首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The hepatic arterial buffer response (HABR) tends to maintain liver blood flow under conditions of low mesenteric perfusion. We hypothesized that systemic hypoperfusion impairs the HABR. In 12 pigs, aortic blood flow was reduced by cardiac tamponade to 50 ml. kg(-1). min(-1) for 1 h (short-term tamponade) and further to 30 ml. kg(-1). min(-1) for another hour (prolonged tamponade). Twelve pigs without tamponade served as controls. Portal venous blood flow decreased from 17 +/- 3 (baseline) to 6 +/- 4 ml. kg(-1). min(-1) (prolonged tamponade; P = 0.012) and did not change in controls, whereas hepatic arterial blood flow decreased from 2 +/- 1 (baseline) to 1 +/- 1 ml. kg(-1). min(-1) (prolonged tamponade; P = 0.050) and increased from 2 +/- 1 to 4 +/- 2 ml. kg(-1). min(-1) in controls (P = 0.002). The change in hepatic arterial conductance (DeltaC(ha)) during acute portal vein occlusion decreased from 0.1 +/- 0.05 (baseline) to 0 +/- 0.01 ml. kg(-1). min(-1). mmHg(-1) (prolonged tamponade; P = 0.043). In controls, DeltaC(ha) did not change. Hepatic lactate extraction decreased, but hepatic release of glutathione S-transferase A did not change during cardiac tamponade. In conclusion, during low systemic perfusion, the HABR is exhausted and hepatic function is impaired without signs of cellular damage.  相似文献   

2.
Hepatic lactate uptake versus leg lactate output during exercise in humans.   总被引:1,自引:0,他引:1  
The exponential rise in blood lactate with exercise intensity may be influenced by hepatic lactate uptake. We compared muscle-derived lactate to the hepatic elimination during 2 h prolonged cycling (62 +/- 4% of maximal O(2) uptake, (.)Vo(2max)) followed by incremental exercise in seven healthy men. Hepatic blood flow was assessed by indocyanine green dye elimination and leg blood flow by thermodilution. During prolonged exercise, the hepatic glucose output was lower than the leg glucose uptake (3.8 +/- 0.5 vs. 6.5 +/- 0.6 mmol/min; mean +/- SE) and at an arterial lactate of 2.0 +/- 0.2 mM, the leg lactate output of 3.0 +/- 1.8 mmol/min was about fourfold higher than the hepatic lactate uptake (0.7 +/- 0.3 mmol/min). During incremental exercise, the hepatic glucose output was about one-third of the leg glucose uptake (2.0 +/- 0.4 vs. 6.2 +/- 1.3 mmol/min) and the arterial lactate reached 6.0 +/- 1.1 mM because the leg lactate output of 8.9 +/- 2.7 mmol/min was markedly higher than the lactate taken up by the liver (1.1 +/- 0.6 mmol/min). Compared with prolonged exercise, the hepatic lactate uptake increased during incremental exercise, but the relative hepatic lactate uptake decreased to about one-tenth of the lactate released by the legs. This drop in relative hepatic lactate extraction may contribute to the increase in arterial lactate during intense exercise.  相似文献   

3.
The equilibrium pressure obtained during simultaneous occlusion of hepatic vascular inflow and outflow was taken as the reference estimate of hepatic vascular distending pressure (P(hd)). P(hd) at baseline was 1.1 +/- 0.2 (mean +/- SE) mmHg higher than hepatic vein pressure (P(hv)) and 0.7 +/- 0.3 mmHg lower than portal vein pressure (P(pv)). Norepinephrine (NE) infusion increased P(hd) by 1. 5 +/- 0.5 mmHg and P(pv) by 3.7 +/- 0.6 mmHg but did not significantly increase P(hv). Hepatic lobar vein pressure (P(hlv)) measured by a micromanometer tipped 2-Fr catheter closely resembled P(hd) both at baseline and during NE-infusion. Dynamic pressure-volume (PV) curves were constructed from continuous measurements of P(hv) and hepatic blood volume increases (estimated by sonomicrometry) during brief occlusions of hepatic vascular outflow and compared with static PV curves constructed from P(hd) determinations at five different hepatic volumes. Estimates of hepatic vascular compliance and changes in unstressed blood volume from the two methods were in close agreement with hepatic compliance averaging 32 +/- 2 ml. mmHg(-1). kg liver(-1). NE infusion reduced unstressed blood volume by 110 +/- 38 ml/kg liver but did not alter compliance. In conclusion, P(hlv) reflects hepatic distending pressure, and the construction of dynamic PV curves is a fast and valid method for assessing hepatic compliance and changes in unstressed blood volume.  相似文献   

