首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
hRAD51 lacks cooperative DNA-dependent ATPase activity and appears to function with 5-10-fold less Mg2+ compared to RecA. We have further explored the effect of Mg2+ on adenosine nucleotide binding, ATPase, and DNA strand exchange activities. hRAD51 was saturated with the poorly hydrolyzable analog of ATP, ATPgammaS, at approximately 0.08 mM Mg2+. In contrast, > 0.5 mM Mg2+ was required to saturate hRAD51 with ADP. We found ADP to be a significantly less effective competitive inhibitor of the hRAD51 ATPase at low Mg2+ concentrations (0.08 mM). Mg2+ did not appear to affect the ability of ATPgammaS to competitively inhibit the hRAD51 ATPase. Low Mg2+ (0.08-0.12 mM) enhanced the steady-state ATPase of hRAD51 while higher Mg2+ concentration (> 0.3 mM) was inhibitory. At low Mg2+, hRAD51 appeared capable of nearly complete hydrolysis of available ATP, suggesting a lack of ADP product inhibition. There was a strong correlation between the amount of Mg2+ required for stable ADP binding and the inhibition of hRad51 strand exchange activity. Simultaneous inclusion of exogenous ATP and chelation of Mg2+ with EDTA significantly enhanced ADP-->ATP exchange by hRAD51. These studies are consistent with the hypothesis that Mg2+ influences the discrimination and release of ADP, which may sequentially impose an important regulatory step in the hRAD51 ATPase cycle.  相似文献   

2.
M B Murataliev 《Biochemistry》1992,31(51):12885-12892
The evidence is presented that the ADP- and Mg(2+)-dependent inactivation of MF1-ATPase during MgATP hydrolysis requires binding of ATP at two binding sites: one is catalytic and the second is noncatalytic. Binding of the noncatalytic ATP increases the rate of the inactive complex formation in the course of ATP hydrolysis. The rate of the enzyme inactivation during ATP hydrolysis depends on the medium Mg2+ concentration. High Mg2+ inhibits the steady-state activity of MF1-ATPase by increasing the rate of formation of inactive enzyme-ADP-Mg2+ complex, thereby shifting the equilibrium between active and inactive enzyme forms. The Mg2+ needed for MF1-ATPase inactivation binds from the medium independent from the MgATP binding at either catalytic or noncatalytic sites. The inhibitory ADP molecule arises at the MF1-ATPase catalytic site as a result of MgATP hydrolysis. Exposure of the native MF1-ATPase with bound ADP at a catalytic site to 1 mM Mg2+ prior to assay inactivates the enzymes with kinact 24 min-1. The maximal inactivation rate during ATP hydrolysis at saturating MgATP and Mg2+ does not exceed 10 min-1. The results show that the rate-limiting step of the MF1-ATPase inactivation during ATP hydrolysis with excess Mg2+ precedes binding of Mg2+ and likely is the rate of formation of enzyme with ADP bound at the catalytic site without bound P(i). This complex binds Mg2+ resulting in inactive MF1-ATPase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
D Wu  P D Boyer 《Biochemistry》1986,25(11):3390-3396
When the heat-activated chloroplast F1 ATPase hydrolyzes [3H, gamma-32P]ATP, followed by the removal of medium ATP, ADP, and Pi, the enzyme has labeled ATP, ADP, and Pi bound to it in about equal amounts. The total of the bound [3H]ADP and [3H]ATP approaches 1 mol/mol of enzyme. Over a 30-min period, most of the bound [32P]Pi falls off, and the bound [3H]ATP is converted to bound [3H]ADP. Enzyme with such remaining tightly bound ADP will form bound ATP from relatively high concentrations of medium Pi with either Mg2+ or Ca2+ present. The tightly bound ADP is thus at a site that retains a catalytic capacity for slow single-site ATP hydrolysis (or synthesis) and is likely the site that participates in cooperative rapid net ATP hydrolysis. During hydrolysis of 50 microM [3H]ATP in the presence of either Mg2+ or Ca2+, the enzyme has a steady-state level of about one bound [3H]ADP per mole of enzyme. Because bound [3H]ATP is also present, the [3H]ADP is regarded as being present on two cooperating catalytic sites. The formation and levels of bound ATP, ADP, and Pi show that reversal of bound ATP hydrolysis can occur with either Ca2+ or Mg2+ present. They do not reveal why no phosphate oxygen exchange accompanies cleavage of low ATP concentrations with Ca2+ in contrast to Mg2+ with the heat-activated enzyme. Phosphate oxygen exchange does occur with either Mg2+ or Ca2+ present when low ATP concentrations are hydrolyzed with the octyl glucoside activated ATPase. Ligand binding properties of Ca2+ at the catalytic site rather than lack of reversible cleavage of bound ATP may underlie lack of oxygen exchange under some conditions.  相似文献   

