首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Environmental gradients have been shown to affect animal diversity, but knowledge of fine‐scale drivers of insect diversity is, in many cases, poorly developed. We investigated the drivers of beetle diversity and composition at different microhabitats, and how this may be mediated by past agricultural activities. The study was undertaken in temperate eucalypt grassy woodland near Canberra, south‐eastern Australia, with a 200‐year history of pastoral land use. We sampled beetles using pitfall traps at three microhabitats (open grassland, logs and under trees). We analysed the effects of soil properties, vegetation structure, and plant composition on beetle composition, and compared beetle responses among the microhabitats. We found that microhabitat was a strong determinant of the way beetle communities responded to their environment. Soil nutrients (C, N and P) were the strongest drivers of beetle species richness, abundance and composition at open and log microhabitat, however vegetation structure (tree basal area) was more important for beetle richness, abundance and biomass under trees. We also found significant differences in beetle composition among distinct ground‐layer plant communities at log and tree microhabitat. We show that prior agricultural land use, particularly fertilization, has altered soil and plant communities, and that these effects continue to flow through the system affecting beetle assemblages. These findings have implications for future management of microhabitat structures in temperate grassy woodlands with a history of agricultural use.  相似文献   

2.
小兴安岭阔叶红松林地表甲虫Beta多样性   总被引:2,自引:1,他引:2  
Beta多样性用来衡量集群内物种组成的变异性,可以被分解为空间物种转换和物种集群镶嵌两个组分,是揭示群落构建机制的重要基础。目前开展了较多的地上生态系统beta多样性研究,然而地下生态系统beta多样性进展缓慢。以小兴安岭凉水和丰林自然保护区为研究地区,于2015年8、10月采用陷阱法对阔叶红松林进行调查,揭示地表甲虫(步甲科、隐翅虫科、葬甲科)的beta多样性。结果表明:(1)凉水共发现39种、856只地表甲虫,丰林共发现43种、1182只地表甲虫。8月凉水明显具有较高的全部甲虫(三个科的总和)物种多样性和丰富度,10月正好相反。(2)凉水和丰林之间地表甲虫beta多样性的差异仅发现于8月的步甲科和葬甲科之间。(3)凉水和丰林地表甲虫的beta多样性主要由空间物种转换组成,物种集群镶嵌对beta多样性的贡献很小,说明地表甲虫物种组成变异主要由本地物种之间较高的转换引起。研究表明小兴安岭阔叶红松林地表甲虫的beta多样性主要由空间物种转换组成,在揭示群落构建机制过程中,其内部物种交换和环境调控不容忽视。  相似文献   

3.
Environmental factors influence diverse assemblage features such as species abundances, richness, and nestedness. Amphibians and reptiles play important roles in terrestrial ecosystems, but there is still a lack of information about the assemblages of these animals in many regions. In this study, we aimed to understand how environmental factors influence the anurans and lizards assemblages from São Gonçalo do Amarante, Ceará, Brazil. Herpetofauna samplings were performed monthly in São Gonçalo do Amarante from January 2008 to May 2009, excluding April 2008. We sampled animals (anurans and lizards) using pitfall traps and active searches. The abundance and richness of lizards were positively related to temperature and negatively related to precipitation. Anuran assemblage was not influenced by precipitation, but its abundance was negatively influenced by temperature. Temperature generated a nested pattern in the lizard assemblage, but precipitation did not produce this pattern in anurans. Finally, our results reinforce the importance of environmental factors, mainly temperature, in structuring assemblages of anurans and lizards.  相似文献   

4.
A sufficiently large body of knowledge on British ground beetle (Carabidae) communities now exists to allow investigation of whether habitats may be classified or described on the basis of their ground beetle communities, in the same way that the National Vegetation Classification (NVC) describes British plant communities. A data set of ground beetle abundances from pitfall traps at 481 sites in a range of natural, semi-natural and agricultural habitats throughout Scotland was available for analysis. Multivariate analysis (detrended correspondence analysis and fuzzy cluster analysis) was carried out on proportional catch data of 156 species of ground beetle from 444 of these sites and the results related to the NVC of the sites.
Initial analysis classified the sites into five broad categories: 1) peatlands, 2) calcifugous, 3) mesotrophic, 4) dry river sediments and 5) damp river sediments. Further analysis identified 15 ground beetle assemblages, each corresponding to a relatively well defined vegetation type within one of these broad categories. The major environmental factors appearing to determine the distribution of ground beetle assemblages were substratum type, disturbance and soil moisture, all of which are also important determinants of the distribution of plant communities. The presence and absence of relatively stenotopic species were important discriminants of certain habitats such as wetlands and river sediments but the relative abundances within assemblages of more eurytopic species provided good indications of a relationship between ground beetle assemblages and NVC categories.  相似文献   