4.
We tested whether hepatic blood flow is altered following central hypovolemia caused by simulated orthostatic stress. After 30 min of supine rest, hemodynamic, plasma density, and indocyanine green (ICG) clearance responses were determined during and after release of a 15-min 40 mmHg lower body negative pressure (LBNP) stimulus. Plasma density shifts and the time course of plasma ICG concentration were used to assess intravascular volume and hepatic perfusion changes. Plasma volume decreased during LBNP (-10%) as did cardiac output (-15%), whereas heart rate (+14%) and peripheral resistance (+17%) increased, as expected. On the basis of ICG elimination, hepatic perfusion decreased from 1.67 +/- 0.32 (pre-LBNP control) to 1.29 +/- 0.26 l/min (-22%) during LBNP. Immediately after LBNP release, we found hepatic perfusion 25% above control levels (to 2.08 +/- 0.48 l/min, P = 0.0001). Hepatic vascular conductance after LBNP was also significantly higher than during pre-LBNP control (21.4 +/- 5.4 vs. 17.1 +/- 3.1 ml.min(-1).mmHg(-1), P < 0.0001). This indicates autoregulatory vasodilatation in response to relative ischemia during a stimulus that has cardiovascular effects similar to normal orthostasis. We present evidence for physiological post-LBNP reactive hyperemia in the human liver. Further studies are needed to quantify the intensity of this response in relation to stimulus duration and magnitude, and clarify its mechanism.  相似文献   

5.
Two groups of African green monkeys were fed diets containing 40% of calories as fat with half of the fat calories as either fish oil or lard. The fish oil-fed animals had lower cholesterol concentrations in blood plasma (33%) and low density lipoproteins (LDL) (34%) than did animals fed lard. Size and cholesteryl ester (CE) content of LDL, strong predictors of coronary artery atherosclerosis in monkeys, were significantly less for the fish oil-fed animals although the apoB and LDL particle concentrations in plasma were similar for both diet groups. We hypothesized that decreased hepatic CE secretion led to the smaller size and reduced CE content of LDL in the fish oil-fed animals. Hepatic CE secretion was studied using recirculating perfusion of monkey livers that were infused during perfusion with fatty acids (85% 18:1 and 15% n-3) at a rate of 0.1 mumol/min per g liver. The rate of cholesterol secretion was less (P = 0.055) for the livers of fish oil versus lard-fed animals (3.3 +/- 0.5 vs. 6.0 +/- 1.2 mg/h per 100 g, mean +/- SEM) but the rate of apoB secretion was similar for both groups (0.92 +/- 0.15 vs. 1.01 +/- 0.13 mg/h per 100 g, respectively). The hepatic triglyceride secretion rate was also less (P less than 0.05) for the fish oil-fed animals (8.3 +/- 2.5 vs. 18.3 +/- 4.4 mg/h per 100 g). Liver CE content was lower (P less than 0.006) in fish oil-fed animals (4.1 +/- 0.8 vs. 7.4 +/- 0.7 mg/g) and this was reflected in a lower (P less than 0.04) esterified to total cholesterol ratio of perfusate VLDL (0.21 +/- 0.045 vs. 0.41 +/- 0.06). The hepatic VLDL of animals fed fish oil had 40-50% lower ratios of triglyceride to protein and total cholesterol to protein. From these data we conclude that livers from monkeys fed fish oil secreted similar numbers of VLDL particles as those of lard-fed animals although the hepatic VLDL of fish oil-fed animals were smaller in size and relatively enriched in surface material and depleted of core constituents. Positive correlations between plasma LDL size and both hepatic CE content (r = 0.87) and hepatic VLDL cholesterol secretion rate (r = 0.84) were also found.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
We evaluated whether the increase in blood lactate with intense exercise is influenced by a low hepatosplanchnic blood flow as assessed by indocyanine green dye elimination and blood sampling from an artery and the hepatic vein in eight men. The hepatosplanchnic blood flow decreased from a resting value of 1.6 +/- 0.1 to 0.7 +/- 0.1 (SE) l/min during exercise. Yet the hepatosplanchnic O2 uptake increased from 67 +/- 3 to 93 +/- 13 ml/min, and the output of glucose increased from 1.1 +/- 0.1 to 2.1 +/- 0.3 mmol/min (P < 0.05). Even at the lowest hepatosplanchnic venous hemoglobin O2 saturation during exercise of 6%, the average concentration of glucose in arterial blood was maintained close to the resting level (5.2 +/- 0.2 vs. 5.5 +/- 0.2 mmol/l), whereas the difference between arterial and hepatic venous blood glucose increased to a maximum of 22 mmol/l. In arterial blood, the concentration of lactate increased from 1.1 +/- 0.2 to 6.0 +/- 1.0 mmol/l, and the hepatosplanchnic uptake of lactate was elevated from 0.4 +/- 0.06 to 1.0 +/- 0.05 mmol/min during exercise (P < 0.05). However, when the hepatosplanchnic venous hemoglobin O2 saturation became low, the arterial and hepatosplanchnic venous blood lactate difference approached zero. Even with a marked reduction in its blood flow, exercise did not challenge the ability of the liver to maintain blood glucose homeostasis. However, it appeared that the contribution of the Cori cycle decreased, and the accumulation of lactate in blood became influenced by the reduced hepatosplanchnic blood flow.  相似文献   