4.
Joseph D. Robinson 《BBA》1976,440(3):711-722
Na+-dependent ADP/ATP exchange activity, of a (Na+ + K+)-dependent ATPase preparation from eel electric organ, was measured in terms of the incorporation of 14C into ATP during incubations with unlabeled ATP and [14C]ADP. Estimates of initial rates of exchange were possible by keeping changes in nucleotide concentrations, from both exchange and extraneous hydrolytic processes, to less than 10%. Under these conditions, increases in MgCl2 concentration, from 0.2 to 3 mM, generally inhibited this exchange activity. The concentrations of free Mg2+, Mg · ATP, and Mg · ADP present, with a range of MgCl2, ATP, and ADP concentrations, were calculated from measured dissociation constants. Inhibition was associated with Mg · ATP as well as with Mg2+, at concentrations from 0.4 to 1 mM (Mg · ADP, in the same concentration range, probably inhibited also). The affinity of the enzyme for these inhibitors is in fair correspondence with demonstrated affinities for Mg2+, Mg · ATP, and Mg · ADP at low affinity substrate sites, measured kinetically. These observations are considered in terms of a dimeric enzyme with high and low affinity substrates sites: ADP/ATP exchange being catalyzed at the high affinity sites, with inhibition occurring through occupancy by Mg2+, Mg · ATP, or Mg · ADP, of the low affinity sites, thereby pulling the reaction process away from those steps involved in exchange.  相似文献   

5.
The regulation of ATP hydrolysis and Pi-ATP exchange reactions by ATP, ADP, Mg2+, and phosphate was studied in liposomes containing F0-F1 obtained from bovine heart submitochondrial particles by solubilization with lauryl dimethylamino oxide as described previously (Dreyfus, G., Celis, H., and Ramirez, J. (1984) Anal. Biochem. 142, 215-220). A simultaneous analysis of ATP hydrolysis and the Pi-ATP exchange reactions showed that the ratio of hydrolysis/exchange is close to one when the ATP concentration is in the lower micromolar range. In this preparation ADP stimulates the Pi-ATP exchange reaction and depresses ATP hydrolysis. The exchange reaction is almost abolished when ADP is removed from the medium by an ATP-regenerating system. Mg2+ in millimolar concentrations stimulates Pi-ATP exchange, and at the same time decreases ATP hydrolysis; accordingly, the hydrolysis/exchange ratio depends on the concentration of Mg2+. Inorganic phosphate also controls this ratio, a lower ratio being observed at high phosphate concentrations. The Pi-ATP exchange reaction, but not ATP hydrolysis, depends on the concentration of medium phosphate. These results indicate that the kinetic characteristics of this F0-F1 preparation are modified by Mg2+, ATP, and phosphate.  相似文献   

6.
The degradation of nucleotides is catalyzed by the family of enzymes called nucleoside triphosphate diphosphohydrolases (NTPDases). The aim of this work was to demonstrate the presence of NTPDase in the rat gastric mucosa. The enzyme was found to hydrolyze ATP and ADP at an optimum pH of 8.0 in the presence of Mg2+ and Ca2+. The inhibitors ouabain (0.01-1 mM), N-ethylmaleimide (0.01-4 mM), levamisole (0.10-0.2 mM) and Ap5A (0.03 mM) had no effect on NTPDase 1 activity. Sodium azide (0.03-30 mM), at high concentrations (>0.1 mM), caused a parallel hydrolysis inhibition of ATP and ADP. Suramin (50-300 microM) inhibited ATP and ADP hydrolysis at all concentrations tested. Orthovanadate slightly inhibited (15%) Mg2+ and Ca2+ ATP/ADPase at 100 microM. Lanthanum decreased Mg2+ and Ca2+ ATP/ADPase activities. The presence of NTPDase as ecto-enzyme in the gastric mucosa may have an important role in the extracellular metabolism of nucleotides, suggesting that this enzyme plays a role in the control of acid and pepsin secretion, mucus production, and contractility of the stomach.  相似文献   