5.
We investigated species richness of ground dwelling beetle assemblages in two non-reclaimed lignite mines and a dump in Central Germany by means of pitfall trapping. During a period of five months, a total of 203 beetle species within 27 families represented by 4099 individuals were trapped. This included 75 species of ground beetles represented in a sample of 957 individuals from which 10 species are regionally endangered. The number of individuals, species richness, as well as the proportions of endangered species did not differ between successional stages whereas species composition of sites could be related well to a set of environmental variables. High values of beta-diversity between sites indicated that the total number of species recorded is caused by habitat diversity. From the viewpoint of nature conservation, we conclude that postmining areas can play a key role in conservation of beetle diversity in agricultural areas since they harbour threatened species whose original habitats are now rare due to human impact. An important task for future management of postmining areas is to maintain successional processes and to prevent loss of habitat diversity through afforestation. Areas with extreme soil conditions should also be preserved for long-term availability of bare soil and pioneer vegetation and associated fauna.  相似文献   

6.
Aim To investigate environmental variation and associated assemblage changes of carabid beetles along an urban–rural gradient. Location ‘Quercus–Acer’ (oak–sycamore) woodlands in the city of Birmingham, UK. Methods We collected carabid data using pitfall traps on 12 sites in the city. The traps were run from April–September in 2000, and we collected environmental data on 24 individual variables associated with the individual sites and their landscape context. Changes in carabid assemblages were analysed using repeat measures anova and the environment–species relationships with a Redundancy Analyses (RDA) and Generalized Linear Modelling (GLM). Results We found that: (1) species richness and diversity were lower in the urban and suburban zone and higher in the rural zone; (2) Berger Parker dominance index was higher in the urban and suburban zones; (3) the number of woodland and woodland associated species was significantly higher at the rural end of the gradient; (4) the number of short‐winged (brachypterous) species was highest in the rural zone and decreased towards the urban woodlands, whereas the long‐winged species were more abundant in suburban woodlands; (5) the median weight length (WML) of the assemblage declined along the gradient from the rural to the urban zone, as did the number of large species; and (6) five of the 24 environmental variables showed a significant relationship with variation in the carabid assemblage. At site level the carabid assemblages were related to the level of site disturbance and soil penetrability, whereas site size and amount of woodland and urban land within 5 km of the site were important at a larger landscape scale. Main conclusions The results suggest that urbanization has a deleterious impact on carabid assemblages, causing a reduction in species richness from the rural fringe to the centre of the city. Changes in assemblage structure were related to woodland fragmentation, which led to variations in woodland size, woodland location and site disturbance due to trampling. Large, flightless and specialist woodland species are more susceptible to changes associated with urbanization, presumably due to their longer life spans, lower reproductive rates, more specialized niches and more limited dispersal potential.  相似文献   

7.
We use sample-based rarefaction curves to evaluate the efficiency of a rapid species richness assay of ground beetles and ants captured in pitfall traps in the Nahuel Huapi National Park (NW Patagonia, Argentina). We ask whether ant species richness patterns show some concordance with those of beetles, and use several extrapolation indices for estimating the expected number of species at a regional scale. A total of 342 pitfall traps were spread in groups, at an intensity of 9 traps/100 m2, with two collection stations, at each of 19 sites representative of burned and unburned habitats in the forest, scrub and steppe, along a west-to-east transect of 63 km long. The high regional habitat heterogeneity along the west-to-east gradient is paralleled by a turnover of beetle and ant species, although different families of Coleoptera show idiosyncratic responses across habitat types. Spatial stratification of sampling over three major habitats along with the inclusion of burned and unburned environments may improve sampling efficiency. The observed and extrapolated species richness suggests that we captured a high proportion of the total number of species of beetles and ants known for the region. However, trends in species richness of ants may not indicate similar trends in beetles. Ants and beetles cannot be used as surrogate taxa for the analysis of species richness patterns. Instead, both taxa should be considered as focal as they may offer complementary information for the analysis of the effect of disturbance and regional habitat heterogeneity on species diversity patterns at a regional scale.  相似文献   