7.
The purpose of the study was to describe hemodynamic response and regional blood flows through various organs and tissues (microsphere technique) in dogs (n = 8), at rest and during mild (4 km/h, 13% slope; heart rate = 154 bpm), moderate (4 km/h, 26% slope; heart rate = 201 bpm), and severe (4 km/h, 39% slope; heart rate = 266 bpm) exercise on treadmill. Cardiac output (rest: 3.2 +/- 0.3; 39% slope: 10.2 +/- 1.3 l/min; mean +/- SE), systolic aortic pressure (rest: 122 +/- 4; 39% slope: 158 +/- 9 mm Hg), and left atrial pressure (rest: 5 +/- 0.7; 39% slope: 11.0 +/- 0.6 mm Hg) increased linearly with workload. On the contrary stroke volume increased from rest (35 +/- 2 ml) to mild (38 +/- 2 ml) and moderate (42 +/- 3 ml) exercise but decreased in response to the severe workload (38 +/- 5 ml). Regional blood flows across the brain, femoral bone, adrenal glands and temporalis muscle were not modified during exercise. On the contrary, a marked increase in regional blood flow was observed through the flexor and extensor muscles of the limb (X 5 to X 15), the muscles of the back (X 4) and the diaphragm (X 2.5). The small inconsistent increase in nutritional tongue blood flow probably underestimated the increased perfusion through arteriovenous shunts in the mucosa for heat-loss purposes. Myocardial blood flow increased in a linear fashion with work load in both ventricles.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
After a meal, glucagon-like peptide-1 (GLP-1) levels in the hepatic portal vein are elevated and are twice those in peripheral blood. The aim of this study was to determine whether any of GLP-1's acute metabolic effects are initiated within the hepatic portal vein. Experiments consisted of a 40-min basal period, followed by a 240-min experimental period, during which conscious 42-h-fasted dogs received glucose intraportally (4 mgxkg(-1)xmin(-1)) and peripherally (as needed) to maintain arterial plasma glucose levels at approximately 160 mg/dl. In addition, saline was given intraportally (CON; n = 8) or GLP-1 (1 pmolxkg(-1)xmin(-1)) was given into the hepatic portal vein (POR; n = 11) or the hepatic artery (HAT; n = 8). Portal vein plasma GLP-1 levels were basal in CON, 20x basal in POR, and 10x basal in HAT, whereas levels in the periphery and liver were the same in HAT and CON. The glucose infusion rate required to maintain hyperglycemia was significantly greater in POR (8.5 +/- 0.7 mgxkg(-1)xmin(-1), final 2 h) than in either CON or HAT (6.0 +/- 0.5 or 6.7 +/- 1.0 mgxkg(-1)xmin(-1), respectively). There were no differences among groups in either arterial plasma insulin (24 +/- 2, 23 +/- 3, and 23 +/- 3 microU/ml for CON, POR, and HAT, respectively) or glucagon (23 +/- 2, 30 +/- 3, and 25 +/- 2 pg/ml) levels during the experimental period. The increased need for glucose infusion reflected greater nonhepatic as opposed to liver glucose uptake. GLP-1 infusion increased glucose disposal independently of changes in pancreatic hormone secretion but only when the peptide was delivered intraportally.  相似文献   