7.
The interaction of protein substrates with protease La from Escherichia coli enhances its ability to hydrolyze ATP and peptide bonds. These studies were undertaken to clarify how unfolded proteins allosterically stimulate this ATPase activity. The tetrameric protease can bind four molecules of ATP, which activates proteolysis, or four molecules of ADP, which inhibits enzymatic activity. Protein substrates stimulate binding of the nonhydrolyzable ATP analog [3H] adenyl-5'yl imidodiphosphate, although they do not increase the net binding of [3H]ATP or [3H]ADP. Once bound, ATP is quickly hydrolyzed to ADP, which remains noncovalently associated with protease La even through repeated gel filtrations. Exposure to protein substrates (e.g. denatured bovine serum albumin at 37 degrees C) induces the release of all the bound ADP from the enzyme. Nonhydrolyzable ATP analogs bound to the enzyme were not released by these substrates. Proteins that are not degraded (e.g. native bovine serum albumin) and oligopeptides that only bind to the catalytic site do not induce ADP release. Thus, polypeptide substrates have to interact with an allosteric site to induce this effect. The protein-induced ADP release is inhibited by high concentrations of Mg2+ and is highly temperature-dependent. Protein substrates promoted [3H]ATP binding in the presence of ADP and Mg2+ (i.e. ATP-ADP exchange) and reduced the ability of ADP to inhibit the enzyme's peptidase and ATPase activities. These results indicate that: 1) ADP release is a rate-limiting step in protease La function; 2) bound ADP molecules inhibit protein and ATP hydrolysis in vivo; 3) denatured proteins interact with the enzyme's regulatory site and promote ADP release, ATP binding, and their own hydrolysis.  相似文献   

8.
The kinetic properties of the [3H]ADP-ATP exchange reaction catalyzed by Na+, K+-dependent ATPase [EC 3.6.1,3] were investigated, using NaI-treated microsomes from bovine brain, and the following results were obtained. 1. The rates of the Na+-dependent exchange reaction in the steady state were measured in a solution containing 45 micronM free Mg2+, 100 mMNaCl, 80 micronM ATP, and 160 micronM ADP at pH 6.5 and 4-5 degrees. The rate and amount of decrease in phosphorylated intermediate on adding ADP, i.e., the amount of ADP-sensitive EP, were measured while varying one of the reaction parameters and fixing the others mentioned above. Plots of the exchange rate and the amount of ADP-sensitive EP against the logarithm of free Mg2+ concentration gave bell-shaped curves with maximum values at 50-60 micronM free Mg2+. Plots of the exchange rate and the amount of ADP-sensitive EP against pH also gave bell-shaped curves with maximum values at pH 6.9-7. They both increased with increase in the concentration of NaCl to maximum values at 150-200 mM NaCl, and then decreased rapidly with increase in the NaCl concentration above 200 mM. The dependences of the exchange rate and the amount of ADP-sensitive EP on the concentration of ADP followed the Michaelis-Menten equation, and the Michaelis constants Km, for both were 43 micronM. The dependence of the exchange rate on the ATP concentration also followed the Michaelis-Menten equation, and the Km value was 30 micronM. The amount of ADP-sensitive EP increased with increase in the ATP concentration, and reached a maximum value at about 5 micronM ATP. 2. The N+-dependent [3H]ADP-ATP exchange reaction was started by adding [3H]ADP to EP at low Mg2+-concentration. The reaction consisted of a rapid initial phase and a slow steady phase. The amount of [3H]ATP formed during the rapid initial phase, i.e. the size of the ATP burst, was equal to that of ADP-sensitive EP, and was proportional to the rate in the steady state. At high Mg2+ concentration, the rate of Na+-dependent exchange in the steady state was almost zero, and EP did not show any ADP sensitivity. However, rapid formation of [3H]ATP was observed in the pre-steady state, and the size of the ATP burst increased with increase in the KCl concentration. From these findings, we concluded that an enzyme-ATP complex (E2ATP) formed at low Mg2+ concentration is in equilibrium with EP + ADP, that the rate-limiting step for the exchange reaction is the release of ATP from the enzyme-ATP complex, that the ADP-insensitive EP (formula: see text) produced at high Mg2+ concentration is in equilibrium with the enzyme-ATP complex, and that the equilibrium shifts towards the enzyme-ATP complex on adding KCl. Actually, the ratio of the size of the ATP burst to the amount of EP was equal to the reciprocal of the equilibrium constant of step (formula: see text), determined by a method previously reported by us.  相似文献   

