenic potencies of 3 purine analogs were determined in the ad-3 forward-mutation test in growing cultures of heterokaryon 59 (H-59), a nucleotide excision repair-deficient (uvs-2/uvs-2) 2-component heterokaryon of Neurospora crassa. Two N-hydroxylaminopurines, 2-amino-6-N-hydroxylaminopurine (AHA) and 6-N-hydroxylaminopurine (HAP), were potent and strong mutagens, respectively, whereas 2-aminopurine (AP) was a moderate mutagen. Dose-response curves showed that AHA and HAP were about equally mutagenic at low doses but that AHA was more mutagenic than HAP at high doses. Comparison of these results in H-59 with our earlier results in heterokaryon 12 (H-12) of N. crassa, which is identical to H-59 except for being DNA-repair-proficient (uvs-2+/uvs-2+), shows that the defect in nucleotide excision repair due to uvs-2 has little or no effect on the mutagenic potencies of these 3 purine analogs. Therefore, the nucleotide excision-repair pathway in N. crassa that is deficient in H-59 does not appear to have a major role in the repair of pre-mutational lesions induced by these 3 purine analogs. On the other hand, based on the controls of these experiments, the frequency of spontaneous ad-3 mutants was 4 greater in H-59 than in H-12. This result suggests that the nucleotide excision-repair pathway in N. crassa that is inactivated by the uvs-2 mutation has a major role in the repair of lesions that would lead to spontaneous mutation at the ad-3+ region if they were not repaired.  相似文献   

8.
The UV-sensitive Neurospora strain uvs-2 is known to resemble the excision-defective uvr mutants of E. coli K12 in being both excision-defective and highly UV mutable. As shown in this report, the uvs-2 strain also resembles the uvr mutants in its ability to remain photoreactivable when held in the dark for 2 h between UV-irradiation and photoreactivating light exposure, and in its maintenance of the same spontaneous deletion rate as wild type strains.Unlike the E. coli uvr mutants, however, this strain is sensitive to ionizing radiation and shows an increase in survival when held for 2 h in distilled water before plating (liquid-holding recovery [LHR]). The strain is three times more sensitive to X-rays than the wild type strain. It is also sensitive to nitrosoguanidine (MNNG). Sensitivity to UV, X-rays and MNNG appears to be under the control of a single gene.These properties suggest that the repair defect in the Neurospora uvs-2 mutant is different from those of the uvr mutants of E. coli K12.  相似文献   

9.
The genetic effects of MNNG, 4NQO and ICR-170 have been compared on 5 different UV-sensitive strains and a standard wild-type strain of Neurospora crassa with regard to inactivation and the induction of forward-mutations at the ad-3A and ad-3B loci. Whereas all UV-sensitive strains (upr-1, uvs-2, uvs-3, uvs-5 and uvs-6) are more sensitive to inactivation by MNNG and ICR-170 than wild-type, only uvs-5 shows survival comparable to wild-type after 4NQO treatment, all other strains are more sensitive to 4NQO. In contrast to the effects on inactivation, a wide variety of effects were found for the induction of ad-3A and ad-3B mutations: higher forward-mutation frequencies than were found in wild-type were obtained after treatment with MNNG or 4NQO for upr-1 and uvs-2, no significant increase over the spontaneous mutation frequency was found with uvs-3 after MNNG, 4NQO or ICR-170 treatment; mutation frequencies comparable to that found in wild-type were obtained with uvs-6 after MNNG, 4NQO or ICR-170 treatment and with upr-1 after ICR-170 treatment. Lower forward-mutation frequencies than were found in wild-type were obtained with uvs-2 after ICR-170 treatment and with uvs-5 after MNNG, 4NQO or ICR-170 treatment. These data clearly show that the process of forward-mutation at the ad-3A and ad-3B loci is under genetic control by mutations at other loci (e.g. upr-1, uvs-2, uvs-3, uvs-5 and uvs-6) and that the effect is markedly mutagen-dependent.  相似文献   

10.
H Inoue  C Ishii 《Mutation research》1984,125(2):185-194
Seven different mutants that show high sensitivity to MMS killing were isolated and mapped at different loci. One group, mms-(SA1), mms-(SA2) and mms-(SA6), showed high sensitivity to MMS but not to UV or gamma-rays. Another group, mms-(SA4) and mms-(SA5), showed extremely high sensitivity to UV and MMS. And mms-(SA3) and mms-(SA7) were moderately sensitive to both UV and MMS. Mms-(SA4) and mms-(SA1) were identified as alleles of uvs-2 and mus-7, respectively, which had been previously isolated. The mms-(SA1), mms-(SA6) and mms-(SA7) strains were barren in homozygous crosses, and the mms-(SA5) strain was barren in heterozygous crosses. The mms-(SA1), mms-(SA3) and mms-(SA5) strains showed high sensitivity to histidine. In summary, at least two new loci involved in the repair of MMS damage have been identified. The possibility that some of these new mutants are in new repair pathways is suggested.  相似文献   

