首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Measles virus infection induces chemokine synthesis by neurons   总被引:3,自引:0,他引:3  
The role that neurons play in the induction of the immune response following CNS viral infection is poorly understood, largely owing to the belief that these cells are immunologically quiescent. In this report, we show that virus infection of neurons results in the synthesis of proinflammatory chemokines, which are early and important mediators of leukocyte recruitment to sites of viral infection. For these studies, a transgenic mouse model of neuron-restricted measles virus (MV) infection was used. Inoculation of immunocompetent and immunodeficient transgenic adult mice resulted in CNS induction of the mRNAs encoding IFN-gamma inducible protein of 10 kD, monokine inducible by gamma and RANTES. Colocalization of chemokine proteins with MV-infected neurons was detected by immunofluorescence in infected brain sections. Both IFN-gamma inducible protein 10 kD and RANTES were also induced in MV-infected primary hippocampal neurons cultured from transgenic embryos, as shown by RNase protection assay, confocal microscopy, and ELISA. Interestingly, neuronal infection with another RNA virus (lymphocytic choriomeningitis virus) was not associated with induction of these chemokines. In immunocompetent mice, chemokine synthesis preceded the infiltration of T lymphocytes, and chemokine ablation by neutralizing Abs resulted in a 20-50% reduction in the number of infiltrating lymphocytes. Collectively, these data indicate that neurons play an important role in the recruitment of a protective antiviral response to the CNS following viral infection, although such a role may be virus type-dependent.  相似文献   

2.
3.
Wnt-3a overcomes beta-amyloid toxicity in rat hippocampal neurons   总被引:7,自引:0,他引:7  
The aim of this study was to evaluate whether the direct activation of the Wnt signaling pathway by its endogenous Wnt-3a ligand prevents the toxic effects induced by amyloid-beta-peptide (Abeta) in rat hippocampal neurons. We report herein that the Wnt-3a ligand was indeed able to overcome toxic effects induced by Abeta in hippocampal neurons, including a neuronal impairment on cell survival, an increase in glycogen synthase kinase-3beta (GSK-3beta) and tau phosphorylation, a decrease in cytoplasmic beta-catenin and a decrease in the expression of the Wnt target gene engrailed-1. We further demonstrate that Wnt-3a protects hippocampal neurons from apoptosis induced by Abeta. Our results support the hypothesis that a loss of function of Wnt signaling may play a role in the progression of neurodegenerative diseases such as Alzheimer's disease.  相似文献   

4.
In patients with subacute sclerosing panencephalitis (SSPE), which is associated with persistent measles virus (MV) infection in the brain, little infectious virus can be recovered despite the presence of viral RNA and protein. Based on studies of brain tissue from SSPE patients and our work with MV-infected NSE-CD46(+) mice, which express the measles receptor CD46 on neurons, several lines of evidence suggest that the mechanism of viral spread in the central nervous system differs from that in nonneuronal cells. To examine this alternate mechanism of viral spread, as well as the basis for the loss of normal transmission mechanisms, infection and spread of MV Edmonston was evaluated in primary CD46(+) neurons from transgenic mice and differentiated human NT2 neurons. As expected, unlike that between fibroblasts, viral spread between neurons occurred in the absence of syncytium formation and with minimal extracellular virus. Electron microscopy analysis showed that viral budding did not occur from the neuronal surface, although nucleocapsids were present in the cytoplasm and aligned at the cell membrane. We observed many examples of nucleocapsids present in the neuronal processes and aligned at presynaptic neuronal membranes. Cocultures of CD46(+) and CD46(-) neurons showed that cell contact but not CD46 expression is required for MV spread between neurons. Collectively, these results suggest that the neuronal environment prevents the normal mechanisms of MV spread between neurons at the level of viral assembly but allows an alternate, CD46-independent mechanism of viral transmission, possibly through the synapse.  相似文献   