9.
We tested whether seal location at iliac crest (IC) or upper abdomen (UA), before and during lower body negative pressure (LBNP), would affect thoracic electrical impedance, hepatic blood flow, and central cardiovascular responses to LBNP. After 30 min of supine rest, LBNP at -40 mm Hg was applied for 15 min, either at IC or UA, in 14 healthy males. Plasma density and indocyanine green concentrations assessed plasma volume changes and hepatic perfusion. With both sealing types, LBNP-induced effects remained unchanged for mean arterial pressure (-3.0+/-1.1 mm Hg), cardiac output (-1.0 l min(-1)), and plasma volume (-11 %). Heart rate was greater during UA (80.6+/-3.3 bpm) than IC (76.0+/-2.5 bpm) (p<0.01) and thoracic impedance increased more using UA (3.2+/-0.2 Omega) than IC (1.8+/-0.2 Omega) (p<0.0001). Furthermore, during supine rest, UA was accompanied by lower thoracic impedance (26.9+/-1.1 vs 29.0+/-0.8 Omega, p<0.001) and hepatic perfusion (1.6 vs 1.8 l.min(-1), p<0.05) compared to IC. The data suggest that the reduction in central blood volume in response to LBNP depends on location of the applied seal. The sealing in itself altered blood volume distribution and hepatic perfusion in supine resting humans. Finally, application of LBNP with the seal at the upper abdomen induced a markedly larger reduction in central blood volume and greater increases in heart rate than when the seal was located at the iliac crest.  相似文献   

10.
We examined the role of efferent neural signaling in regulation of net hepatic glucose uptake (NHGU) in two groups of conscious dogs with hollow perfusable coils around their vagus nerves, using tracer and arteriovenous difference techniques. Somatostatin, intraportal insulin and glucagon at fourfold basal and basal rates, and intraportal glucose at 3.8 mg.kg(-1).min(-1) were infused continuously. From 0 to 90 min [period 1 (P1)], the coils were perfused with a 37 degrees C solution. During period 2 [P2; 90-150 min in group 1 (n = 3); 90-180 min in group 2 (n = 6)], the coils were perfused with -15 degrees C solution to eliminate vagal signaling, and the coils were subsequently perfused with 37 degrees C solution during period 3 (P3). In addition, group 2 received an intraportal infusion of norepinephrine at 16 ng.kg(-1).min(-1) during P2. The effectiveness of vagal suppression was demonstrated by the increase in heart rate during P2 (111 +/- 17, 167 +/- 16, and 105 +/- 13 beats/min in group 1 and 71 +/- 6, 200 +/- 11, and 76 +/- 6 beats/min in group 2 during P1-P3, respectively) and by prolapse of the third eyelid during P2. Arterial plasma glucose, insulin, and glucagon concentrations; hepatic blood flow; and hepatic glucose load did not change significantly during P1-P3. NHGU during P1-P3 was 2.7 +/- 0.4, 4.1 +/- 0.6, and 4.0 +/- 1.2 mg.kg(-1).min(-1) in group 1 and 5.0 +/- 0.9, 5.6 +/- 0.7, and 6.1 +/- 0.9 mg.kg(-1).min(-1) in group 2 (not significant among periods). Interruption of vagal signaling with or without intraportal infusion of norepinephrine to augment sympathetic tone did not suppress NHGU during portal glucose delivery, suggesting the portal signal stimulates NHGU independently of vagal efferent flow.  相似文献   

