首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A deletion map of the human Y chromosome based on DNA hybridization.   总被引:65,自引:11,他引:54       下载免费PDF全文
The genomes of 27 individuals (19 XX males, two XX hermaphrodites, and six persons with microscopically detectable anomalies of the Y chromosome) were analyzed by hybridization for the presence or absence of 23 Y-specific DNA restriction fragments. Y-specific DNA was detected in 12 of the XX males and in all six individuals with microscopic anomalies. The results are consistent with each of these individuals carrying a single contiguous portion of the Y chromosome; that is, the results suggest a deletion map of the Y chromosome, in which each of the 23 Y-specific restriction fragments tested can be assigned to one of seven intervals. We have established the polarity of this map with respect to the long and short arms of the Y chromosome. On the short arm, there is a large cluster of sequences homologous to the X chromosome. The testis determinant(s) map to one of the intervals on the short arm.  相似文献   

2.
Summary We have used two repeated DNA fragments (3.4 and 2.1 kb) released from Y chromosome DNA by digestion with the restriction endonuclease Hae III to analyze potential Y chromosome/autosome translocations. Two female patients were studied who each had an abnormal chromosome 22 with extra quinacrine fluorescent material on the short arm. The origin of the 22p+ chromosomes was uncertain after standard cytologic examinations. Analysis of one patient's DNA with the Y-specific repeated DNA probes revealed the presence of both the 3.4 and 2.1 kb Y-specific fragments. Thus, in this patient, the additional material was from the Y chromosome. Analysis of the second patient's DNA for Y-specific repeated DNA was negative, indicating that the extra chromosomal segment was not from the long arm of the Y chromosome. These two cases demonstrate that repeated DNA can distinguish between similar appearing aberrant chromosomes and may be useful in karyotypic and prenatal diagnosis.  相似文献   

3.
A DNA probe detecting multiple haplotypes of the human Y chromosome.   总被引:16,自引:8,他引:16       下载免费PDF全文
We have characterized a DNA probe (49f) that detects about 15 Y-specific TaqI bands corresponding to a low-copy number sequence. Five of these bands, each representing a single DNA fragment, can either be present, absent, or variable in length. Familial segregation studies have shown that the variations of these fragments are inherited in a Mendelian fashion and strictly Y-linked. A survey of 44 male individuals indicated that the five variable TaqI fragments detected by probe 49f can be considered as five independent allelic series. Each series represents the different and mutually exclusive allelic forms observed for a single DNA fragment. A total of 16 haplotypes, each defined by a different combination of the various forms of each of these five restriction fragment length polymorphisms, were observed among the 44 scored individuals. These TaqI restriction polymorphisms are not observed with other restriction digests and have therefore been attributed to point mutations. The five polymorphic fragments map to Yq11, a region that does not recombine with the X chromosome and are therefore not redistributed. This implies that an apparently independent reassortment of one of these series with respect to the others can be explained only on the basis of mutations that occurred several times (or reverted) during evolution of the Y chromosome. However, an examination of the different combinations of two or more allelic series suggests that some alleles are not randomly distributed and raises the possibility of establishing a genealogy of the human Y chromosome.  相似文献   

4.
L M Kunkel  K D Smith  S H Boyer 《Biochemistry》1979,18(15):3343-3353
Fragments of 3.4 kilobases (kb) are released from DNA of human males, but not DNA of human females, by cleavage with restriction endonucleases HaeIII, EcoRI, or EcoRII. Most, if not all, reiterated DNA which is specific for the Y chromosome (it-Y DNA) is present within these male-specific 3.4-kb molecules. Although such 3.4-kb molecules are themselves localized to the Y chromosome, this is not true for all sequences within them. At least two distinguishable types of reiterated sequences are found within each 3.4-kb molecule. One type consists of at least two families which are highly reiterated and are not confined to the Y chromosome. The other type is composed of an estimated minimum of 39 families, each moderately reiterated and localized to the Y chromosome. Y-specific and non-Y-specific sequences are interspersed with one another in the same 3.4-kb molecule. In the average 3.4-kb molecule, three 800 nucleotide lengths of Y-specific sequences alternate with four 250 nucleotide lengths of non-Y-specific sequences. Since the total number of families of Y-specific sequences, calculated on the basis of reiteration frequency and total abundance in a male genome, greatly exceeds the number of Y -specific sequences present in a single 3.4-kb molecule, it necessarily follows that the population of these 3.4-kb molecules is heterogeneous.  相似文献   