5.
Taurine, an important mediator of cellular volume regulation in the central nervous system, is accumulated into neurons and glia by means of a highly specific sodium-dependent membrane transporter. During hyperosmotic cell shrinkage, net cellular taurine content increases as taurine transporter activity is enhanced via elevated gene expression of the transporter protein. In hypo-osmotic conditions, taurine is rapidly lost from cells by means of taurine-conducting membrane channels. We reasoned that changes in taurine transporter activity also might accompany cell swelling to minimize re-accumulation of taurine from the extracellular space. Thus, we determined the kinetic and pharmacological characteristics of neuronal taurine transport and the response to osmotic swelling. Accumulation of radioactive taurine is strongly temperature dependent and occurs via saturable and non-saturable pathways. At concentrations of taurine expected in extracellular fluid in vivo, 98% of taurine accumulation would occur via the saturable pathway. This pathway obeys Michaelis-Menten kinetics with a Km of 30.0 +/- 8.8 microm (mean +/- SE) and Jmax of 2.1 +/- 0.2 nmol/mg protein min. The saturable pathway is dependent on extracellular sodium with an effective binding constant of 80.0 +/- 3.1 mm and a Hill coefficient of 2.1 +/- 0.1. This pathway is inhibited by structural analogues of taurine and by the anion channel inhibitors, 4,4'-diisothiocyanostilbene-2, 2'-disulfonic acid (DIDS) and 5-nitro-2-(3 phenylpropylamino) benzoic acid (NPPB). NPPB, but not DIDS, also reduces the ATP content of the cell cultures. Osmotic swelling at constant extracellular sodium concentration reduces the Jmax of the saturable transport pathway by approximately 48%, increases Kdiff for the non-saturable pathway by 77%, but has no effect on cellular ATP content. These changes in taurine transport occurring in swollen neurons in vivo would contribute to net reduction of taurine content and resulting volume regulation.  相似文献   

6.
The ionic permeability of a voltage-dependent Cl channel of rat hippocampal neurons was studied with the patch-clamp method. The unitary conductance of this channel was approximately 30 pS in symmetrical 150 mM NaCl saline. Reversal potentials interpreted in terms of the Goldman-Hodgkin-Katz voltage equation indicate a Cl:Na permeability ratio of approximately 5:1 for conditions where there is a salt gradient. Many anions are permeant; permeability generally follows a lyotropic sequence. Permeant cations include Li, Na, K, and Cs. The unitary conductance does not saturate for NaCl concentrations up to 1 M. No Na current is observed when the anion Cl is replaced by the impermeant anion SO4. Unitary conductance depends on the cation species present. The channel is reversibly blocked by extracellular Zn or 9-anthracene carboxylic acid. Physiological concentrations of Ca or Mg do not affect the Na:Cl permeability ratio. The permeability properties of the channel are consistent with a permeation mechanism that involves an activated complex of an anionic site, an extrinsic cation, and an extrinsic anion.  相似文献   

7.
We have previously shown that CdSe/ZnS core/shell luminescent semiconductor nanocrystals or QDs (quantum dots) coated with PEG [poly(ethylene glycol)]-appended DHLA (dihydrolipoic acid) can bind AcWG(Pal)VKIKKP9GGH6 (Palm1) through the histidine residues. The coating on the QD provides colloidal stability and this peptide complex uniquely allows the QDs to be taken up by cultured cells and readily exit the endosome into the soma. We now show that use of a polyampholyte coating [in which the neutral PEG is replaced by the negatively heterocharged CL4 (compact ligand)], results in the specific targeting of the palmitoylated peptide to neurons in mature rat hippocampal slice cultures. There was no noticeable uptake by astrocytes, oligodendrocytes or microglia (identified by immunocytochemistry), demonstrating neuronal specificity to the overall negatively charged CL4 coating. In addition, EM (electron microscopy) images confirm the endosomal egress ability of the Palm1 peptide by showing a much more disperse cytosolic distribution of the CL4 QDs conjugated to Palm1 compared with CL4 QDs alone. This suggests a novel and robust way of delivering neurotherapeutics to neurons.  相似文献   