11.
We investigated intestinal oxygen supply and mucosal tissue PO2 during administration of increasing dosages of continuously infused arginine vasopressin (AVP) in an autoperfused, innervated jejunal segments in anesthetized pigs. Mucosal tissue PO2 was measured by employing two Clark-type surface oxygen electrodes. Oxygen saturation of jejunal microvascular hemoglobin was determined by tissue reflectance spectrophotometry. Microvascular blood flow was assessed by laser-Doppler velocimetry. Systemic hemodynamic variables, mesenteric venous and systemic acid-base and blood gas variables, and lactate measurements were recorded. Measurements were performed at baseline and at 20-min intervals during incremental AVP infusion (n = 8; 0.007, 0.014, 0.029, 0.057, 0.114, and 0.229 IU.kg(-1).h(-1), respectively) or infusion of saline (n=8). AVP infusion led to a significant (P < .05), dose-dependent decrease in cardiac index (from 121 +/- 31 to 77 +/- 27 ml.kg(-1).min(-1) at 0.229 IU.kg(-1).h(-1)) and systemic oxygen delivery (from 14 +/- 3 to 9 +/- 3 ml.kg(-1).min(-1) at 0.229 IU.kg(-1).h(-1)) concomitant with an increase in systemic oxygen extraction ratio (from 31 +/- 4 to 48 +/- 10%). AVP decreased microvascular blood flow (from 133 +/- 47 to 82 +/- 35 perfusion units at 0.114 IU.kg(-1).h(-1)), mucosal tissue PO2 (from 26 +/- 7 to 7 +/- 2 mmHg at 0.229 IU.kg(-1).h(-1)), and microvascular hemoglobin oxygen saturation (from 51 +/- 9 to 26 +/- 12% at 0.229 IU.kg(-1).h(-1)) without a significant increase in mesenteric venous lactate concentration (2.3 +/- 0.8 vs. 3.4 +/- 0.7 mmol/l). We conclude that continuously infused AVP decreases intestinal oxygen supply and mucosal tissue PO2 due to a reduction in microvascular blood flow and due to the special vascular supply in the jejunal mucosa in a dose-dependent manner in pigs.  相似文献   

12.
We tested the hypothesis that, following exposure to high altitude, cerebrovascular reactivity to CO2 and cerebral autoregulation would be attenuated. Such alterations may predispose to central sleep apnea at high altitude by promoting changes in brain PCO2 and thus breathing stability. We measured middle cerebral artery blood flow velocity (MCAv; transcranial Doppler ultrasound) and arterial blood pressure during wakefulness in conditions of eucapnia (room air), hypocapnia (voluntary hyperventilation), and hypercapnia (isooxic rebeathing), and also during non-rapid eye movement (stage 2) sleep at low altitude (1,400 m) and at high altitude (3,840 m) in five individuals. At each altitude, sleep was studied using full polysomnography, and resting arterial blood gases were obtained. During wakefulness and polysomnographic-monitored sleep, dynamic cerebral autoregulation and steady-state changes in MCAv in relation to changes in blood pressure were evaluated using transfer function analysis. High altitude was associated with an increase in central sleep apnea index (0.2 +/- 0.4 to 20.7 +/- 23.2 per hour) and an increase in mean blood pressure and cerebrovascular resistance during wakefulness and sleep. MCAv was unchanged during wakefulness, whereas there was a greater decrease during sleep at high altitude compared with low altitude (-9.1 +/- 1.7 vs. -4.8 +/- 0.7 cm/s; P < 0.05). At high altitude, compared with low altitude, the cerebrovascular reactivity to CO2 in the hypercapnic range was unchanged (5.5 +/- 0.7 vs. 5.3 +/- 0.7%/mmHg; P = 0.06), while it was lowered in the hypocapnic range (3.1 +/- 0.7 vs. 1.9 +/- 0.6%/mmHg; P < 0.05). Dynamic cerebral autoregulation was further reduced during sleep (P < 0.05 vs. low altitude). Lowered cerebrovascular reactivity to CO2 and reduction in both dynamic cerebral autoregulation and MCAv during sleep at high altitude may be factors in the pathogenesis of breathing instability.  相似文献   