8.
The diversity of beetle assemblages in different habitat types (primary forest, logged forest, acacia plantation and oil palm plantation) in Sabah, Malaysia was investigated using three different methods based on habitat levels (Winkler sampling, flight-interception-trapping and mist-blowing). The overall diversity was extremely high, with 1711 species recorded from only 8028 individuals and 81 families (115 family and subfamily groups). Different degrees of environmental changes had varying effects on the beetle species richness and abundance, with oil palm plantation assemblage being most severely affected, followed by acacia plantation and then logged forest. A few species became numerically dominant in the oil palm plantation. In terms of beetle species composition, the acacia fauna showed much similarity with the logged forest fauna, and the oil palm fauna was very different from the rest. The effects of environmental variables (number of plant species, sapling and tree densities, amount of leaf litter, ground cover, canopy cover, soil pH and compaction) on the beetle assemblage were also investigated. Leaf litter correlated with species richness, abundance and composition of subterranean beetles. Plant species richness, tree and sapling densities correlated with species richness, abundance and composition of understorey beetles while ground cover correlated only with the species richness and abundance of these beetles. Canopy cover correlated only with arboreal beetles. In trophic structure, predators represented more than 40% of the species and individuals. Environmental changes affected the trophic structure with proportionally more herbivores (abundance) but fewer predators (species richness and abundance) in the oil palm plantation. Biodiversity, conservation and practical aspects of pest management were also highlighted in this study.  相似文献   

9.
We assessed the composition of spider and carabid beetle assemblages along river banks from the Common Meuse (Belgium) to determine their relationships with local topographical and landscape-related characteristics. Data were gathered with pitfall traps in 1998 and explored by ordination and grouping methods. Our analysis revealed that the presence of xerothermic spider species was limited to scarcely covered, less dynamic gravel banks. Riparian spider species were found on frequently flooded as well as on rather elevated and high gravel banks, while riparian carabid beetles were dominant on all sampled banks. The level of flooding disturbance, the vegetation density and the presence of silt appeared to be the most important environmental determinants of spider and carabid beetle assemblage structure. Consequently, local environmental factors influence species occurrence patterns in a similar way for the two investigated arthropod groups. Nevertheless, distinct ecological groups are differently ordered along the prime environmental gradients. Nature management should therefore consider the conservation, restoration and connectivity of both dynamic and more elevated banks in order to obtain a high degree of local and regional heterogeneity throughout the river system.  相似文献   

10.
The microspatial distribution of carabid beetles in a pristine alluvial Quercus-Ulmus forest along the river Elbe (north Germany) was investigated using 152 pitfall traps over a study period of 28 d. Traps were set in an area of only 100 × 120 m which comprised a wide range of microhabitats due to an extremely heterogeneous microrelief. Composition of the ground beetle assemblage was strongly influenced by microclimatic parameters and vegetation structure within a few metres: specifically soil moisture, light intensity. pH as well as cover of leaf litter and herbs. TWINSPAN analyses indicated a sensitive segregation of carabids into distinct microhabitats on a small scale. PCA and subsequent RDA distinguished two distinct species groups: species of wet deciduous woodland and species of wet open marsh habitats. The fringes of small temporary waters within the alluvial forest were of particular value for nature conservation, providing habitat for a high number of rare species. Although there was a shift in species composition over time and the assemblages reorganised spatially, the main environmental parameters governing the community remained the same as indicated by discriminant analyses, namely soil moisture, leaf litter cover and light intensity.  相似文献   

11.
There is considerable controversy around the patterns and processes that influence spatial variation in taxonomic composition in mountain environments. We analysed elevational variation in the taxonomic composition of epigaeic spider assemblages across five mountains in north-western Patagonia (Argentina) to examine the relative importance of dispersal (distance) limitation and environmental heterogeneity on a regional scale. The distance limitation hypothesis predicts greater taxonomic similarity between sampling sites separated by short geographical distances than between mountain peaks separated by longer distances, a lack of indicator species of macro-habitats, and weak associations between spider species composition and environmental gradients. Alternatively, the environmental heterogeneity hypothesis predicts that taxonomic differentiation will occur over short distances along elevation gradients in association with the turnover in major habitats and change in environmental conditions, and that indicator species will be present. We collected spiders using 486 pitfall traps arranged in fifty-four 100-m2 grid plots of nine traps separated by ~?100 m of elevation, from the base to the summit of each mountain. Multivariate analyses identified spider assemblages that were associated with macro-habitats rather than with mountains. Local environmental variation (mainly in vegetation cover), precipitation and soil characteristics influenced the spatial variation in species composition. Characteristic indicator species showed high specificity and fidelity to macro-habitats, whereas vulnerable species showed high specificity and low fidelity to mountains or macro-habitats. We conclude that, on a regional scale, species adaptation to environmental gradients plays a more important role than dispersal limitation in structuring the taxonomic composition of spider assemblages. Moreover, the presence of indicator species suggests that spiders have a great potential as ecological indicators for evaluating the response of montane biodiversity to future climatic change.  相似文献   