9.
Basal and trypsin-stimulated adenosine triphosphatase activities of Escherichia coli K 12 have been characterized at pH 7.5 in the membrane-bound state and in a soluble form of the enzyme. The saturation curve for Mg2+/ATP = 1/2 was hyperbolic with the membrane-bound enzyme and sigmoidal with the soluble enzyme. Trypsin did not modify the shape of the curves. The kinetic parameters were for the membrane-bound ATPase: apparent Km = 2.5 mM, Vmax (minus trypsin) = 1.6 mumol-min-1-mg protein-1, Vmax (plus trypsin) = 2.44 mumol-min-1-mg protein-1; for the soluble ATPase: [S0.5] = 1.2 mM, Vmax (-trypsin) = 4 mumol-min-1-mg protein-1; Vmax (+ trypsin) = 6.6 mumol-min-1-mg protein-1. Hill plot analysis showed a single slope for the membrane-bound ATPase (n = 0.92) but two slopes were obtained for the soluble enzyme (n = 0.98 and 1.87). It may suggest the existence of an initial positive cooperativity at low substrate concentrations followed by a lack of cooperativity at high ATP concentrations. Excess of free ATP and Mg2+ inhibited the ATPase but excess of Mg/ATP (1/2) did not. Saturation for ATP at constant Mg2+ concentration (4 mM) showed two sites (groups) with different Kms: at low ATP the values were 0.38 and 1.4 mM for the membrane-bound and soluble enzyme; at high ATP concentrations they were 17 and 20 mM, respectively. Mg2+ saturation at constant ATP (8 mM) revealed michealian kinetics for the membrane-bound ATPase and sigmoid one for the protein in soluble state. When the ATPase was assayed in presence of trypsin we obtained higher Km values for Mg2+. These results might suggest that trypsin stimulates E. coli ATPase by acting on some site(s) involved in Mg2+ binding. Adenosine diphosphate and inorganic phosphate (Pi) act as competitive inhibitors of Escherichia coli ATPase. The Ki values for Pi were 1.6 +/- 0.1 mM for the membrane-bound ATPase and 1.3 +/- 0.1 mM for the enzyme in soluble form, the Ki values for ADP being 1.7 mM and 0.75 mM for the membrane-bound and soluble ATPase, respectively. Hill plots of the activity of the soluble enzyme in presence of ADP showed that ADP decreased the interaction coefficient at ATP concentrations below its Km value. Trypsin did not modify the mechanism of inhibition or the inhibition constants. Dicyclohexylcarbodiimide (0.4 mM) inhibited the membrane-bound enzyme by 60-70% but concentrations 100 times higher did not affect the residual activity nor the soluble ATPase. This inhibition was independent of trypsin. Sodium azide (20 muM) inhibited both states of E. coli ATPase by 50%. Concentrations 25-fold higher were required for complete inhibition. Ouabain, atebrin and oligomycin did not affect the bacterial ATPase.  相似文献   

10.
Sarcoplasmic reticulum vesicles rendered leaky by exposure to alkaline pH, like intact vesicles, catalyze a rapid Mg2+-dependent exchange of oxygens of medium Pi with water. The exchange with 10 mM Pi is strongly inhibited by 0.15 mM Ca2+. Upon addition and hydrolysis of ITP or ATP, a rapid phosphate-oxygen exchange is observed even with 0.15 mM Ca2+ present and a definite but smaller exchange at 8 mM Ca2+. Oxygen exchange per Pi formed is greater with ITP than with ATP. When no Pi is initially present, the extent of oxygen exchange is increased with time of incubation as Pi is formed. With 18O-labeled Pi present, ATP hydrolysis accelerates 18O loss. The results show that much of the oxygen exchange occurs as a result of reversible binding of medium Pi. Thus the binding and cleavage of ITP or ATP overcomes the Ca2+ inhibition of the medium Pi in equilibrium HOH exchange. Such findings support the concept that the cleavage cycle includes a transient conformational form which can reversibly react with Pi to give a phosphoryl enzyme and resultant oxygen exchange or in a rate-limiting step decay to a form with high Ca2+ and NTP affinity.  相似文献   