8.
9.
10.
Measles is one of the most contagious human infectious diseases and remains a major cause of childhood morbidity and mortality worldwide. The signaling lymphocyte activation molecule (SLAM), also called CD150, is a cellular receptor for measles virus (MV), presumably accounting for its tropism for immune cells and its immunosuppressive properties. On the other hand, pathological studies have shown that MV also infects epithelial cells at a later stage of infection, although its mechanism has so far been unknown. In this study, we show that wild-type MV can infect and produce syncytia in human polarized epithelial cell lines independently of SLAM and CD46 (a receptor for the vaccine strains of MV). Progeny viral particles are released exclusively from the apical surface of these polarized epithelial cell lines. We have also identified amino acid residues on the MV attachment protein that are likely to interact with a putative receptor on epithelial cells. All of these residues have aromatic side chains and may form a receptor-binding pocket located in a different position from the putative SLAM- and CD46-binding sites on the MV attachment protein. Thus, our results indicate that MV has an intrinsic ability to infect both polarized epithelial and immune cells by using distinctive receptor-binding sites on the attachment protein corresponding to each of their respective receptors. The ability of MV to infect polarized epithelial cells and its exclusive release from the apical surface may facilitate its efficient transmission via aerosol droplets, resulting in its highly contagious nature.  相似文献   

11.
12.
Analysis of the binding of cholera toxin to ganglioside GM1 in both living and fixed neurons, and comparison with the distribution of defined axonal and dendritic proteins, demonstrates that ganglioside GM1 is distributed in a non-polarized manner over the axonal and dendritic plasma membranes of mature, cultured hippocampal neurons. Likewise, ganglioside GD1b is also distributed in a non-polarized manner. These results suggest that a recent report [Ledesma, M.D. et al. EMBO J. 18 (1999) 1761-1771] proposing that ganglioside GM1 is highly enriched on the axonal versus dendritic membrane of hippocampal neurons may need to be re-evaluated.  相似文献   

13.
A volatile anesthetic-gated current was characterized in patch-clamped cultured postnatal rat hippocampal neurons. In this preparation, the major volatile anesthetics, isoflurane, halothane, and enflurane, open an anion-selective conductance. This volatile anesthetic-gated current exhibits anion selectivity with a chloride-to-acetate permeability ratio of 15, shows outward rectification well described by the constant field equation, and is activated in a dose-dependent fashion with half-maximal response to isoflurane at 0.8 mM (0.032 atm). The current persists in the absence of external Ca2+ and is not blocked by strychnine, a glycine antagonist. However, the gamma-aminobutyric acidA (GABAA) antagonists, bicuculline and picrotoxinin, and the nonspecific anion channel blocker, 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS), completely block the response. These observations suggest that volatile anesthetics, like several other general anesthetics such as barbiturates, steroids, and etomidate, have a GABA-mimetic effect on vertebrate central neurons in culture. It is not clear whether this GABAA-gating property is a prerequisite for all general anesthetics. However, under normal physiological conditions of low intracellular Cl-, it is likely that drugs with both direct GABA agonist and GABA modulatory properties will produce overall depression of the central nervous system by increasing the normal inhibitory synaptic influence and by directly hyperpolarizing neurons.  相似文献   