12.
Despite increasing efforts to re-establish forest cover in landscapes that have been previously cleared, the relative ability of different styles of reforestation to contribute to conservation and support forest biota is poorly known, particularly for invertebrates. We investigated the use of different types of reforested habitat by ground-active rainforest beetle assemblages on land, which had been previously cleared of rainforest, in the tropics and subtropics of eastern Australia. Between five and ten replicate sites within each of five reforestation styles were selected in each region: un-managed regrowth, young mono-species timber plantations, young mixed-species timber plantations, ecological restoration plantings, and old mono-species timber plantations, together with reference sites in pasture and in intact rainforest. Ground-active beetles were sampled using pitfall traps, and assemblages were compared among site-types. In both regions, beetle assemblages in all styles of reforestation were intermediate in species composition between pasture and rainforest. The similarity of beetle assemblages to intact rainforest increased with the age and structural complexity of reforested sites. The most rainforest-like beetle assemblages were from older reforestation sites (38–70 year plantations in tropics, and 30–40 year regrowth in subtropics) and in younger (6–22 years) but floristically and structurally diverse ecological restoration plantings in both regions. Assemblages in younger (5–20 year) sites of regrowth, mono-species timber plantations, and mixed-species timber plantations were more similar to pasture than rainforest. We conclude that achieving high canopy cover and sufficient structural complexity are important factors associated with the restoration of rainforest-like beetle assemblages to reforested sites.  相似文献   

13.
The occurrence and habitat associations of the majority of invertebrate groups in boreal forests are poorly known, even though these groups represent perhaps over 99% of the animal species diversity in the forests. We studied the beetle (Coleoptera) fauna of four forest site types in northern Finland: in spruce mires, herb rich, mesic and sub-xeric forests. We sampled beetles in 32 study sites with five window and five pitfall traps in each. We describe the species abundance and diversity patterns within and among forest types and relate these patterns to structural components of the forests. The volume of decaying wood varied from 14 to 93 m3 ha−1 among sampling sites. The total beetle catch consisted of 100 333 individuals and 435 species. The beetle species richness did not vary according to site fertility but the number of specimens increased with increasing fertility in heath forest sites. The richness of beetle species correlated only weakly with any of the stand structure characteristics at the stand level. Nevertheless, the detrended correspondence analysis (DCA) indicated that different beetle assemblages are characteristic of different forest types. The high level of beta-diversity in beetles among forest types indicates that focusing exclusively on, for example, key-biotopes (presumed biodiversity hotspots) when selecting areas to be set aside would result in a situation where a large proportion of species, even of the rare and threatened ones, is not included in this network of protected areas. This suggests that the complementary set of different forest types may be the best general strategy to maintain the overall beetle species diversity in boreal forests.  相似文献   

14.
Diversity of ground beetle (Coleoptera: Carabidae) assemblages and sub‐assemblages was compared between reafforested woodland, grassland, and intensively cultivated fields at Chongli County in Northern China. An array of eight pitfall traps per plot was used to sample the beetles on four replicate plots for each habitat. Replanted conifer woodland and semi‐natural grassland harbored very similar beetle assemblages. These had significantly lower rarefied species numbers than the distinctly different assemblages recorded in cultivated fields, with differences in alpha diversity being less pronounced for large and predatory species. Carabid activity‐density levels were higher in both woodland and grassland than in fields, with this trend being most pronounced for predatory and large species. To conserve high levels of gamma diversity, it is important to maintain a mosaic of agricultural areas and semi‐natural habitats. The latter also form a potential source for predatory species important in pest control. It appears that woodland‐specific species are rare in the study area, or they have not been able to reach and colonize the newly established woodland sites. It can also be concluded that morphological and ecological traits allow important insights into underlying ecological principles of overall diversity patterns.  相似文献   