5.
A genomic DNA clone named CRI-S232 reveals an array of highly polymorphic restriction fragments on the X chromosome as well as a set of non-polymorphic fragments on the Y chromosome. Every individual has multiple bands, highly variable in length, in every restriction enzyme digest tested. One set of bands is found in all males, and co-segregates with the Y chromosome in families. These sequences have been regionally localized by deletion mapping to the long arm of the Y chromosome. Segregation analysis in families shows that all of the remaining fragments co-segregate as a single locus on the X chromosome, each haplotype consisting of three or more polymorphic fragments. This locus (designated DXS278) is linked to several markers on Xp, the closest being dic56 (DXS143) at a distance of 2 cM. Although it is outside the pseudoautosomal region, the S232 X chromosome locus shows linkage to pseudoautosomal markers in female meiosis. In determining the X chromosome S232 haplotypes of 138 offspring among 19 families, we observed three non-parental haplotypes. Two were recombinant haplotypes, consistent with a cross-over among the S232-hybridizing fragments in maternal meiosis. The third was a mutant haplotype arising on a paternal X chromosome. The locus identified by CRI-S232 may therefore be a recombination and mutation hotspot.  相似文献   

6.
Pancreatic and salivary amylase cDNA probes have been used to search for new DNA fragment length variation among a total of 43 inbred mouse strains. Fragment length differences found with three restriction endonucleases grouped the strains into two major classes. The segregation of these variant fragments has been analyzed among several sets of recombinant inbred strains and is presented here. Previously reported differences for strains YBR and CE have been confirmed. New segregation data for carbonic anhydrase, a locus near the proximal end of mouse chromosome 3, are presented.  相似文献   

7.
Southern blot analysis with murine (Mu) interferon (IFN)-alpha cDNA of restricted genomic DNA of three inbred strains of mice belonging to the species Mus musculus domesticus (BALB/c, C57BL/6, and DBA/2) revealed only a limited degree of polymorphism. For example, with HindIII there were only two polymorphic bands out of 14 hybridizing fragments. With Mu IFN-beta cDNA there was no polymorphism at all between BALB/c and C57BL/6 in DNA restricted with seven different enzymes. In contrast, HindIII-restricted DNA of an inbred strain of wild mice (M. spretus Lataste) hybridized with the IFN-alpha probe displayed a high degree of polymorphism compared with the three strains of laboratory mice and was also polymorphic when probed with IFN-beta cDNA. Although M. musculus domesticus and M. spretus Lataste represent different species, certain interspecies crosses are possible in the laboratory. This enabled us to follow segregation of restriction fragment length polymorphism in HindIII-restricted DNA obtained from 18 backcross progeny of a (DBA/2 X M. spretus)F1 X DBA/2 interspecies cross. There was complete coincidence between the segregation of parental (DBA/2) and (DBA/2 X M. spretus)F1-type IFN-beta and IFN-alpha restriction fragment length polymorphism, indicating tight linkage of the IFN-beta and IFN-alpha genes. In addition, in 15 of 18 progeny the segregation coincided with that of the brown locus on chromosome 4, in accord with previous results obtained with the IFN-alpha probe in strains derived from crosses between BALB/c and C57BL/6 mice. Thus, the Mu IFN-beta gene is tightly linked to the Mu IFN-alpha gene cluster on chromosome 4 near the brown locus.  相似文献   

8.
A sorted, cloned Y chromosome phage library was screened for unique Y chromosome sequences. Of the thousands of plaques screened, 13 did not hybridize to radiolabeled 46,XX total chromosomal DNA. Three plaques were characterized further. Clone Y1 hybridized to multiple restriction enzyme fragments in both male and female DNA with more intense bands in male DNA. Clone Y2, also found in female and male DNA, is probably located in the pseudosutosomal region because extra copies of either the X or Y chromosomes increased Y2 restriction enzyme fragment intensity in total cellular DNA. Clone Y5 was male specific in three of four restriction enzyme digests although in the fourth a light hybridizing band was observed in both male and female DNA. Clone Y5 was sublocalized to band Yq 11.22 by hybridization to a panel of cellular DNA from patients with Y chromosome rearrangements. Clone Y5 can be used to test for retention of the proximally long arm Y suggested to cause gonadal cancer in carrier females. The long series of GA repeats in Y5, anticipated to be polymorphic, may provide a sensitive means to follow Y chromosome variation in human populations.  相似文献   