11.
Postreplication repair in Neurospora crassa   总被引:1,自引:0,他引:1  
Summary Changes in the molecular weight of nascent DNA made after ultraviolet (UV) irradiation have been studied in the excision-defective Neurospora mutant uvs-2 using isotopic pulse labeling, alkaline gradient centrifugation and alkaline filter elution. Both the size of nascent DNA and the rate of incorporation of label into DNA was reduced by UV light in a dose dependent manner. However, this DNA repair mutant did recover the ability to synthesize control-like high molecular weight DNA 3 hours after UV treatment, although the rate of DNA synthesis remained depressed after the temporary block to elongation (or ligation) had been overcome. Photoreactivation partially eliminated the depression of DNA synthesis rate and UV light killing of cells, providing strong evidence that the effects on DNA synthesis and killing were caused by pyrimidine cyclobutane dimers. The caffeine inhibition repair studies performed were difficult to quantitate but did suggest either partial inhibition of a single repair pathway or alternate postreplication DNA repair pathways in Neurospora. No enhancement in killing was detected after UV irradiation when cells were grown on caffeine containing plates.  相似文献   

12.
The adaptive response is an inducible DNA-repair system which diminishes the mutagenic and toxic effects of alkylating agents. A mutant of E. coli constitutive for adaptative repair, BS21, has been isolated. A spontaneous revertant of this strain, BS23, lacks the adaptive response. When compared to its wild-type parent, mutant BS21 showed an increased resistance to the killing and mutagenic effects of a compound which is not a classical alkylating agent, the antitumor drug cis-diamminedichloroplatinum(II) (cis-DDP). However, this resistance to cis-DDP was also found in strain BS23 which lacks the adaptive response. cis-DDP bound to the DNA of all 3 strains with the same efficiency. In addition, we have investigated the effect of UV radiation and we failed to observe a significant difference in the survival and mutagenesis of these strains. This evidence suggests that the resistance of BS21 and BS23 strains to cis-DDP is not a consequence of the adaptive response or increased excision repair.  相似文献   

13.
Gamma-Ray-induced inactivation and induction of mutations at the ad-3A and ad-3B loci of Neurospora crassa have been compared among 6 different UV-sensitive strains and a standard wild-type strain. The 6 strains show varying degrees of sensitivity to gamma-ray-induced inactivation, with the relative sensitivity at 37% survival being uvs-6 greater than upr-1 greater than uvs-2 greater than uvs-3 greater than wild-type greater than uvs-5 greater than uvs-4. Studies on the induction of ad-3 mutants by gamma-rays show that when the dose-response curve (expressed in terms of ad-3 mutants among the surviving colonies) of the UV-sensitive strains are compared with wild-type, the 2 excision-repair-deficient mutants uvs-2 and upr-1 exhibit enhanced ad-3 mutant frequencies, uvs-3 exhibits reduced ad-3 mutant frequencies whereas both uvs-4 and uvs-5 show lower mutant frequencies than wild-type.  相似文献   

14.
15.
Käfer E 《Genetics》1983,105(1):19-33
The nuclease halo mutant, nuh-4, of Neurospora crassa was identified conclusively as an allele of uvs-3, a gene involved in error-prone DNA repair. Like uvs-3, nuh-4 showed spontaneous mutator effects, and any previous contradictory findings were found to be due to newly arisen mutants. In normal strains the two alleles are noncomplementing and indistinguishable for sensitivity to UV and methyl methanesulfonate (MMS). Like uvs-3, nuh-4 lacked secretion of the extracellular enzyme, DNase A, a Ca++-dependent strand-nonspecific endonuclease which was found to be phosphate repressible. However, nuh-4 differed from uvs-3 in showing much higher conidial viability and lower sensitivity to ionizing radiation and mitomycin C.——Epistatic relationships of the two uvs-3 alleles with seven other MMS-sensitive mutants were determined and compared with those of the highly X-ray-sensitive mutant, uvs-6. Three epistatic groups were found, based on survival of double mutant strains relative to that of their component single mutant strains after treatment with MMS. Both, uvs-3 and nuh-4, were epistatic to mus-9 which also is a mutator. None of the three produced viable double mutants in crosses to uvs-6. On the other hand, uvs-6, but not the uvs-3 alleles, was found to be epistatic to mus-7 and mus-10. The excision-defective uvs-2 and mus-8 both showed synergism with the uvs-3 alleles and with uvs-6, forming a third, separate epistatic group.  相似文献   

16.
17.
Formaldehyde was tested for its killing and mutagenic activities in the ad-3 forward-mutation test in Neurospora crassa. The test was conducted in 3 two-component heterokaryons (dikaryons) of N. crassa in order to determine the effect of the uvs-2 allele, which causes a defect in nucleotide excision repair, on formaldehyde-induced killing and the induction of ad-3 mutants. These dikaryons were homokaryotic for uvs-2+ (H-12), homokaryotic for usv-2 (H-59), and heterokaryotic for uvs-2 (H-71). Formaldehyde induced killing and ad-3 mutants in H-12, but the presence of uvs-2 in the homokaryotic state (H-59) resulted in a 9-fold increase in killing and a 40-fold increase in the induction of ad-3 mutants. This increased sensitivity to formaldehyde-induced killing and mutation conferred by uvs-2 in the homokaryotic state (H-59 vs. H-12) is similar to that noted by others in Escherichia coli. Salmonella typhimurium and Saccharomyces cerevisiae. The dikaryon heterokaryotic for uvs-2 (H-71) has the same sensitivity to formaldehyde-induced ad-3 mutation as H-12, indicating that uvs-2 is recessive to uvs-2+.  相似文献   