13.
The hepatic arterial buffer response (HABR) effectively controls total blood perfusion in normal livers, but little is known about blood flow regulation in cirrhosis. We therefore studied the impact of HABR on blood perfusion of cirrhotic livers in vivo. After 8-wk CCl(4) treatment to induce cirrhosis, 18 anesthetized rats (and 18 noncirrhotic controls) were used to simultaneously assess portal venous and hepatic arterial inflow with miniaturized ultrasonic flow probes. Stepwise hepatic arterial blood flow (HAF) or portal venous blood flow (PVF) reduction was performed. Cirrhotic livers revealed a significantly reduced total hepatic blood flow (12.3 +/- 0.9 ml/min) due to markedly diminished PVF (7.3 +/- 0.8 ml/min) but slightly increased HAF (5.0 +/- 0.6 ml/min) compared with noncirrhotic controls (19.0 +/- 1.6, 15.2 +/- 1.3, and 3.8 +/- 0.4 ml/min). PVF reduction caused a significant HABR, i.e., increase of HAF, in both normal and cirrhotic livers; however, buffer capacity of cirrhotic livers exceeded that of normal livers (P < 0.05) by 1. 7- to 4.5-fold (PVF 80% and 20% of baseline). Persistent PVF reduction for 1, 2, and 6 h demonstrated constant HABR in both groups. Furthermore, HABR could be repetitively provoked, as analyzed by intermittent PVF reduction. HAF reduction did not induce changes of portal flow in either group. Because PVF is reduced in cirrhosis, the maintenance of HAF and the preserved HABR must be considered as a protective effect on overall hepatic circulation, counteracting impaired nutritive blood supply via the portal vein.  相似文献   

14.
Respiratory muscle blood flow and organ blood flow during endotoxic shock were studied in spontaneously breathing dogs (SB, n = 6) and mechanically ventilated dogs (MV, n = 5) with radiolabeled microspheres. Shock was produced by a 5-min intravenous injection of Escherichia coli endotoxin (0.55:B5, Difco, 10 mg/kg) suspended in saline. Mean arterial blood pressure and cardiac output in the SB group dropped to 59 and 45% of control values, respectively. There was a similar reduction in arterial blood pressure and cardiac output in the MV group. Total respiratory muscle blood flow in the SB group increased significantly from the control value of 51 +/- 4 ml/min (mean +/- SE) to 101 +/- 22 ml/min at 60 min of shock. In the MV group, respiratory muscle perfusion fell from control values of 43 +/- 12 ml/min to 25 +/- 3 ml/min at 60 min of shock. In the SB group, 8.8% of the cardiac output was received by the respiratory muscle during shock in comparison with 1.9% in the MV group. In both groups of dogs, blood flow to most organs was compromised during shock; however, blood flow to the brain, gut, and skeletal muscles was higher in the MV group than in the SB group. Thus by mechanical ventilation a fraction of the cardiac output used by the working respiratory muscles can be made available for perfusion of other organs during endotoxic shock.  相似文献   

15.
The purpose of this study was to determine, using the isolated liver perfusion technique, whether the limiting factor for hepatic gluconeogenesis (GNG) from lactate was precursor delivery or oxygen availability during reduced flow rates of 0.85 or 0.60 ml.min(-1).g liver(-1). After a 24-h fast, three different experimental protocols were employed. Protocol 1 examined the impact on GNG when reservoir lactate concentration was maintained but oxygen delivery was elevated via increases in hematocrit (Hct). Elevating the Hct from 22.5+/- 0.8% to 30.9+/- 0.4% at a blood flow of 0.89+/- 0.01 ml.min(-1).g liver(-1) increased the oxygen consumption (Vo(2)) but did not augment GNG. Similarly, when the Hct was elevated from 22.5+/- 0.8% to 41.5+/- 0.7% at 0.59+/- 0.04 ml.min(-1).g liver(-1), Vo(2) was increased, but GNG was unaffected. Protocol 2 examined the impact on GNG when Hct was maintained but precursor delivery was elevated via increases in reservoir lactate concentration ([LA]). Specifically, elevating the [LA] from 2.31+/- 0.07 to 3.61+/- 0.33 mM at a flow rate of 0.82+/- 0.04 ml.min(-1).g liver(-1) significantly increased GNG. Similarly, elevating the [LA] from 2.31+/- 0.07 to 4.24+/- 0.37 mM at a flow rate of 0.58+/- 0.02 ml.min(-1).g liver(-1) increased GNG. Finally, we examined the impact of increasing both the oxygen and lactate delivery (Protocol 3). Again, Vo(2) was elevated with increased oxygen delivery, but GNG was not augmented beyond that observed with elevations in lactate delivery alone, i.e., Protocol 2. The results indicate that, during decrements in blood flow, GNG is limited primarily by precursor delivery, not oxygen availability.  相似文献   