11.
Na+-dependent ADP/ATP exchange activity, of a (Na++K+)-dependent ATPase preparation from eel electric organ, was measured in terms of the incorporation of 14C into ATP during incubations with labeled ATP and [14C]ADP. Estimates of initial rates of exchange were possible by keeping changes in nucleotide concentrations, from both exchange and extraneous hydrolytic processes, to less than 10%. Under these conditions, increases in MgC12 concentration, from 0.2 to 3 mM, generally inhibited this exchange activity. The concentrations of free Mg2+, Mg-ATP, and Mg-adp present, with a range of MgC12, ATP, and ADP concentrations, were calculated from measured dissociation constants. Inhibition was associated with Mg-ATP as well as with Mg2+, at concentrations from 0.4 to 1 mM (Mg-ADP, in the same concentration range, probably inhibited also). The affinity of the enzyme for these inhibitors is in fair correspondence with demonstrated affinties for Mg2+, Mg-atp, and Mg-ADP at low affinity substrate sites, measured kinetically. These observations are considered in terms of a dimeric enzyme with high and low affinity substrates sites: ADP/ATP exchange being catalyzed at the high affinity sites, with inhibition occurring through occupancy by Mg2+, Mg-ATP, or Mg-ADP, of the low affinity sites, thereby pulling the reaction process away from those steps involved in exchange.  相似文献   

12.
The yeast plasma membrane proton-pumping ATPase forms a phosphorylated intermediate during the hydrolysis of ATP. The fraction of enzyme phosphorylated during steady-state ATP hydrolysis was studied as a function of substrate concentration (MgATP), Mg2+ concentration, and pH. The dependence of the fraction of enzyme phosphorylated on the concentration of MgATP is sigmoidal, and the isotherms can be fit with parameters and mechanisms similar to those used to describe ATP hydrolysis. The isotherm is significantly more sigmoidal at pH 5.5 than at pH 6.0, with the limiting percentage (100.mol of phosphate/mol of enzyme) of enzyme phosphorylated being 70% and 6%, respectively, at the two pH values. The maxima in the steady-state rate of ATP hydrolysis occur at higher concentrations of Mg2+ and higher pH than the maxima in the fraction of enzyme phosphorylated. This suggests that the rate-determining step for ATP hydrolysis is different from that for enzyme phosphorylation and the hydrolysis of phosphoenzyme is enhanced by Mg2+ and high pH. The rate of phosphoenzyme formation was investigated with the quenched-flow method, but only a lower bound of 140 s-1 could be obtained for the rate constant at MgATP concentrations greater than 2.5 mM. Since the turnover number for ATP hydrolysis under similar conditions is 14 s-1, the rate-determining step in ATP hydrolysis occurs after enzyme phosphorylation.  相似文献   

13.
A M Hanel  W P Jencks 《Biochemistry》1990,29(21):5210-5220
The calcium-transport ATPase (CaATPase) of rabbit sarcoplasmic reticulum preincubated with 0.02 mM Ca2+ (cE.Ca2) is phosphorylated upon the addition of 0.25 mM LaCl3 and 0.3 mM [gamma-32P]ATP with an observed rate constant of 6.5 s-1 (40 mM MOPS, pH 7.0, 100 mM KCl, 25 degrees C). La.ATP binds to cE.Ca2 with a rate constant of 5 X 10(6) M-1 s-1, while ATP, Ca2+, and La3+ dissociate from cE.Ca2.La.ATP at less than or equal to 1 s-1. The reaction of ADP with phosphoenzyme (EP) formed from La.ATP is biphasic. An initial rapid loss of EP is followed by a slower first-order disappearance, which proceeds to an equilibrium mixture of EP.ADP and nonphosphorylated enzyme with bound ATP. The fraction of EP that reacts in the burst (alpha) and the first-order rate constant for the slow phase (kb) increase proportionally with increasing concentrations of ADP to give maximum values of 0.34 and 65 s-1, respectively, at saturating ADP (KADPS = 0.22 mM). The burst represents rapid phosphoryl transfer and demonstrates that ATP synthesis and hydrolysis on the enzyme are fast. The phosphorylation of cE.Ca2 by La.ATP at 6.5 s-1 and the kinetics for the reaction of EP with ADP are consistent with a rate-limiting conformational change in both directions. The conformational change converts cE.Ca2.La.ATP to the form of the enzyme that is activated for phosphoryl transfer, aE.Ca2.La.ATP, at 6.5 s-1; this is much slower than the analogous conformational change at 220 s-1 with Mg2+ as the catalytic ion [Petithory & Jencks (1986) Biochemistry 25, 4493]. The rate constant for the conversion of aE.Ca2.La.ATP to cE.Ca2.La.ATP is 170 s-1. ATP does not dissociate measurably from aE.Ca2.La.ATP. Labeled EP formed from cE.Ca2 and La.ATP with leaky vesicles undergoes hydrolysis at 0.06 s-1. It is concluded that the reaction mechanism of the CaATPase is remarkably similar with Mg.ATP and La.ATP; however, the strong binding of La.ATP slows both the conformational change that is rate limiting for EP formation and the dissociation of La.ATP. An interaction between La3+ at the catalytic site and the calcium transport sites decreases the rate of calcium dissociation by greater than 60-fold. When cE-Ca2 is mixed with 0.3 mM ATP and 1.0 mM Cacl2, the phosphoenzyme is formed with an observed rate constant of 3 s-1. The phosphoenzyme formed from Ca.ATP reacts with 2.0 mM ADP and labeled ATP with a rate constant of 30 s-1; there may be a small burst (alpha less than or equal to 0.05).  相似文献   