18.
Competent Bacillus subtilis were investigated for their ability to support the repair of UV-irradiated bacteriophage and bacteriophage DNA. UV-irradiated bacteriophage DNA cannot be repaired to the same level as UV-irradiated bacteriophage, suggesting a deficiency in the ability of competent cells to repair UV damage. However, competent cells were as repair proficient as noncompetent cells in their ability to repair irradiated bacteriophage in marker rescue experiments. The increased sensitivity of irradiated DNA is shown to be due to the inability of excision repair to function on transfecting DNA in competent bacteria. Furthermore, competent cells show no evidence of possessing an inducible BsuR restriction system to complement their inducible BsuR modification enzyme.  相似文献   

19.
The mutagenic effects of 2-aminopurine (2AP) have been compared in the adenine-3 (ad-3) region of two-component heterokaryons of Neurospora crassa: nucleotide excision repair-proficient (uvs-2+/uvs-2+) heterokaryon 12 (H-12) and nucleotide excision repair-deficient (uvs-2/uvs-2) heterokaryon 59 (H-59). This forward-mutation, morphological and biochemical, specific-locus assay system permits the recovery of ad-3A and/or ad-3B mutants in 3 major classes: gene/point mutations, multilocus deletion mutations, and unknowns, and 3 different subclasses of multiple-locus mutations. Previous studies (Brockman et al., Mutation Res., 218 (1989) 1-11) showed that 2AP treatment of growing cultures of H-12 and H-59 gave no difference between ad-3 forward-mutation frequencies over a wide range of 2AP concentrations in each strain. In the present experiments, genetic analyses of ad-3 mutants recovered from these experiments has demonstrated qualitative differences between the spectra of the 3 main classes of ad-3 mutations. In H-12, 84.2% (203/241) resulted from gene/point mutation, 11.6% (28/241) from multilocus deletion mutation, and 4.1% (10/241) were unknowns. In contrast, in H-59, 43.0% (99/230) resulted from gene/point mutation, 55.7% (128/230) from multilocus deletion mutation, and 1.3% (3/230) were unknowns. In addition, quantitative differences were also found between the spectra of ad-3 mutations in 1 subclass of multiple-locus mutations, but not 2 additional subclasses. The first subclass consisted of 1.7% (4/241) and 9.6% (22/230) gene/point mutations with a closely linked recessive lethal mutation, in H-12 and H-59, respectively. The second two subclasses consisted of (a) 0.4% (1/241) and 0.4% (1/230) multilocus deletion mutations with a closely linked recessive lethal mutation, and (b) 13.3% (32/241) and 15.2% (35/230) gene/point mutations with a separate recessive lethal mutation elsewhere in the genome, in H-12 and H-59, respectively. Data from studies by others have shown that 2AP inhibits adenosine deaminase, resulting in nucleotide precursor pool inbalance, and that 2AP can saturate the mismatch repair system. As a consequence of either effect of 2AP, the spectrum of 2AP-induced mutation could include frameshift mutations and chromosome aberrations such as multilocus deletions in addition to base-pair substitutions. The defect in DNA repair due to the uvs-2 allele, which has been shown to be a deficiency in pyrimidine dimer excision (Worthy and Epler, 1974), most probably has some other excision-repair deficiency (Macleod and Stadler, 1986; Baker et al., 1991).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
Biochemical basis of radiation-sensitivity in mutants of Neurospora crassa   总被引:2,自引:0,他引:2  
The available UV-sensitive mutants of Neurospora crassa were examined for their ability to excise and photoreactive cytosine-containing dimers invivo. All strains exhibited in vivo photoreactivation, including upr-1, which was originally thought to be deficient in photoreactivation. Two strains, uvs-2 and upr-1 were shown to be deficient in excision repair; uvs-3 was shown to contain a residual amount of excision capabilit. The remaining strains, uvs-1, uvs-5, and uvs-6, were normal in their ability to excise dimers. Based on these results, tentative analogies were drawn between the Neurospora mutants and the known classes of UV-sensitive mutants in E. coli. Accordingly, the N. crassa mutants were classified as uvs-1, -lon; uvs-2, -uvr; uvs-3, -uvr (rec?); uvs-5, -lon; uvs-6, -rec; and upr-1, -uvr. A comparison was made between the biochemical responses and the available published data on mutation induction in the Neurospora mutants. Althoughsome relationships were seen between repair defects and mutation induction, too little data were available for any definitive conclusions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号