14.
Rapp A  Gmeiner B  Hüttinger M 《Biochimie》2006,88(5):473-483
Apolipoprotein E (apoE) has been genetically linked to late-onset Alzheimer's disease. From the three common alleles (epsilon2, epsilon3 and epsilon4), epsilon4 has been suggested to promote amyloid beta (Ass) plaque fibrillation, one hallmark of Alzheimer's disease. It has been demonstrated that altered lipid content of hippocampal plasma membrane coincides with the disease. In this study, we show for the first time that the apoE dependent cholesterol metabolism in hippocampal neurons is higher than that of hippocampal astrocytes. Further, apoE-bound cholesterol is highly incorporated in membranous compartments in hippocampal neurons, whereas hippocampal astrocytes show higher intracellular distribution. This is an effect that coincides with cell-type dependent difference of low density lipoprotein receptor (LDLR) family member expression. Hippocampal neurons express high levels of the LDLR related protein (LRP), whereas hippocampal astrocytes are highly positive for LDLR. We could also demonstrate an apoE isoform (apoE2, apoE3 and apoE4) dependent cholesterol uptake in both cells types. In hippocampal neurons, we could find a decreased apoE4-bound cholesterol uptake. In contrast, hippocampal astrocytes show decreased internalization of apoE2-bound cholesterol. In addition, lipidated apoE4 is little associated with neurites in hippocampal neurons in comparison to the other two isoforms. In contrary, hippocampal astrocytes show faint apoE2 immunocytostaining intensity. Data presented indicate that the role of apoE4 in cholesterol homeostasis and apolipoprotein cell association is more pronounced in hippocampal neurons, showing significant alterations compared to the other two isoforms, suggesting that hippocampal neurons are affected by apoE4 associated altered cholesterol metabolism compared to hippocampal astrocytes.  相似文献   

15.
Cell death was reduced in cultured rat hippocampal cells treated with aluminum chloride by dantrolene and dimethylsulfoxide, indicating aluminum toxicity may be mediated through release of calcium from intracellular stores and oxidative stress. Cell death was reduced to a lesser degree by cycloheximide and actinomycin D, indicating some evidence for apoptosis, however apoptosis did not appear to be a major cause of cell death from aluminum toxicity.  相似文献   

16.
D-Serine, a recently identified gliotransmitter, serves as an endogenous coagonist binding to the glycine site of N-methyl-D-aspartate (NMDA) receptors. However, it is not clear whether this native ligand is able to bind to and modulate alpha-amino-3-hydroxyl-5-methyl-4-isoxazolepropionate (AMPA) receptors. In the present study, we showed that D-serine was able to concentration-dependently inhibit kainate-induced AMPA receptor-mediated current in acutely isolated hippocampal neurons. The blocking action of D-serine on AMPA receptors was characterized by a shift in concentration-response curve of kainate-induced current to the right with no change in the maximal response and independent of holding potential in the range of -80 to +60 mV. This is consistent with a model that D-serine is a competitive antagonist on AMPA receptors. In contrast, L-serine did not exert such an inhibitory action. Consistent with this observation, we found that several D-isoforms, but not L-isoforms, of endogenous and exogenous amino acids were able to block AMPA receptors. These results indicate that there is a low affinity and stereo-selective site at the agonist binding pocket of AMPA receptors for these D-amino acids. More importantly, vesicular-released endogenous D-serine from astrocytes could potentially modulate AMPA receptors in synaptic transmission in hippocampus.  相似文献   

17.
Bae J  Sung BH  Cho IH  Song WK 《PloS one》2012,7(4):e34514
Synaptic plasticity is an important feature of neurons essential for learning and memory. Postsynaptic organization and composition are dynamically remodeled in response to diverse synaptic inputs during synaptic plasticity. During this process, the dynamics and localization of postsynaptic proteins are also precisely regulated. NESH/Abi-3 is a member of the Abl interactor (Abi) protein family. Overexpression of NESH is associated with reduced cell motility and tumor metastasis. Strong evidence of a close relationship between NESH and the actin cytoskeleton has been documented. Although earlier studies have shown that NESH is prominently expressed in the brain, its function and characteristics are yet to be established. Data from the present investigation suggest that synaptic localization of NESH in hippocampal neurons is regulated in an F-actin-dependent manner. The dynamic fraction of NESH in the dendritic spine was analyzed using FRAP (fluorescence recovery after photobleaching). Interestingly, F-actin stabilization and disruption significantly affected the mobile fraction of NESH, possibly through altered interactions of NESH with the F-actin. In addition, NESH was synaptically targeted from the dendritic shaft to spine after induction of chemical LTP (long-term potentiation) and the translocation was dependent on F-actin. Our data collectively support the significance of the F-actin cytoskeleton in synaptic targeting of NESH as well as its dynamics.  相似文献   