9.
Complementary DNA probes corresponding to the factor H and C5 polypeptides have been used to determine the chromosomal localizations of these two complement components. Both probes revealed complex and polymorphic arrays of DNA fragments in Southern blot analysis of mouse genomic DNA. Following the distribution of these bands in panels of somatic cell hybrids carrying various combinations of mouse chromosomes on a constant rat or Chinese hamster background allowed the localization of the C5-associated fragments to proximal chromosome 2 and the localization of the factor H-associated fragments to chromosome 1 or chromosome 3. Following the inheritance of DNA restriction fragment-length polymorphisms revealed by the probes in recombinant inbred mouse strains allowed the factor H-associated fragments to be mapped to Sas-1 on chromosome 1, and the C5-associated fragments to be mapped to Hc. Analysis of three-point crosses, in turn, placed the latter locus 19 cM distal to Sd on chromosome 2. We have designated the two loci Cfh and C5, respectively. This genetic analysis raises the possibility that C5 and factor H are both encoded by complex loci composed of distinct structural and regulatory genes.  相似文献   

10.
The DNA at human centromeric regions was characterized by using a repetitive sequence, 308, which localizes in situ exclusively to centromeres of all chromosomes. We previously noted that this sequence is enriched on chromosome 6 and has chromosome-specific organization on 6, 3, 7, 14, X, and Y. In addition to this basic organization, sequences homologous to 308 are polymorphic among normal individuals. The variants are transmitted in a Mendelian manner within a family. To determine the chromosome origin of the variants, we studied their linkage to markers of various chromosomes. Linkage analysis of one pedigree segregating two polymorphisms shows that the 2.6-kilobase (kb) BamHI and 2.6-kb TaqI fragments are linked to each other and to the HLA loci on chromosome 6. Data from another family shows that 2.8-kb TaqI, 4.0-kb TaqI, and 1.3-kb BamHI polymorphic fragments are linked and are probably near the Fy locus on chromosome 1. By dot blot analysis, we determined that the relative amount of these sequences in the genome is not measurably different between unrelated individuals. Thus, the polymorphisms represent changes in homologous 308 sequences on specific chromosomes and can be used as chromosome-specific markers. Linkage studies using polymorphisms of repeated sequences will be most useful within a kindred, especially from an inbred population, because polymorphic repeats of the same restriction size may be heterogeneous in origin.  相似文献   

11.
12.
As an adjunct to attempts to define functionally important sequences at human centromeres, we have undertaken a long-range physical analysis of these regions in the mouse. Mouse centromeres are usually situated very close to the chromosome ends and are closely associated with minor satellite sequences on the basis of cytological observations. Using pulsed-field gel electrophoresis we find that this satellite DNA is arranged as tandem arrays, predominantly uninterrupted by nonsatellite sequences. These arrays can be released largely intact by digestion with a range of enzymes that generally cleave frequently in non-satellite DNA. The restriction fragments carrying these arrays are polymorphic in size between inbred strains and provide direct markers for mouse centromeres. To illustrate the possible use of these polymorphic markers we have mapped a 1.3-Mb PvuII variant in a set of RI strains to the centromere of Chromosome 7. The minor satellite arrays are very close to the centromeric telomere and physical linkage with terminal repeat sequences can readily be detected, placing many minor satellite arrays on terminal restriction fragments smaller than 1 Mb. The apparent lack of any sizable amount of nonsatellite DNA between the minor satellite and the terminal repeat arrays indicates that many mouse chromosomes are truly telocentric.  相似文献   

13.
The genomic subtraction method representational difference analysis (RDA) was used to identify male-specific restriction fragments in the dioecious plant Silene latifolia. Male-specific restriction fragments are linked to the male sex chromosome (the Y chromosome). Four RDA-derived male-specific restriction fragments were used to identify polymorphisms in a collection of X-ray-generated mutant plants with either hermaphroditic or asexual flowers. Some of the mutants have cytologically detectable deletions in the Y chromosome that were correlated with loss of male-specific restriction fragments. One RDA-derived probe detected a restriction fragment present in all mutants, indicating that each has retained Y chromosomal DNA. The other three probes detected genomic fragments that were linked in a region deleted in some hermaphroditic and some asexual mutants. Based on the mutant phenotypes and the correlation of cytologically visible deletions with loss of male-specific restriction fragments, these markers were assigned to positions on the Y chromosome close to the carpel suppression locus. This RDA mapping also revealed a Y-linked locus, not previously described, which is responsible for early stamen development.  相似文献   