14.
During net nucleoside triphosphate synthesis by chloroplast ATP synthase the extent of water oxygen incorporation into each nucleoside triphosphate released increases with decrease in ADP, GDP or IDP concentration. Likewise, during net ATP hydrolysis by the Mg2+-activated chloroplast ATPase, the extent of water oxygen incorporation into each Pi released increases as the ATP, GTP, or ITP concentration is decreased. However, the concentration ranges in which substrate modulation occurs differs with each nucleotide. Modulation of oxygen exchange during synthesis and hydrolysis of adenine nucleotides, as measured by variation in the extent of water oxygen incorporation into products, occurs below 250 microM. In contrast, guanosine and inosine nucleotides alter the extent of exchange at higher and much wider concentration ranges. Activation of the chloroplast ATPase by either heat or trypsin results in similar catalytic behavior as monitored by ATP modulation of oxygen exchanges during hydrolysis in the presence of Mg2+. More exchange capacity is evident with octylglucoside-activated enzyme at all ATP concentrations. High levels of tentoxin were also found to alter the catalytic exchange parameters resulting in continued water oxygen exchange into Pi released during hydrolysis at high ATP concentrations. Little or no oxygen exchange accompanies ATP hydrolysis in the presence of Ca2+. The [18O]Pi species formed from highly gamma-18O-labeled ATP at lower ATP concentrations gives a distribution as expected if only one catalytic pathway is operative at a given ATP concentration. This and other results support the concept of catalytic cooperativity between alternating sites as explanation for the modulation of oxygen exchange by nucleotide concentration.  相似文献   

15.
The F1 moiety of the rat liver mitochondrial ATP synthase/ATPase complex contains as isolated 2 mol Mg2+/mol F1, 1 mol of which is nonexchangeable and the other which is exchangeable (N. Williams, J. Hullihen, and P.L. Pedersen, (1987) Biochemistry 26, 162-169). In addition, the enzyme binds 1 mol ADP/mol F1 and 3 mol AMP.PNP, the latter of which can bind in complex formation with divalent cation and displace the Mg2+ at the exchangeable site. Thus, in terms of ligand binding sites the fully loaded rat liver F1 complex contains 3 mol MgAMP.PNP, 1 mol ADP, and 1 mol Mg2+. In this study we have used several metal ATP complexes or analogs thereof to gain further insight into the ligand binding domains of rat liver F1 and the mechanism by which it catalyzes ATP hydrolysis in soluble and membrane bound form. Studies with LaATP confirmed that MgATP is the most likely substrate for rat liver F1, and provided evidence that the enzyme may contain additional Mg2+ binding sites, undetected in previous studies of F1-ATPases, that are required for catalytic activity. Thus, F1 containing the thermodynamically stable LaATP complex in place of MgATP requires added Mg2+ to induce ATP hydrolysis. As Mg2+ cannot readily displace La2+ under these conditions there appears to be a catalytically important class of Mg2+ binding sites on rat liver F1, distinct from the nonexchangeable Mg2+ site and the sites involved in binding MgATP. Additional studies carried out with exchange inert metal-nucleotide complexes involving rhodium and the Mg2+ and Cd2+ complexes of ATP beta S and ATP alpha S imply that the rate-limiting step in the ATPase reaction pathway occurs subsequent to the P gamma-O-P beta bond cleavage steps, perhaps at the level of Mg(ADP)(Pi) hydrolysis or MgADP release. Evidence is presented that Mg2+ remains coordinated to the leaving group of the reaction, i.e., the beta phosphoryl group. Finally, in contrast to soluble F1, F1 bound to F0 in the inner mitochondrial membrane failed to discriminate between the Mg2+ complexes of the ATP beta S isomers. This indicates that a fundamental difference may exist between the catalytic or kinetic mechanism of F1 and the more physiologically intact F0F1 complex.  相似文献   