16.
We have previously shown that intrasplenic fluid extravasation is important in controlling blood volume. We proposed that, because the splenic vein flows in the portal vein, portal hypertension would increase splenic venous pressure and thus increase intrasplenic microvascular pressure and fluid extravasation. Given that the rat spleen has no capacity to store/release blood, intrasplenic fluid extravasation can be estimated by measuring the difference between splenic arterial inflow and venous outflow. In anesthetized rats, partial ligation of the portal vein rostral to the junction with the splenic vein caused portal venous pressure to rise from 4.5 +/- 0.5 to 12.0 +/- 0.9 mmHg (n = 6); there was no change in portal venous pressure downstream of the ligation, although blood flow in the liver fell. Splenic arterial flow did not change, but the arteriovenous flow differential increased from 0.8 +/- 0.3 to 1.2 +/- 0.1 ml/min (n = 6), and splenic venous hematocrit rose. Mean arterial pressure fell (101 +/- 5.5 to 95 +/- 4 mmHg). Splenic afferent nerve activity increased (5.6 +/- 0.9 to 16.2 +/- 0.7 spikes/s, n = 5). Contrary to our hypothesis, partial ligation of the portal vein caudal to the junction with the splenic vein (same increase in portal venous pressure but no increase in splenic venous pressure) also caused the splenic arteriovenous flow differential to increase (0.6 +/- 0.1 to 1.0 +/- 0.2 ml/min; n = 8). The increase in intrasplenic fluid efflux and the fall in mean arterial pressure after rostral portal vein ligation were abolished by splenic denervation. We propose there to be an intestinal/hepatic/splenic reflex pathway, through which is mediated the changes in intrasplenic extravasation and systemic blood pressure observed during portal hypertension.  相似文献   

17.
To assess mechanisms leading to the 'dawn phenomenon' in type 1 diabetes mellitus, overnight insulin clearance, hepatic blood flow and insulin sensitivity of glucose metabolism were determined in 9 type 1 diabetic subjects treated with continuous subcutaneous insulin infusions. Glucose clamp studies were performed twice, once after midnight (from 24.00 to 02.00 h), and once in the early morning (from 06.00 to 08.00 h) during insulin infusion at 15 mU/m2/min. Insulin clearance was 482 +/- 57 ml/m2/min during the first, and 528 +/- 56 ml/m2/min during the second clamp (nonsignificant). Hepatic plasma flow assessed by measuring indocyanine green clearance was 984 +/- 115 and 1,040 +/- 163 ml/min, after the first and after the second clamp, respectively (nonsignificant). Glucose uptake during the two clamps was not significantly different. Since hepatic blood flow is known to influence insulin clearance and hepatic glucose metabolism, the data demonstrate that overnight changes in hepatic blood flow and insulin clearance do not contribute to the previously described early morning increase in insulin requirements in type 1 diabetic subjects (dawn phenomenon).  相似文献   

18.
The purpose of the present study was to examine the effects of adenosine perfusion of the isolated triceps surae muscle group in the decerebrate cat on interstitial adenosine concentrations as well as heart rate and blood pressure responses. In six male cats (6.0 +/- 0.21 kg), the triceps surae muscle group of both legs was perfused with an artificial blood solution containing no additives (control) and then with blood containing 20 mM or 100 microM adenosine for 10 min. An intact muscle reflex was confirmed by bolus injections of 50 mM phosphate and/or saturated KCl administered into the triceps surae muscle via the cannulated popliteal artery before and after adenosine blood perfusion. Microdialysis of the triceps surae muscle group during muscle perfusion revealed that interstitial adenosine was elevated (P < 0.05) from 0.9 +/- 0.3 microM during control blood perfusion to 2,421 +/- 547 microM during 20 mM adenosine perfusion. In addition, interstitial adenosine levels were increased (P < 0.05) from 1.1 +/- 0.3 microM during control blood perfusion to 4.1 +/- 1.2 microM during perfusion with 100 microM adenosine. Despite the large increases in interstitial adenosine levels, perfusion of the triceps surae muscle group with the two blood adenosine solutions resulted in no significant increases in heart rate or blood pressure. These data strongly suggest that elevated interstitial adenosine concentrations do not play a role in activating the muscle reflex and confirm our previous in vivo human findings (J Appl Physiol 83: 1045-1053, 1997).  相似文献   

