首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Platelet membrane glycoprotein IIb-IIIa exists as a calcium-dependent complex of two large peptides (designated IIb and IIIa) in Triton X-100 solutions, but it remains unknown if these peptides are subunits of one glycoprotein or are actually two individual glycoproteins in the intact platelet membrane. We used crossed immunoelectrophoresis to define the epitopes of two monoclonal antibodies to IIb-IIIa, then used these antibodies to study the structural and functional organization of IIb and IIIa in the platelet membrane. Human platelets solubilized in Triton X-100 were electrophoresed through an intermediate gel containing 125I-monoclonal IgG, then into an upper gel containing rabbit anti-human platelet antibodies. Our previously characterized antibody. Tab, and a new monoclonal antibody, T10, both bound to the immunoprecipitate corresponding to the IIb-IIIa complex. When platelets were electrophoresed after solubilization in 5 mM EDTA, 125I-Tab bound to the dissociated IIb polypeptide, but not to IIIa. In contrast, 125-I-T10 did not react with either IIb or IIIa. Thus, Tab recognizes a determinant on IIb, while T10 recognizes a determinant created only after the association of IIb and IIIa. Gel-filtered platelets from six normal donors bound 50,600 +/- 5,600 125I-T10 molecules/platelet and 47,800 +/- 11,200 125I-Tab molecules/platelet, consistent with IIb-IIIa being a heterodimer. 125I-T10 binding was identical in unactivated platelets and platelets stimulated with 10 microM ADP. However, platelets did not aggregate or bind 125I-fibrinogen until ADP was added. T10, but not Tab or nonimmune mouse antibody, inhibited ADP-induced platelet aggregation and 125I-fibrinogen binding. Our findings suggest that IIb and IIIa exist as subunits of a single membrane glycoprotein in unstimulated platelets. Fibrinogen binding appears to require not only the interaction of IIb and IIIa, but also some additional change occurring after platelet activation.  相似文献   

2.
Tumor cell induced platelet aggregation was shown to be inhibited in a dose dependent manner by preincubation of human platelets with antibodies to platelet glycoprotein Ib and the IIb/IIIa complex. Combination of antibody to Ib and antibody to the IIb/IIIa complex at concentrations which produced half maximal inhibition of platelet aggregation alone caused complete inhibition of tumor cell induced platelet aggregation. Antibodies to platelet glycoproteins Ib and the IIb/IIIa complex also inhibited platelet synthesis of thromboxane A2, but not synthesis of 12-hydroxyeicosatrienoic acid. Inhibition of tumor cell induced platelet aggregation with antibodies against platelet glycoproteins suggests a role for these glycoproteins in tumor cell-platelet interactions and possibly platelet facilitated tumor cell metastasis.  相似文献   

3.
Thrombin plays a central role in normal and abnormal hemostatic processes. It is assumed that alpha-thrombin activates platelets by hydrolyzing the protease-activated receptor (PAR)-1, thereby exposing a new N-terminal sequence, a tethered ligand, which initiates a cascade of molecular reactions leading to thrombus formation. This process involves cross-linking of adjacent platelets mediated by the interaction of activated glycoprotein (GP) IIb/IIIa with distinct amino acid sequences, LGGAKQAGDV and/or RGD, at each end of dimeric fibrinogen molecules. We demonstrate here the existence of a second alpha-thrombin-induced platelet-activating pathway, dependent on GP Ib, which does not require hydrolysis of a substrate receptor, utilizes polymerizing fibrin instead of fibrinogen, and can be inhibited by the Fab fragment of the monoclonal antibody LJIb-10 bound to the GP Ib thrombin-binding site or by the cobra venom metalloproteinase, mocarhagin, that hydrolyzes the extracellular portion of GP Ib. This alternative alpha-thrombin pathway is observed when PAR-1 or GP IIb/IIIa is inhibited. The recognition sites involved in the cross-linking of polymerizing fibrin and surface integrins via the GP Ib pathway are different from those associated with fibrinogen. This pathway is insensitive to RGDS and anti-GP IIb/IIIa antibodies but reactive with a mutant fibrinogen, gamma407, with a deletion of the gamma-chain sequence, AGDV. The reaction is not due to simple trapping of platelets by the fibrin clot, since ligand binding, signal transduction, and second messenger formation are required. The GP Ib pathway is accompanied by mobilization of internal calcium and the platelet release reaction. This latter aspect is not observed with ristocetin-induced GP Ib-von Willebrand factor agglutination nor with GP Ib-von Willebrand factor-polymerizing fibrin trapping of platelets. Human platelets also respond to gamma-thrombin, an autoproteolytic product of alpha-thrombin, through PAR-4. Co-activation of the GP Ib, PAR-1, and PAR-4 pathways elicit synergistic responses. The presence of the GP Ib pathway may explain why anti-alpha-thrombin/anti-platelet regimens fail to completely abrogate thrombosis/restenosis in the cardiac patient.  相似文献   