16.
The ATP hydrolysis rate and the ADP-ATP exchange rate of (Na+ + K+)-ATPase from ox brain were measured at 10 microM Mg2+free and at micromolar concentrations of free ATP and ADP. (1) In the absence of K+, substrate inhibition of the hydrolysis rate was observed. It disappeared at low Na+ and diminished at increasing concentrations of ADP. This was interpreted in terms of free ATP binding to E1P. In support of this interpretation, free ATP was found to competitively inhibit ADP-ATP exchange. (2) In the presence of K+, substrate activation of the hydrolysis rate was observed. Increasing (microM) concentrations of ADP did not give rise to competitive inhibition in contrast to the situation in the absence of K+ (cf. 1, above). This was interpreted to show that at micromolar substrate, some low-affinity, high-turnover Na+ + K+ activity is possible, provided the Mg2+ concentration is low. (3) While small concentrations of K+ increased the hydrolysis rate (cf. 2) they decreased the rate of ADP-ATP exchange. To elucidate this phenomenon, parallel measurements of exchange and hydrolysis rates were performed over a wide range of ATP and ADP concentrations, with and without K+. If, in the presence and absence of K+, ADP (and ATP competing) are binding to the same phosphorylated intermediate for the backward reaction, it places quantitative restrictions on the ratio of rate constants with and without K+. The results did not conform to these restrictions, and the discrepancy is taken as evidence for the necessity for a bicyclic scheme for the action of the (Na+ + K+)-ATPase. (4) An earlier statement concerning the nature of the phosphoenzyme obtained in the presence of Na+ and K+ is amended.  相似文献   

17.
Previously, we proposed the following reaction machanism for the transport ATPase (EC 3.6.1.3) reaction in the presence of high concentrations of Mg2+ and Na+:(see article). Some kinetic and thermodynamic properties of steps 3 and 4 were investigated, and the following results were obtained. 1. When the reaction was started by adding ATP to the enzyme in the presence of 50 mM Na+ and 0.5 mM K+ or in the presence of 50mM Na+ and 0.5mM Rb+, the amount of E ADP P increased with time and maintained a constant level after reaching a maximum. We could not observe the initial burst of EP formation, which was observed by Post er al. in the presence of 8 mM Na+ and 0.01 mM Rb+. 2. The existence of quasi-equilibrium between E2ATP and E ADP P in the presence of low concentrations of Na+ was suggested by the fact that the values of the reciprocal of the equilibrium constant, K3 of step 3 obtained by the following three methods were almost the same. a) The value of 1+K3 was estimated from the ratio of vo/[EP] to kd, where vo is the rate of ATP hydrolysis in the steady state, [EP] the concentration of EP, and kd the first-order rate constant of EP disappearance after stopping EP formation. b) This value was also calculated from the ratio of the amount of P1 liberated to that of decrease in EP after stopping EP formation. c) The value of K3 was also calculated from the initial rapid decrease in EP on adding K+ and EDTA, assuming that the rapid decrease was due to a shift of the equilibrium toward E2ATP on adding K+. For example, the value of K3 with 10mM NaCL and 0.5mM KCL was 7--11. Although ATP formation due to a shift of the equilibrium toward E2ATP by a K+ jump in the presence of a low concentration of Na+ was observed at 0 degrees, the amount of ATP formed by a K+ jump at 15 degrees was less than the value expected from the shift of the equilibrium. 3. The values of delta H degrees and delta S degrees of step 3 were estimated in the presence of a sufficient amount of Na+ and in the absence of K+. They were +4--+5 kcal mole minus 1 and +15--+16 entropy units mole minus1, respectively. On the basis of kinetic studies of the elementary steps and the overall reaction of Na+-K+-dependent ATPase [EC 3.6.1.3], we (1--4) showed that a phosphorylated intermediate, EP, is formed via two kinds of enzyme-substrate complex, E1ATP and E2ATP, that the EP is in K+-dependent quasi-equilibrium with E2ATP, and that in the presence of high concentration of Mg2+, EP is in a high-energy state and contains bound ADP, E ADP P.(see article).  相似文献   