14.
Geographic origin of the Y Chromosomes in “old” inbred strains of mice   总被引:7,自引:0,他引:7  
Six distinct Y Chromosomes (Chr) were identified among 39 standard inbred strains of mice with five probes that identified Y Chr-specific restriction fragments on Southern blots. Three Y Chr types, distributed among 31 strains, were of Asian Mus musculus origin. The remaining three Y Chr types, distributed among eight strains, were of M. domesticus origin. The Asian source of the M. musculus Y Chr was confirmed by determining the DNA sequence of 221 bp from an open reading frame within the Sry (sex determining region Y) gene (Gubbay et al., Nature 346 245–250, 1990) in three inbred strains (C57BL/6J, AKR/J, and SWR/J) and comparing the sequence to the homologous sequences derived from wild caught European and Asian M. musculus males. These data indicate that a minimum of six male mice contributed to the formation of the old inbred strains.  相似文献   

15.
Four cloned unique sequences from the human Y chromosome, two of which are found only on the Y chromosome and two of which are on both the X and Y chromosomes, were hybridized to restriction enzyme-treated DNA samples of a male and a female chimpanzee (Pan troglodytes), gorilla (Gorilla gorilla), and pig-tailed macaque (Macaca nemestrina); and a male orangutan (Pongo pygmaeus) and gibbon (Hylobates lar). One of the human Y-specific probes hybridized only to male DNA among the humans and great apes, and thus its Y linkage and sequence similarities are conserved. The other human Y-specific clone hybridized to male and female DNA from the humans, great apes, and gibbon, indicating its presence on the X chromosome or autosomes. Two human sequences present on both the X and Y chromosomes also demonstrated conservation as indicated by hybridization to genomic DNAs of distantly related species and by partial conservation of restriction enzyme sites. Although conservation of Y linkage can only be demonstrated for one of these four sequences, these results suggest that Y-chromosomal unique sequence genes do not diverge markedly more rapidly than unique sequences located on other chromosomes. However, this sequence conservation may in part be due to evolution while part of other chromosomes.  相似文献   

16.
Sex determination in mammals is controlled by SRY (sex-determining region of the Y chromosome), a single-copy gene located on the Y-specific region. Several exceptions to this rule have been described: some rodent species present Y-specific multiple copies (either mono- or polymorphic) of this gene, and two Ellobius species and one Tokudaia species determine sex without a Y chromosome or the SRY gene. Recently, we have described multiple polymorphic copies of the SRY gene in both males and females of the vole species Microtus cabrerae. The female location and the presence of stop codons in some copies from males and females also suggest that they are nonfunctional copies of this gene (pseudogenes). We have investigated the SRY HMG-box in nine species of the family Microtidae; we report here the presence, in eight of these species, of multiple mono- or polymorphic copies of the SRY gene located on the Y chromosome.  相似文献   

17.
We have examined the mitotic and meiotic properties of telomeric regions in various laboratory strains of yeast. Using a sequence (Y probe) derived from a cloned yeast telomere (J. Szostak and E. Blackburn, Cell 29:245-255, 1982), we found that various strains of Saccharomyces cerevisiae show extensive polymorphisms of restriction endonuclease fragment length. Some of the variation in the lengths of telomeric fragments appears to be under the control of a small number of genes. When DNA from various strains was digested with endonuclease KpnI, nearly all of the fragments homologous to the Y probe were found to be of different size. The pattern of fragments in different strains was extremely variable, with a greater degree of polymorphism than that observed for fragments containing the mobile TY1 element. Tetrad analysis of haploid meiotic segregants from diploids heterozygous for many different Y-homologous KpnI fragments revealed that most of them exhibited Mendelian (2:0) segregation. However, only a small proportion of these fragments displayed the obligate 2:2 parental segregation expected of simple allelic variants at the same chromosome end. From the segregations of these fragments, we concluded that some yeast telomeres lack a Y-homologous sequence and that the chromosome arms containing a Y-homologous sequence are different among various yeast strains. Regions near yeast telomeres frequently undergo rearrangement. Among eight tetrads from three different diploids, we have found three novel Y-homologous restriction fragments that appear to have arisen during meiosis. In all three cases, the appearance of a new fragment was accompanied by the loss of another band. In one of these cases, the rearrangement leading to a novel fragment arose in an isogenic diploid, in which both homologous chromosomes should have been identical. Among these same tetrads we also found examples of apparent mitotic gene conversions and mitotic recombination involving telemetric regions.  相似文献   