4.
Platelet activation is accompanied by the appearance on the platelet surface of approximately 45,000 receptor sites for fibrinogen. The binding of fibrinogen to these receptors is required for platelet aggregation. Although it is established that the fibrinogen receptor is localized to a heterodimer complex of the membrane glycoproteins, IIb and IIIa, little is known about the changes in this complex during platelet activation that result in the expression of the receptor. In the present studies, we have developed and characterized a murine monoclonal anti-platelet antibody, designated PAC-1, that binds to activated platelets, but not to unstimulated platelets. PAC-1 is a pentameric IgM that binds to agonist-stimulated platelets with an apparent Kd of 5 nM. Binding to platelets is dependent on extracellular Ca2+ (KCa = 0.4 microM) but is not dependent on platelet secretion. Platelets stimulated with ADP or epinephrine bind 10,000-15,000 125I-PAC-1 molecules/platelet while platelets stimulated with thrombin bind 20,000-25,000 molecules/platelet. Several lines of evidence indicate that PAC-1 is specific for the glycoprotein IIb.IIIa complex. First, PAC-1 binds specifically to the IIb.IIIa complex on Western blots. Second, PAC-1 does not bind to thrombasthenic platelets or to platelets preincubated with ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid at 37 degrees C, both of which lack the intact IIb.IIIa complex. Third, PAC-1 competitively inhibits the binding of 125I-A2A9, and IgG monoclonal antibody that is specific for the IIb.IIIa complex. Fourth, the antibody inhibits fibrinogen-mediated platelet aggregation. These data demonstrate that PAC-1 recognizes an epitope on the IIb.IIIa complex that is located near the platelet fibrinogen receptor. Platelet activation appears to cause a Ca2+-dependent change involving the glycoprotein IIb.IIIa complex that exposes the fibrinogen receptor and, at the same time, the epitope for PAC-1.  相似文献   

5.
Glycoprotein IIIa was quantitated in human platelets by radioimmunoassay using antisera specific to platelet membranes and purified glycoprotein IIIa. Glycoprotein IIIa and glycoprotein IIb were isolated from washed platelets by Triton X-114 extraction followed by preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Radioiodinated glycoprotein IIIa was further purified by affinity chromatography on Lentil lectin-Sepharose 4B. Purified glycoprotein IIb showed little crossreactivity with 125I-labeled glycoprotein IIIa using the anti-platelet membrane or anti-glycoprotein IIIa antisera on a competition inhibition radioimmunoassay. The expression of glycoprotein IIIa epitopes were the same for the purified glycoprotein IIIa and glycoprotein IIIa in Triton X-100 solubilized platelets. A 66 kDa protein derived from glycoprotein IIIa by limited proteolysis of platelet membranes also expressed the same epitopes as intact glycoprotein IIIa. Solubilized platelets contained approximately 16 micrograms of total glycoprotein IIIa antigen per 10(9) cells. The level of glycoprotein IIIa determined by radioimmunoassay in one patient with Glanzmann's thrombasthenia amounted to 6.7% of normal and it was close to the values obtained by other methods.  相似文献   

