首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Bacillus subtilis acyl-lipid desaturase (Delta5-Des) is an iron-dependent integral membrane protein, able to selectively introduce double bonds into long chain fatty acids. Structural information on membrane-bound desaturases is still limited, and the present topological information is restricted to hydropathy plots or sequence comparison with the evolutionary related alkane hydroxylase. The topology of Delta5-Des was determined experimentally in Escherichia coli using a set of nine different fusions of N-terminal fragments of Delta5-Des with the reporter alkaline phosphatase (Delta5-Des-PhoA). The alkaline phosphatase activities of cells expressing the Delta5-Des-PhoA fusions, combined with site-directed mutagenesis of His residues identified in most desaturases, suggest that a tripartite motif of His essential for catalysis is located on the cytoplasmic phase of the membrane. These data, together with surface Lys biotinylation experiments, support a model for Delta5-Des as a polytopic membrane protein with six transmembrane- and one membrane-associated domain, which likely represents a substrate-binding motif. This study provides the first experimental evidence for the topology of a plasma membrane fatty acid desaturase. On the basis of our results and the presently available hydrophobicity profile of many acyl-lipid desaturases, we propose that these enzymes contain a new transmembrane domain that might play a critical role in the desaturation of fatty acids esterified in glycerolipids.  相似文献   

2.
Membrane fluidity adaptation to the low growth temperature in Bacillus subtilis involves two distinct mechanisms: (1) long-term adaptation accomplished by increasing the ratio of anteiso- to iso-branched fatty acids and (2) rapid desaturation of fatty acid chains in existing phospholipids by induction of fatty acid desaturase after cold shock. In this work we studied the effect of medium composition on cold adaptation of membrane fluidity. Bacillus subtilis was cultivated at optimum (40 degrees C) and low (20 degrees C) temperatures in complex medium with glucose or in mineral medium with either glucose or glycerol. Cold adaptation was characterized by fatty acid analysis and by measuring the midpoint of phospholipid phase transition T(m) (differential scanning calorimetry) and membrane fluidity (DPH fluorescence polarization). Cells cultured and measured at 40 degrees C displayed the same membrane fluidity in all three media despite a markedly different fatty acid composition. The T(m) was surprisingly the highest in the case of a culture grown in complex medium. On the contrary, cultivation at 20 degrees C in the complex medium gave rise to the highest membrane fluidity with concomitant decrease of T(m) by 10.5 degrees C. In mineral media at 20 degrees C the corresponding changes of T(m) were almost negligible. After a temperature shift from 40 to 20 degrees C, the cultures from all three media displayed the same adaptive induction of fatty acid desaturase despite their different membrane fluidity values immediately after cold shock.  相似文献   

3.
4.
In our attempt to understand the cold shock response of Bacillus subtilis, we report on the role of the B. subtilis fatty acid desaturase (FA-D) Des during membrane adaptation to low temperatures and demonstrate its importance during cold shock. A des null mutant was constructed and analysed in comparison with its parental strain. Growth studies and large-scale comparative fatty acid (FA) analysis revealed a severe cold-sensitive phenotype of the des deletion mutant during the absence of isoleucine and showed that four unsaturated fatty acid (UFA) species differing in length, branching pattern and position of the double bond are synthesized in B. subtilis JH642 but not in the des null mutant. Apart from the lack of UFA synthesis, the FA-D deletion strain showed a dramatically altered saturated fatty acid (SFA) profile at the onset of the stationary growth phase in the presence of exogenous isoleucine sources. Expression of des integrated in trans at the amyE locus of the des deletion strain not only cured the cold-sensitive phenotype observed for the des mutant but allowed much better growth than in strain JH642 after a shift from 37 degrees C to 15 degrees C. These results show that, during cold shock adaptation, des expression can completely replace the isoleucine-dependent, long-term, FA branching adaptation mechanism. We conclude that the crucial aspect in cold adaptation of the cytoplasmic membrane is not its specific molecular composition but rather its physical status in terms of its fluidity.  相似文献   

5.
Bacillus subtilis was recently reported to synthesize unsaturated fatty acids (UFAs) with a double bond at positions delta5, delta7, and delta9 (M. H. Weber, W. Klein, L. Muller, U. M. Niess, and M. A. Marahiel, Mol. Microbiol. 39:1321-1329, 2001). Since this finding would have considerable importance in the double-bond positional specificity displayed by the B. subtilis acyl lipid desaturase, we have attempted to confirm this observation. We report that the double bond of UFAs synthesized by B. subtilis is located exclusively at the delta5 position, regardless of the growth temperature and the length chain of the fatty acids.  相似文献   