18.
We have used pulsed-field gel electrophoresis to study the short arm of the Y chromosome by using a pseudoautosomal probe (MIC2Y) and adjacent Y-specific sequences 27a and 47z (DSXY5) in XX males and XY females, in order to detect chromosomal breakpoints which may have given rise to these individuals. The preliminary published long-range restriction map was used as a basis for this study. Our data confirm the reported fragment sizes and resolve some discrepancies. In addition, the recently cloned ZFY locus, pDP1007, the putative sex-determining locus, has been used to extend this long-range restriction map on Yp. Thus far, the X and Y copy of this sequence appear to have conserved GC islands around this locus, since it is found on a 280-kb fragment in males and females by using SacII, BssHII, NarI, and NotI. Only two Y-specific sequences of 50 and 70 kb have been detected at the pulsed-field level by using SfiI and NaeI, respectively. No translocation breakpoints have been detected in any of the patients studied. One XX male, GM1889, however, does not have any of the Y-specific fragments detected using conventional or pulsed-field gel electrophoresis. This is one of the few typical XX males who therefore does not have the ZFY copy of the TDF clone. Since all the other XX males hybridized to 47z, which is centromeric to ZFY, a series of DNA loci that are centromeric to 47z need to be studied in order to detect chromosomal breakpoints.  相似文献   

19.
A 45,X male with a Yp/18 translocation   总被引:2,自引:2,他引:2  
Summary A patient described as a 45,X male (Forabosco et al. 1977) was examined for the presence of Y-specific DNA by using various probes detecting restriction fragments from different regions of the Y chromosome. Positive hybridization signals were obtained for Yp fragments only. In situ hybridization with two different probes, pDP31 and the pseudoautosomal probe 113F, led to a clear assignment of the Yp sequences to the short arm of one chromosome 18. Cytogenetically, the presence of all of Yp including the Y centromere on 18p could be demonstrated replacing a segment of similar size of 18p. Thus, the Y/18 translocation chromosome is dicentric structurally, but it was shown to be monocentric functionally with the no. 18 centromere active. Gene dosage studies with the probe B74 defining a sequence at 18p11.3 demonstrated a single dose of this sequence in the patient. In agreement with these observations, the patient shows clinical signs of the 18p-syndrome. It is concluded that in XO males in general, the X is of maternal origin while the maleness is due to a de novo Y/autosome translocation derived from the father. Depending on the nature of the autosomal deficiency caused by the Y/autosome translocation, the patient may have congenital malformations.  相似文献   

20.
The human Y chromosome contains a group of repeated DNA elements, identified as 3.4-kilobase pair (kb) fragments in Hae III digests of male genomic DNA, which contain both Y-specific and non-Y-specific sequences. We have used these 3.4-kb Hae III Y fragments to explore the organizational properties and chromosomal distribution of the autosomal homologs of the non-Y-specific (NYS) 3.4-kb Hae III Y elements. Three distinct organizations, termed domains, have been identified and shown to have major concentrations on separate chromosomes. We have established that domain K is located on chromosome 15 and domain D on chromosome 16 and suggested that domain R is on chromosome 1. Our findings suggest that each domain is composed of a tandemly arrayed cluster of a regularly repeating unit containing two sets of repeated sequences: one that is homologous to the NYS 3.4-kb Hae III Y sequences and one that does not cross-react with the 3.4-kb Hae III Y repeats. Thus, these autosomal repeated DNA domains, like their Y chromosome counterparts, consist of a complex mixture of repeated DNA elements interspersed among each other in ways that lead to defined periodicities. Although each of the three identified autosomal domains cross-reacts with 3.4-kb Hae III Y fragments purified from genomic DNA, the length periodicities and sequence content of the autosomal domains are chromosome specific. The organizational properties and chromosomal distribution of these NYS 3.4-kb Hae III homologs seem inconsistent with stochastic mechanisms of sequence diffusion between chromosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号