6.
Intact human blood platelets were radioactively labelled at the surface by techniques specific for proteins or glycoproteins. Labelled platelet samples were analyzed by a high-resolution two-dimensional separation system involving isoelectric focusing in the first dimension and discontinuous sodium dodecyl sulphate-polyacrylamide gel electrophoresis in the second. The major platelet membrane glycoprotein (GP) bands (Ib, IIb, IIIa and IIIb) were found to be highly heterogeneous even after removal of terminal sialic acid residues. Lactoperoxidase-catalyzed iodination of platelets showed that the major labelled proteins (Ib, IIb, IIIa and IIIb) had altered isoelectric points (pI) and molecular weights after neuraminidase treatment. A number of membrane glycoproteins previously undetected by one-dimensional gel electrophoresis were demonstrated and good evidence provided that the major platelet surface proteins are glycosylated.  相似文献   

7.
Human platelets were surface-labeled by the periodate/NaB3H4 method or by lactoperoxidase-catalysed iodination with 125I. The labeled platelets were treated with chymotrypsin under conditions known to give platelets which aggregate with fibrinogen without stimulation with ADP. Platelets and supernatant were then analysed by various gel electrophoretic techniques including isoelectric focusing/sodium dodecyl sulfate-polyacrylamide gel electrophoresis under reducing or non-reducing conditions and two-dimensional non-reduced/reduced sodium dodecyl sulfate polyacrylamide gel electrophoresis followed by fluorography or indirect autoradiography. Chymotrypsin-treatment of surface-labeled platelets degraded the major glycoproteins Ib, IIb and IIIa but also GP120(4.9-5.4), GPIc and GPV. The membrane-bound fragments of GPIb, IIb and IIIa could be identified and also the supernatant fragments of GPIb and GPV. GPIIIa was also cleaved within a loop structure formed by disulfide bond(s). The fact that remnants of both GPIIb and IIIa are left on chymotrypsin-treated platelets which aggregate spontaneously with fibrinogen may indicate that a complex formed by these remnants constitutes the fibrinogen-binding site on platelets.  相似文献   

8.
B S Coller 《Biorheology》1987,24(6):649-658
The interaction of platelets with natural and artificial surfaces is briefly reviewed, emphasizing the role of the platelet glycoprotein Ib and IIb/IIIa receptors. Studies utilizing monoclonal antibodies to these receptors for the diagnosis and therapy of hemorrhagic and thrombotic disorders are described, indicating the potential of such agents as platelet inhibitors.  相似文献   

9.
Interaction of fibronectin with its receptor on platelets   总被引:26,自引:0,他引:26  
J M Gardner  R O Hynes 《Cell》1985,42(2):439-448
We report that the 12,000 dalton domain of fibronectin that interacts with fibroblast cell surfaces also binds specifically to thrombin-inducible, saturable receptors on platelets. Furthermore, we have used chemical cross-linking and monoclonal antibodies to show that the 12,000 dalton domain of fibronectin interacts directly with glycoprotein IIIa at the platelet cell surface. Both binding and cross-linking of this domain to platelets are competed by a hexapeptide previously shown to block fibroblast adhesion to fibronectin. Finally, we show that a complex of the platelet glycoproteins IIIa and IIb binds to affinity columns of a cell-attachment fragment of fibronectin. These results localize a major fibronectin-platelet interaction to a specific domain of fibronectin and to a specific platelet glycoprotein.  相似文献   