6.
7.
8.
9.
10.
Membrane biomechanical properties are critical in modulating nutrient and metabolite exchange as well as signal transduction. Biological membranes are predominantly composed of lipids, cholesterol and proteins, and their fluidity is tightly regulated by cholesterol and lipid desaturases. To determine whether such membrane fluidity regulation occurred in mammalian cells under pressure, we investigated the effects of pressure on membrane lipid order of mouse chondrogenic ATDC5 cells and desaturase gene expression. Hydrostatic pressure linearly increased membrane lipid packing and simultaneously repressed lipid desaturase gene expression. We also showed that cholesterol mimicked and cholesterol depletion reversed those effects, suggesting that desaturase gene expression was controlled by the membrane physical state itself. This study demonstrates a new effect of hydrostatic pressure on mammalian cells and may help to identify the molecular mechanisms involved in hydrostatic pressure sensing in chondrocytes.  相似文献   

11.
It is known that Bacillus subtilis releases membrane vesicles (MVs) during the SOS response, which is associated with cell lysis triggered by the PBSX prophage-encoded cell-lytic enzymes XhlAB and XlyA. In this study, we demonstrate that MVs are released under various stress conditions: sucrose fatty acid ester (SFE; surfactant) treatment, cold shock, starvation, and oxygen deficiency. B. subtilis possesses four major host-encoded cell wall-lytic enzymes (autolysins; LytC, LytD, LytE, and LytF). Deletions of the autolysin genes abolished autolysis and the consequent MV production under these stress conditions. In contrast, deletions of xhlAB and xlyA had no effect on autolysis-triggered MV biogenesis, indicating that autolysis is a novel and prophage-independent pathway for MV production in B. subtilis. Moreover, we found that the cell lysis induced by the surfactant treatment was effectively neutralized by the addition of exogenous purified MVs. This result suggests that the MVs can serve as a decoy for the cellular membrane to protect the living cells in the culture from membrane damage by the surfactant. Our results indicate a positive effect of B. subtilis MVs on cell viability and provide new insight into the biological importance of the autolysis phenomenon in B. subtilis.  相似文献   

12.
The membrane lipid composition of Tetrahymena pyriformis NT-I was observed to change in a manner markedly dependent on the progress of culture age. The pellicular, mitochondrial and microsomal membranes were isolated from cell harvested at various growth phases (I, early exponential; II, mid-exponential; III, late exponential; IV, early stationary; V, late stationary) and their lipid composition was analyzed by thin-layer and gas-liquid chromatography. Although the phospholipid composition varied somewhat among membrane fractions, the most general age-dependent alteration was a considerable decrease in the content of phosphatidylethanolamine accompanied by a small increase in phosphatidylcholine. The 2-aminoethylphosphonolipid, enriched in the surface membrane pellicle, did not undergo a consistent change. As for fatty acid composition the most notable variation occurred in unsaturated fatty acids; a great increase in oleic and linoleic acids and a compensatory decrease in palmitoleic acid. This resulted in an augmented unsaturation of the overall phospholipid fatty acid profile of the aged membranes. The age-associated drastic decline in the palmitoleic acid content in membrane phospholipids could be accounted for by the markedly lowered activity of palmitoyl-CoA desaturase. The microsomes from the early exponential phase cells possess a 4-fold higher activity of the desaturase as compared to that of the late stationary phase microsomes. The decreased desaturase activity associated with the culture age was also reflected in the corresponding decrease in the conversion rate of [14C]palmitate to [14C]palmitoleate in cells labelled in vivo. The ESR spectra of the spin-labeled phospholipids extracted from the pellicular and microsomal membranes have led to the suggestion that these types of membrane would become more fluid with the age of growth.  相似文献   