15.
Understandings of the effect of host plant phylogeny on the structure of herbivore assemblage is useful for estimating global species richness of herbivores. Here we test the relationship between host plant phylogeny and two assemblages including ambrosia beetle assemblage that have been considered to be the lowest host specificity among plant-dependent guilds. These results of local scale were used for estimating regional species richness by extrapolating to the number of plant order and species in Japan. The estimated numbers were compared with the numbers of described species in Japan. Tree trunks of 17 plant species representing 17 orders of all major lineages of Japanese tree flora were exposed for collecting wood boring beetle species. A total of 12 ambrosia and four bark beetle species were collected. Similarity of both ambrosia and bark beetle assemblages showed a significant negative trend with phylogenetic distance between focal host plant species. The regression model for this relationship was well fit by a linear model whereas previous studies used a semi-log model, which suggests a difference in mechanism of host utilization with host taxonomic levels. Our results showed a broader host range of ambrosia beetle assemblage in temperate forest than to a comparable study in tropical rainforests. Species richness estimated is lower than the described species in Japan, suggesting the need for more samples along the altitudinal gradients for accurate estimation for the Japanese fauna.  相似文献   

16.
Africa’s savannas are undergoing rapid conversion from rangelands into villages and croplands. Despite limited research, and evidence of deleterious effects to biodiversity, international organisations have earmarked this system for cropland. Invertebrates, and ants in particular, are sensitive indicators of habitat fragmentation, and contribute to ecosystem services at a range of scales. We investigated how rangelands, villages and croplands differ in ant species and functional diversity, and assemblage composition. We sampled ants using pitfall traps at 42 sites (14 replicates each in rangeland, cropland, and village) in northern South African savannas. We investigated the impact of landuse, season, and multiple soil and vegetation habitat variables on ant species diversity, assemblages and functional diversity. Rangelands had the greatest ant species richness, particularly in the wet season. Richness declined with increasing soil clay content. Ant assemblages were distinctly different between landuse types. Rangeland harboured the widest diversity of indicator species, and contained greatest functional diversity. Rangelands accommodated more scavengers, granivores, and plant-matter feeders than cropland, and representation of these groups varied with season. Ants play essential roles in soil nutrient cycling, plant and seedling recruitment, and impact other arthropods through predation and aphidoculous behaviour that in turn influences entire food webs. Thus, the reduced species richness, changes in assemblage composition and the loss of functional groups in ant assemblages found in cropland and villages is potentially problematic. Left unchallenged, these new forms of landuse threaten to characterise the entire African savanna system, impacting not only future ecological, but possibly also human wellbeing.  相似文献   

17.
Populations of large mammals are severely depleted by hunting in tropical forests, with direct effects on plant regeneration. But indirect consequences on commensal taxa depending on them for food resources, like coprophagous beetles, are less documented. Cascading effects of species loss across Scarabaeinae are expected, with likely significant negative implications for ecosystem functions. We examined dung beetle assemblages using pitfall traps at three rain forest sites in French Guiana ranging from intact mammalian fauna (Nouragues) to moderate (Kaw) and heavy (Matoury) defaunation. The site with the most depauperate mammalian fauna showed significantly lower dung beetle species richness than the two other two sites, which were not different from each other. Mean abundance and biomass per trap were not different across sites whereas community composition strongly differed among sites. A positive correlation was observed between body size and the individual contribution to dissimilarity between Nouragues and Kaw. The species contributing the most to dissimilarity were large. By contrast, one medium-sized species, dominant in Matoury, contributed the most to dissimilarity between Matoury and other sites. Diurnal genera of large tunnellers showed a higher diversity and abundance in Nouragues compared to other sites, whereas a nocturnal genus showed no differences. Large rollers were more abundant in Kaw compared to other sites. None of the groups of small beetles but one were affected by defaunation. Our results suggest that loss of large mammal populations affects dung beetle assemblage structure and causes decreasing abundance or disappearance of large tunnellers species that have a major impact on several dung beetle-mediated ecological processes.  相似文献   

18.
The open-cast lignite mine “Hambach” (NW-Germany) and the accompanying land reclamation replace a large ancient forest. Reclamation of an 1000 ha large overburden dump started 25 years ago and is still in progress. Reclamation methods comprise combinations of different topsoil dumping techniques and reclamation measures such as seeding or afforestation. In accordance with the spatial heterogeneity hypothesis, we hypothesize that beetle assemblages from sites where the topsoil was left structured are more diverse than those from sites with levelled topsoil, and that richly structured mid-successional sites harbour more heterogeneous assemblages than afforested sites. We tested the influence of environmental variables on assemblage characteristics of pitfall-trapped beetles from 17 sites on the overburden dump. The results are based on 35,588 individuals from 339 species. Species assemblages differed significantly between almost all sites. Habitat age did not affect assemblage characteristics, while species richness was significantly influenced by surface structure. Sites that were not levelled and that additionally included pits that slope down for several meters exhibited the highest species richness. Abundance of beetles increased in parallel to the canopy cover, whereas assemblage heterogeneity (MVDISP) decreased. Successional and grassland sites usually exhibited higher diversity (Fisher's α) than afforested sites, but diversity was not significantly predicted by a single environmental factor. Instead, diversity increased along with increasing MVDISP-values. Afforestations speed up the successional process and some euryecious forest species are already well established, but stenecious forest specialists have not yet been found.  相似文献   