10.
Triflavin, an antiplatelet peptide containing Arg-Gly-Asp, purified from Trimeresurus flavoviridis venom, inhibits aggregation of human platelets stimulated by a variety of agonists. It blocks aggregation through interference with fibrinogen binding to its specific receptor on the platelet surface membrane in a competitive manner, but it has no apparent effect on intracellular events, such as thromboxane B2 formation, phosphoinositides breakdown and intracellular Ca2+ mobilization of thrombin-activated platelets. In this study, we determined the complete sequence of triflavin, which is composed of a single polypeptide chain of 70 amino acids. Its sequence is rich in cysteine and contains Arg-Gly-Asp at residues 49-51 in the carboxy-terminal domain. Triflavin shows about 68% identity of amino acid sequence with trigramin, which is a specific antagonist of the fibrinogen receptor associated with glycoprotein IIb/IIIa complex. [125I]Triflavin binds to unstimulated and ADP-stimulated platelets in a saturable manner and its Kd values are estimated to be 76 and 74 nM, respectively; the corresponding numbers of binding sites are 31,029 and 34,863 per platelet, respectively. [125I]Triflavin binding is blocked by Gly-Arg-Gly-Asp-Ser in a competitive manner. EDTA, the Arg-Gly-Asp-containing peptides (including naturally occurring polypeptides, trigramin and rhodostomin), and monoclonal antibody, 7E3, raised against GP IIb/IIIa complex, inhibit [125I]triflavin binding to unstimulated and ADP-stimulated human platelets. In conclusion, triflavin specifically binds to fibrinogen receptor associated with GP IIb/IIIa complex and its binding site is located at or near GP IIb/IIIa complex, overlapping with those of 7E3 and another Arg-Gly-Asp-containing polypeptide, rhodostomin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The localization of glycoprotein (GP) IIb/IIIa (integrin alpha IIb beta 3) in both resting and thrombin-activated platelets was studied immunocytochemically. By the preembedding method where only the GP IIb/IIIa molecules on the surface of platelets were immunostained, the distribution of protein A-colloidal gold label was randomly distributed along the surface membrane of resting platelets at a density of 18.0 +/- 2.7 gold particles/microns of membrane. At 15 s after stimulation by 0.1 U/ml of thrombin in an unstirred platelet suspension, the spheroid-shaped platelets with pseudopodia still had normal numbers of alpha-granules, and the density of gold particles was 19.7 +/- 3.6 particles/microns. At 5 min, the alpha-granules were no longer present because of the release reaction, and the density of gold particles significantly increased (27.0 +/- 3.7 particles/microns; p less than 0.01). In immuno-stained ultra-thin frozen sections, the gold particles were detected not only on the surface membrane, including the open canalicular system (OCS), but also on the alpha-granule membranes of resting platelets. At 30 s after thrombin stimulation the alpha-granules fused with the OCS, resulting in the formation of a swollen OCS, which still had gold particles on its membrane. At 5 min, the gold particles were detected on the membrane of the swollen OCS located near the surface membrane, while very few gold particles were present on the membrane of the OCS in the central part of the platelets. These results demonstrate that alpha-granule membrane GPIIb/IIIa translocates to the surface membrane through the membrane of the OCS.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The major immunoprecipitate (No. 16) seen on crossed immunoelectrophoresis of Triton X-100-solubilized platelet proteins against whole platelet antibodies represents a complex containing the membrane glycoproteins IIb and IIIa. When EDTA is present during the solubilization, immunoprecipitate 16 as such is not observed, and two new arcs, termed 16a and 16b, appear. As with 16 these immunoprecipitates become radioactively labelled on lactoperoxidase-catalyzed iodination of platelets. Immunoprecipitate 16a showed partial immunochemical identity with 16, and was precipitated by an antibody raised against immunoprecipitate 16. The areas covered by immunoprecipitates 16, 16a and 16b were strongly reduced compared to normal with platelets from a patient with Glanzmann's thrombasthenia type II. Such platelets are known to contain reduced amounts of glycoproteins IIb and IIIa. The new arcs appearing when divalent cations are chelated by EDTA thus represent proteins derived from the immunoprecipitate 16 proteins, and divalent cations seem to be necessary to preserve the protein complex containing glycoprotein IIb and IIIa. The different complex formations between the components of immunoprecipitate 16 may reflect biochemical alterations of functional importance.  相似文献   