18.
1. The nonhomogeneous spatial distribution of ionic channels in neurons has been implied from intracellular recordings at somatic and dendritic locations. These reports indicate that Na- and Ca-dependent regenerative currents are distributed differently throughout the neuron. Although a variety of K conductances and a noninactivating Na conductance have been described in intracellular studies, little is known about the spatial distribution of inward and outward currents throughout different regions of the neuron. 2. We recorded from cell-attached patches from cultured hippocampal cells from 1-day-old rats. The cells were cultured for 3-21 days. The spatial distribution of a variety of ionic channels was determined by comparing the conductances from somatic and dendritic membranes. Single-channel currents obtained from cell-attached patches were identified by the time course of ensemble (averaged) responses, voltage dependence, and the effect of channel blocking agents. 3. We consistently observed that only the rapidly inactivating inward current was localized to the soma. The other channel types that we studied, including an inward noninactivating, delayed rectifier and transient A-type currents, were observed in both the somatic and dendritic regions. 4. We suggest that the distribution of ionic conductances that we have observed may be functional in limiting excitability during development of neurons.  相似文献   

19.
Varicella-zoster virus (VZV) infection involves the cell-cell spread of virions, but how viral proteins interact with the host cell membranes that comprise intercellular junctions is not known. Madin-Darby canine kidney (MDCK) cells were constructed to express the glycoproteins gE, gI, or gE/gI constitutively and were used to examine the effects of these VZV glycoproteins in polarized epithelial cells. At low cell density, VZV gE induced partial tight junction (TJ) formation under low-calcium conditions, whether expressed alone or with gI. Although most VZV gE was intracellular, gE was also shown to colocalize with the TJ protein ZO-1 with or without concomitant expression of gI. Freeze fracture electron microscopy revealed normal TJ strand morphology in gE-expressing MDCK cells. Functionally, the expression of gE was associated with a marked acceleration in the establishment of maximum transepithelial electrical resistance (TER) in MDCK-gE cells; MDCK-gI and MDCK-gE/gI cells exhibited a similar pattern of early TER compared to MDCK cells, although peak resistances were lower than those of gE alone. VZV gE expression altered F-actin organization and lipid distribution, but coexpression of gI modulated these effects. Two regions of the gE ectodomain, amino acids (aa) 278 to 355 and aa 467 to 498, although lacking Ca(2+) binding motifs, exhibit similarities with corresponding regions of the cell adhesion molecules, E-cadherin and desmocollin. These observations suggest that VZV gE and gE/gI may contribute to viral pathogenesis by facilitating epithelial cell-cell contacts.  相似文献   

20.
The goal of the present study was to detect as many protein spots as possible in mammalian cells using two-dimensional gel electrophoresis (2-DE). For proteome analysis, it is of importance to reveal as many proteins as possible. A single standard 2-DE gel (pH 3-10, 18 cm x 20 cm, 13.5% gel) could detect 853 spots from proteins of cultured rat hippocampal neurons when visualized by silver staining. To increase the resolution of the separation and the number of detectable proteins by 2-DE, we utilized seven different narrow pH range immobilized pH gradients in the first dimension. In the second dimension, fourteen long SDS polyacrylamide gels were used: seven 7.5% gels for the separation of high molecular mass proteins (> or = 40 kDa) and seven 13.5% gels for the separation of low molecular mass proteins (< or = 40 kDa). Three hundred and sixty microg of proteins from cultured hippocampal neurons were loaded on to individual gels and visualized by silver staining. All 14 gel images were assembled into a 70 cm x 67 cm cybergel that contained 6677 protein spots, thereby indicating that the utilization of the present strategy led to a 783% increase in the number of detected spots in comparison to the standard procedure. Loading double the amount (720 microg) of proteins on to a 13.5% gel led to a 184% increase in the number of detected spots, thereby indicating that the present strategy has a potential to display more protein spots in the cybergels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号