19.
Aim To (1) describe termite functional diversity patterns across five tropical regions using local species richness sampling of standardized areas of habitat; (2) assess the relative importance of environmental factors operating at different spatial and temporal scales in influencing variation in species representation within feeding groups and functional taxonomic groups across the tropics; (3) achieve a synthesis to explain the observed patterns of convergence and divergence in termite functional diversity that draws on termite ecological and biogeographical evidence to‐date, as well as the latest evidence for the evolutionary and distributional history of tropical rain forests. Location Pantropical. Methods A pantropical termite species richness data set was obtained through sampling of eighty‐seven standardized local termite diversity transects from twenty‐nine locations across five tropical regions. Local‐scale, intermediate‐scale and large‐scale environmental data were collected for each transect. Standardized termite assemblage and environmental data were analysed at the levels of whole assemblages and feeding groups (using components of variance analysis) and at the level of functional taxonomic groups (using correspondence analysis and canonical correspondence analysis). Results Overall species richness of local assemblages showed a greater component of variation attributable to local habitat disturbance level than to region. However, an analysis accounting for species richness across termite feeding groups indicated a much larger component of variation attributable to region. Mean local assemblage body size also showed the greater overall significance of region compared with habitat type in influencing variation. Ordination of functional taxonomic group data revealed a primary gradient of variation corresponding to rank order of species richness within sites and to mean local species richness within regions. The latter was in the order: Africa > south America > south‐east Asia > Madagascar > Australia. This primary gradient of species richness decrease can be explained by a decrease in species richness of less dispersive functional taxonomic groups feeding on more humified food substrates such as soil. Hence, the transects from more depauperate sites/regions were dominated by more dispersive functional taxonomic groups feeding on less humified food substrates such as dead wood. Direct gradient analysis indicated that ‘region’ and other large‐scale factors were the most important in explaining patterns of local termite functional diversity followed by intermediate‐scale geographical and site variables and, finally, local‐scale ecological variables. Synthesis and main conclusions Within regions, centres of termite functional diversity lie in lowland equatorial closed canopy tropical forests. Soil feeding termite evolution further down food substrate humification gradients is therefore more likely to have depended on the long‐term presence of this habitat. Known ecological and energetic constraints upon contemporary soil feeders lend support for this hypothesis. We propose further that the anomalous distribution of termite soil feeder species richness is partly explained by their generally very poor dispersal abilities across oceans. Evolution, radiation and dispersal of soil feeder diversity appears to have been largely restricted to what are now the African and south American regions. The inter‐regional differences in contemporary local patterns of termite species richness revealed by the global data set point to the possibility of large differences in consequent ecosystem processes in apparently similar habitats on different continents.  相似文献   

20.
Species richness, composition, and functional traits of carabid beetle assemblages (Coleoptera: Carabidae) were studied in relation to different grassland management. Carabid beetles were sampled during the summers 2008 and 2009 by 165 traps located in 11 sites in the central-eastern Italian Alps. Using mixed effect models to account for potential spatial bias, we found that mown grasslands had significantly more species, a lower proportion of wingless species and a lower proportion of species with long larval development than grazed and natural grasslands. Within grazed and mown grasslands, neither cattle density nor number of cuts had any significant effect neither on species richness nor on any of the traits. The influence of grassland management can be summarised as follows: (1) grazing does not change community structure and functional traits compared to natural grasslands; (2) mowing negatively affects the carabid beetle assemblages; (3) the intensity of grazing and of cutting may not affect the structure of species assemblages of ground beetles. Our results support the hypothesis that agroecosystem practices in alpine grasslands influence carabid beetle communities. Specifically, the species with traits typical of undisturbed habitats (low dispersal abilities and long larval development) are more sensitive to perturbations (e.g. cutting). Our suggestion for agricultural and environmental planning and for conservation schemes is that the preservation of natural grasslands (e.g. forest gaps) and the implementation of grazing should be promoted during the planning of agroecosystem mosaics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号