13.
To examine the relationship between glycoprotein Ib and other proteins in the platelet membrane and the interaction of this protein with thrombin, platelets were crosslinked by two cleavable reagents, SADP (N-succinimidyl(4-azidophenyldithio)propionate) and DTSSP (3,3′-dithiobis(sulfosuccinimidyl propionate)). Two-dimensional, unreduced-reduced sodium dodecyl sulphate (SDS)-polyacrylamide electrophoresis and staining by silver or wheat germ agglutinin-conjugated peroxidase, after protein transfer to nitrocellulose, demonstrated that SADP intramolecularly crosslinked glycoprotein Ib and formed intermolecular complexes of glycoprotein IIb and some high molecular weight proteins. DTSSP intermolecularly crosslinked glycoprotein Ib, glycoprotein IIb, and other high molecular weight proteins. With a low concentration of 125I-labeled TLCK-thrombin (6 nM), crosslinking with SADP yielded a 200 000 Da complex containing radioactive-labeled thrombin, and high TLCK-thrombin concentration (0.1 μM) gave the complex and a 167 000 band. α- and TLCK-thrombin crosslinking with DTSSP also yielded the 200 000 complex, with the remaining radioactivity in a band corresponding to a highly crosslinked complex. The 200 000 complex formed by reaction with SADP or DTSSP was markedly reduced by preincubation of platelets with excess unlabeled TLCK-thrombin and had a pI similar to glycoprotein Il. These results suggest that glycoprotein Il is one of the proteins composing the high affinity receptor for thrombin.  相似文献   

14.
Platelet membrane glycoproteins (GP) IIb and IIIa have been identified as platelet aggregation sites. These glycoproteins form a heterodimer complex (GP IIb-IIIa) in the presence of Ca2+. To study the morphology of this glycoprotein complex in membranes, we incorporated GP IIb-IIIa into artificial phospholipid vesicles using a detergent (octyl glucoside) dialysis procedure. Phosphatidylserine-enriched vesicles (70% phosphatidylserine, 30% phosphatidylcholine) incorporated approximately 90% of the GP IIb-IIIa as determined by sucrose flotation. Glycoprotein IIb-IIIa incorporation into the vesicles was unaffected by ionic strength, suggesting a hydrophobic interaction between the glycoprotein and the phospholipid. In both intact platelets or phospholipid vesicles, GP IIb was susceptible to neuraminidase hydrolysis, indicating that most of the glycoprotein complexes were oriented toward the outside of the platelets or vesicles. The morphology of GP IIb-IIIa in the phospholipid vesicles was observed by negative staining electron microscopy. Individual GP IIb-IIIa complexes appeared as spikes protruding as much as 20 nm from the vesicle surface. Each spike consisted of a GP IIb "head," which was distal to the vesicle and was supported by the GP IIIa "tails." The GP IIb-IIIa complex appeared to be attached to the vesicle membrane by the tips of the GP IIIa tails. Treatment of vesicles with EGTA dissociated the GP IIb-IIIa complex. The dissociated glycoproteins remained attached to the phospholipid vesicles, indicating that both GP IIb and GP IIIa contain membrane-attachment sites. These data suggest a possible structural arrangement of the GP IIb-IIIa complex in whole platelets.  相似文献   