18.
The rate of ATP hydrolysis in solutions of F-actin at steady state in 50 mM KC1, 0.1 mM CaC12 was inhibited by AMP and ADP. The inhibition was competitive with ATP (Km of about 600 microM) with Ki values of 9 microM for AMP and 44 microM for ADP. ATP hydrolysis was inhibited greater than 95% by 1 mM AMP. AMP had no effect on the time course of actin polymerization, ATP hydrolysis during polymerization, or the critical actin concentration. Simultaneous measurements of G-actin/F-actin subunit exchange and nucleotide exchange showed that nucleotide exchange occurred much more rapidly than subunit exchange; during the experiment over 50% of the F-actin-bound nucleotide was replaced when less than 1% of the F-actin subunits had exchanged. When AMP was present it was incorporated into the polymer, preventing incorporation of ADP from ATP in solution. F-actin with bound Mg2+ was much less sensitive to AMP than F-actin with bound Ca2+. These data provide evidence for an ATP hydrolysis cycle associated with direct exchange of F-actin-bound ADP for ATP free in solution independent of monomer-polymer end interactions. This exchange and hydrolysis of nucleotide may be enhanced when Ca2+ is bound to the F-actin protomers.  相似文献   

19.
The ATPase activity and fluoresence of ribulose-1,5-bisphosphate carboxylase oxygenase (Rubisco) activase were determined over a range of MgCl2, KCl, and activase concentrations. Both salts promoted ADP release from ATP and intrinsic fluorescence enhancement by adenosine 5[prime]-[[gamma]-thio] triphosphate, but Mg2+ was about 10 times more effective than K+. ATPase and fluorescence enhancement both increased from zero to saturation within the same Mg2+ and K+ concentration ranges. At saturating concentrations (5 mM Mg2+ and 22 mM K+), the specific activity of ATPase (turnover time, about 1 s) and specific intrinsic fluorescence enhancement were maximal and unaffected by activase concentration above 1 [mu]M activase; below 1 [mu]M activase, both decreased sharply. These responses are remarkably similar to the behavior of actin. Intrinsic fluorescence enhancement of Rubisco activase reflects the extent of polymerization, showing that the smaller oligomer or monomer present in low-salt and activase concentrations is inactive in ATP hydrolysis. However, quenching of 1-anilinonapthaline-8-sulfonate fluorescence revealed that ADP and adenosine 5[prime]-[[gamma]-thio] triphosphate bind equally well to activase at low- and high-salt concentrations. This is consistent with an actin-like mechanism requiring a dynamic equilibrium between monomer and oligomers for ATP hydrolysis. The specific activation rate of substrate-bound decarbamylated Rubisco decreased at activase concentrations below 1 [mu]M. This suggests that a large oligomeric form of activase, rather than a monomer, interacts with Rubisco when performing the release of bound ribulose-1,5-bisphosphate from the inactive enzyme.  相似文献   

20.
Parallel measurements in steady-state of ATP hydrolysis rate (vhydr) and the simultaneous reverse reaction, i.e., the ADP-ATP exchange rate (vexch), allowed the determination of a kinetic parameter, KE, containing only the four rate constants needed to characterize the enzyme intermediates involved in the sequence (Formula: see text). In order to compare the properties of these enzyme intermediates under different sets of conditions, KE was measured at varying K+ and Na+ concentrations in the presence of millimolar concentrations of ATP, ADP and MgATP, using an enzyme preparation that was partially purified from bovine brain. (1) In the presence of Na+ (150 mM), K+ (20-150 mM) was found to increase the exchange rate and decrease the ATP hydrolysis rate at steady-state. As a result, KE increased at increasing K+. However, the value of KE found by extrapolation to K+ = 0 was 7-times lower than the value actually measured in the absence of K+. This finding indicates that one of the intermediates, EATP or EP, or both, when formed in the presence of Na+ alone, are different from the corresponding intermediate(s) formed in the presence of Na+ + K+ (at millimolar substrate concentration). (2) In the presence of 150 mM K+, Na+ (5-30 mM) was found to increase the ADP/ATP exchange as well as the ATP hydrolysis rate at steady-state. The ratio of the two rates was constant. This finding, when interpreted in terms of KE, indicates that Na+ does not have to leave the enzyme for ATP release to be accelerated by K+ in the backward reaction. This also is in opposition to the usual versions of the Albers-Post model, which does not have simultaneous presence of Na+ and K+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号