19.
Previous investigations of autoregulatory mechanisms in the control of skin blood flow suffer from the possibility of interfering effects of the autonomic nervous system. To address this question, in 11 subjects cutaneous vascular responses were measured during acute changes in perfusion pressure (using Valsalva maneuver; VM) before and after ganglionic blockade via systemic trimethaphan infusion. Cutaneous vascular conductance at baseline (CVC(base)) and during the last 5 s of the VM (CVC(VM)) were measured from forearm (nonglabrous) and palm (glabrous) skin. During the VM without ganglionic blockade, compared with CVC(base), CVC(VM) decreased significantly at the palm [0.79 +/- 0.17 to 0.55 +/- 0.17 arbitrary units (AU)/mmHg; P = 0.002] but was unchanged at the forearm (0.13 +/- 0.02 to 0.16 +/- 0.02 AU/mmHg; P = 0.50). After ganglionic blockade, VM induced pronounced decreases in perfusion pressure, which resulted in significant increases in CVC(VM) at both forearm (0.19 +/- 0.03 to 0.31 +/- 0.07 AU/mmHg; P = 0.008) and palm (1.84 +/- 0.29 to 2.76 +/- 0.63 AU/mmHg; P = 0.003) sites. These results suggest that, devoid of autonomic control, both glabrous and nonglabrous skin are capable of exhibiting vasomotor autoregulation during pronounced reductions in perfusion pressure.  相似文献   

20.
The purpose of this study was to determine the role of direct hepatic adrenergic stimulation in the control of endogenous glucose production (R(a)) during moderate exercise in poorly controlled alloxan-diabetic dogs. Chronically catheterized and instrumented (flow probes on hepatic artery and portal vein) dogs were made diabetic by administration of alloxan. Each study consisted of a 120-min equilibration, 30-min basal, 150-min moderate exercise, 30-min recovery, and 30-min blockade test period. Either vehicle (control; n = 6) or alpha (phentolamine)- and beta (propranolol)-adrenergic blockers (HAB; n = 6) were infused in the portal vein. In both groups, epinephrine (Epi) and norepinephrine (NE) were infused in the portal vein during the blockade test period to create suprapharmacological levels at the liver. Isotopic ([3-(3)H]glucose, [U-(14)C]alanine) and arteriovenous difference methods were used to assess hepatic function. Arterial plasma glucose was similar in controls (345 +/- 24 mg/dl) and HAB (336 +/- 23 mg/dl) and was unchanged by exercise. Basal arterial insulin was 5 +/- 1 mU/ml in controls and 4 +/- 1 mU/ml in HAB and fell by approximately 50% during exercise in both groups. Basal arterial glucagon was similar in controls (56 +/- 10 pg/ml) and HAB (55 +/- 7 pg/ml) and rose similarly, by approximately 1.4-fold, with exercise in both groups. Despite greater arterial Epi and NE levels in HAB compared with controls during the basal and exercise periods, exercise-induced increases in catecholamines from basal were similar in both groups. Gluconeogenic conversion from alanine and lactate and the intrahepatic efficiency of this process were increased by twofold during exercise in both groups. R(a) rose similarly by 2.9 +/- 0.7 and 2.7 +/- 1.0 mg. kg(-1). min(-1) at time = 150 min during exercise in controls and HAB. During the blockade test period, arterial plasma glucose and R(a) rose to 454 +/- 43 mg/dl and 11.3 mg. kg(-1). min(-1) in controls, respectively, but were essentially unchanged in HAB. The attenuated response to the blockade test in HAB substantiates the effectiveness of the hepatic adrenergic blockade. In conclusion, these results demonstrate that direct hepatic adrenergic stimulation does not play a role in the stimulation of R(a) during exercise in poorly controlled diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号