15.
《Biorheology》1996,33(3):209-229
Elevated shear stress levels in pathologically stenosed vessels induce platelet activation and aggregation, and may play a role in the pathogenesis of arterial disease. Increased plasma catecholamine concentrations have also been implicated in the onset of acute coronary ischemic syndromes. This study was designed to examine the synergistic interaction of shear stress and epinephrine in the activation of platelets. Platelets (in PRP) sheared at 60 dyn/cm2 showed little or no aggregation unless pretreated with epinephrine. Pretreatment with 250 nM epinephrine followed by shear at 60 dyn/cm2 induced >60% platelet aggregation. The specific α2-adrenergic receptor antagonist yohimbine inhibited the synergistic aggregation, as did the ADP scavenging system phosphocreatine/creatine phosphokinase, indicating a three-way synergism with ADP. Chemical or monoclonal antibody blockade of von Willebrand factor (vWF) interactions with either platelet glycoprotein (Gp) Ib or Gp IIb/IIIa completely inhibited platelet aggregation induced by activating levels of shear stress alone. However, the combination of epinephrine and shear stress induced platelet aggregation that was blocked by 10E5, a monoclonal antibody that inhibits vWF binding to Gp IIb/IIIa, but not by aurin tricarboxylic acid or the monoclonal antibody 6D1, both of which inhibit vWF binding to Gp Ib. Synergistic platelet aggregation in response to epinephrine and shear stress was observed in washed platelets, platelet-rich plasma and whole blood in vitro, and also ex vivo following exercise to elevate endogenous levels of catecholamines. These results indicate that epinephrine synergizes with shear stress to induce platelet aggregation. This synergistic response requires functional Gp IIb/IIIa complexes, but is at least partially independent of vWF-Gp Ib interactions.  相似文献   

16.
A study was carried out on the presence of platelet-bound immunoglobulins, platelet-bound complement and serum immunoglobulin reactive with platelets in the blood of persons infected with HIV and those at risk of HIV infection. Platelet-bound immunoglobulins, predominantly IgG and IgM, but not complement, were demonstrated by immunofluorescence in 16 out of 16 patients with AIDS, in 5 out of 7 with AIDS-related complex/persistent generalized lymphadenopathy and in 7 out of 10 apparently healthy sexually active homosexual men, of whom 2 were anti-HIV1 seropositive. There was no correlation between the presence of platelet-bound immunoglobulins and either the platelet count or the level of circulating immune complexes. The specificity of the platelet-bound immunoglobulins and platelet-reactive immunoglobulins in the corresponding sera was studied. Platelet-bound immunoglobulins were eluted and then investigated for cross-reactivity with HIV. Both sera and eluates were tested for reactivity with cardiolipin and reactivity with the major target antigen in classical autoimmune thrombocytopenia, the GP IIb/IIIa complex. Of 17 eluates containing platelet-reactive immunoglobulins, 5 reacted with HIV-determinants but 2 out of 5 eluates that did not contain platelet-reactive immunoglobulins also reacted. Although anti-cardiolipin antibodies were detected in all sera, none of the 17 eluates reacted with cardiolipin. Moreover, sera and eluates, reactive with normal platelets, did not react with type-1-Glanzmann disease platelets. This indicates that the antibodies are directed against the glycoprotein IIb/IIIa complex of platelets. This could not be confirmed by immunoprecipitation or by immunoblotting, however. We conclude that the presence of platelet-bound immunoglobulins is common in HIV-infection but may also occur in persons at risk and that the nature of the auto-antibodies is not different from that of the auto-antibodies observed in classical ITP.  相似文献   

17.
S A Santoro  W J Lawing 《Cell》1987,48(5):867-873
Two distinct sequences of amino acids, RGDS and HHLGGAKQAGDV, each inhibit the binding of fibrinogen, fibronectin, and von Willebrand factor to the platelet membrane glycoprotein IIb-IIIa complex. We have employed radiolabeled, photoactivatable aryl azide derivatives of the two sequences to explore the relationship between the binding sites for these peptides on the glycoprotein IIb-IIIa complex. Each probe specifically labeled only the glycoprotein IIb-IIIa complex of intact platelets. Since each peptide inhibited labeling of the receptor complex by the other, the peptides compete for binding sites on the receptor complex. However, the binding sites do not appear to be identical. Whereas the RGDS probe specifically labeled both glycoproteins IIb and IIIa, the HHLGGAKQA-GDV probe specifically labeled only glycoprotein IIb.  相似文献   