13.
笔者所在实验室前期筛选到1株产脂肪酶粘质沙雷氏菌,克隆其脂肪酶基因,构建重组枯草芽胞杆菌Bacillus subtilis 168/pMA5-lipA,成功实现了来源于粘质沙雷氏菌的脂肪酶基因在枯草芽胞杆菌中的表达。基于以上工作基础上,对B.subtilis 168/pMA5-lipA进行了摇瓶水平上的产酶发酵优化。首先通过单因素和正交试验确定了有利于产脂肪酶的最佳培养基成分,并对发酵条件进行了优化。结果表明:优化后的培养基组分为蔗糖35 g/L,玉米浆27.5 g/L,(NH4)2SO41.25 g/L,CaCl24 g/L,pH 7.0。在最优发酵培养基的条件下,37℃、160 r/min摇床培养33 h,每毫升发酵液中重组菌脂肪酶酶活可达98.6 U,是优化前的3倍。  相似文献   

14.
15.
The Delta5-desaturase from Bacillus subtilis has been cloned in Escherichia coli BL21 cells and its enzyme activity has been investigated as a function of temperature and oxygenation by analyzing methyl ester adducts from the total lipid extract in GC-MS measurements. The present data bring out that the activity of recombinant Delta5-desaturase, at 20-22 degrees C and 20% oxygen, is surprisingly high yielding 22% of C16:1,Delta5 (5-cis-palmitoleic acid) and 13% C18:2, Delta5 Delta11 (efedrenic acid). Lower amounts of other mono- and doubly-Delta5-unsaturated fatty acids were also detected. These findings demonstrate that Delta5-desaturase can accept a multiplicity of substrates and is endowed with an unprecedented activity among other acyl-lipid desaturases thus representing a unique tool for the production of rare Delta5 unsaturated fatty acid derivatives.  相似文献   

16.
17.
Topography of chromosome membrane junction in Bacillus subtilis   总被引:18,自引:0,他引:18  
  相似文献   

18.
Heat-shock proteins in membrane vesicles of Bacillus subtilis   总被引:1,自引:0,他引:1  
Fractionation of B. subtilis cells after heat shock, from 37 degrees C to 54 degrees C, shows an increase in synthesis of proteins localized in cell membranes and a decrease in synthesis of proteins localized in cytosol. There is no such effect of heat shock at temperature of 45 degrees C. Autoradiograms of electrophoretically separated proteins, labelled during heat shock at 54 degrees C, reveal 26 heat-shock proteins (hsps) in membrane vesicles and 11 hsps in cytosol, five of which are common to both fractions. Heat shock at 45 degrees C induces 18 hsps localized in membrane vesicles and 13 hsps localized in cytosol, six of which are common to both fractions. Results are interpreted as showing a relevant role of membrane proteins in cell response to shock at high temperature, pointing to two steps of defense against heat stress.  相似文献   

19.
Electrons can be transferred to the respiratory chain in whole cells and in membrane vesicles of Bacillus subtilis W 23 by the membrane impermeable electron donor reduced 5-N-methyl-phenazonium-3-sulfonate as efficiently as by the membrane permeable electron donor reduced 5-N-methyl-phenazonium methyl-sulfate, indicating that the respiratory chain is accessible from the outside of the membrane.Succinate is oxidized by whole cells and membrane vesicles at a low rate and does not energize transport of l-glutamate. In the presence of 5-N-methyl-phenazonium-3-sulfonate or 5-N-methyl-phenazonium methyl-sulfate, the oxidation rate and the rate of l-glutamate transport are increased considerably. The electrons are transferred directly from succinic dehydrogenase to these acceptors. Succinic dehydrogenase must therefore be exposed to the outside surface of the membrane in both membrane vesicles and whole cells. The exposure of succinic dehydrogenase to the outside is also indicated by the observations that only a 5% increase in the oxidation rates of succinate-5-N-methyl-phenazonium methylsulfate and succinate-5-N-methyl-phenazonium-3-sulfonate is observed upon solubilization of the membrane with the nonionic detergent Brij-58. Furthermore, treatment of membrane vesicles with trypsin decreases by more than 95% these oxidation rates.NADH is oxidized at a high rate and energizes transport of l-glutamate in whole cells and membrane vesicles effectively. The NADH-oxidation is not effected by trypsin treatment of the vesicles indicating that the oxidation occurs at the inside-surface of the membrane. Trypsin treatment of the vesicles, however, significantly decreases the rate of l-glutamate transport driven by NADH. Therefore component(s) of the transport system for l-glutamate must be effected by trypsin treatment. No apparent differences could be observed in the localization of membrane-bound functions between membrane vesicles and whole cells. This strongly supports the contention that the vesicle membrane of B. subtilis has the same orientation as the cytoplasmic membrane of whole cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号