18.
Platelet membrane glycoprotein (GP) IIIa forms a Ca2+-dependent heterodimer complex with GP IIb. The GP IIb-IIIa complex constitutes the fibrinogen and fibronectin receptor on stimulated platelets. A biochemically and immunologically similar membrane glycoprotein complex is present on endothelial cells. A human umbilical vein endothelial cell cDNA library was screened using oligonucleotide probes designed from peptide sequences obtained from platelet GP IIIa. A cDNA clone was sequenced and found to encode a protein of 84.5 kDa. The translated endothelial cDNA contained five sequences that corresponded to peptide sequences in platelet GP IIIa, including the amino-terminal 19 residues. Thus, the endothelial and platelet forms of GP IIIa are apparently identical. Glycoprotein IIIa consists of a long amino-terminal extracellular domain with several potential N-linked glycosylation sites and four cysteine-rich tandem repeats, a 29-residue hydrophobic transmembrane segment, and a short carboxyl-terminal cytoplasmic domain. Glycoprotein IIIa has a 47% amino acid sequence homology to "integrin," a fibronectin receptor from chicken embryo fibroblasts. This homology suggests that GP IIIa is a member of a family of cell-surface adhesion receptors.  相似文献   

19.
The biochemical details of the platelet surface as they relate to normal platelet function have been elucidated through study of labeled membranes from both normal platelets and those with congenitially defective function. Several cytoadhesive glycoprotein complexes which are integral components of the platelet membrane have been demonstrated to act as important receptors for extracellular matrix macromolecules. Glycoproteins Ia/IIa (collagen receptor), Ic/IIa (fibronectin receptor), and IIb/IIIa (fibrinogen receptor) belong to a family of cytoadhesive complexes called the integrins, while glycoprotein Ib/IX, the major von Willebrand receptor, has different features. These same major glycoproteins comprise all of the alloantigens and most of the autoantigens that have been characterized. Glycoprotein IIb/IIIa contains the alloantigens, PlA (Zw), Bak (Lek), and Pen (Yuk), as well as the most frequent target antigenic sites for anti-platelet autoantibodies. Because a number of platelet alloantigens were discovered independently by more than one group, nomenclature is confusing at present, although a system analogous to that used for histocompatibility antigens has been proposed. Precise identification of the antigenic epitopes has not yet been accomplished for all of the platelet antigens. Current research efforts include characterization of antigenic epitopes, elucidation of mechanisms by which platelet immunization occurs, and determination of the clinical implications of the presence of various platelet antibodies.  相似文献   

20.
Calcium-binding platelet proteins were examined by crossed immunoelectrophoresis of solubilized platelets against antibodies to whole platelets followed by incubation of the immunoplates with 45Ca2+ and autoradiography. When the immunoplates had been pretreated with EDTA at pH 9.0 in order to remove divalent cations, three immunoprecipitates were markedly labelled with 45Ca2+. These corresponded to the glycoprotein IIb-IIIa complex, glycoprotein Ia and a presently unidentified antigen termed G18. These antigens were membrane-bound and surface-oriented. When an excess of EDTA was introduced in the incubation media the results revealed that the glycoprotein IIb-IIIa complex and antigen G18, but not glycoprotein Ia, contained sites with a stronger affinity for calcium than has EDTA at pH 7.4. Immunoprecipitates of the separate glycoproteins IIb and IIIa both bound calcium in the same manner as the glycoprotein IIb-IIIa complex. As another approach, platelet-rich plasma was incubated with 45Ca2+ prior to crossed immunoelectrophoresis of the solubilized platelets. A single immunoprecipitate was weakly labelled. This did not correspond to any of the immunoprecipitates which were visible after staining with Coomassie blue. The labelling of this antigen was markedly increased when the platelet-rich plasma had been preincubated with EDTA and in this case a weak labelling of the glycoprotein IIb-IIIa precipitate also became apparent. No increased incorporation of calcium occurred in any of these immunoprecipitates when the platelets were aggregated with ADP in the presence of 45Ca2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号