首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Latent nitrate reductase activity (NRA) was detected in corn (Zea mays L., Golden Jubilee) root microsome fractions. Microsome-associated NRA was stimulated up to 20-fold by Triton X-100 (octylphenoxy polyethoxyethanol) whereas soluble NRA was only increased up to 1.2-fold. Microsome-associated NRA represented up to 19% of the total root NRA. Analysis of microsomal fractions by aqueous two-phase partitioning showed that the membrane-associated NRA was localized in the second upper phase (U2). Analysis with marker enzymes indicated that the U2 fraction was plasma membrane (PM). The PM-associated NRA was not removed by washing vesicles with up to 1.0 M NACl but was solubilized from the PM with 0.05% Triton X-100. In contrast, vanadate-sensitive ATPase activity was not solubilized from the PM by treatment with 0.1% Triton X-100. The results show that a protein capable of reducing nitrate is embedded in the hydrophobic region of the PM of corn roots.Abbreviations L1 first lower phase - NR nitrate reductase - NRA nitrate-reductase activity - PM plasma membrane - T:p Triton X-100 (octylphenoxy polyethoxyethanol) to protein ratio - U2 second upper phase  相似文献   

2.
Membrane associated nitrate reductase (NR) was detected in plasma membrane (PM) fractions isolated by aqueous two-phase partitioning from barley (Hordeum vulgare L. var CM 72) roots. The PM associated NR was not removed by washing vesicles with 500 millimolar NaCl and 1 millimolar EDTA and represented up to 4% of the total root NR activity. PM associated NR was stimulated up to 20-fold by Triton X-100 whereas soluble NR was only increased 1.7-fold. The latency was a function of the solubilization of NR from the membrane. NR, solubilized from the PM fraction by Triton X-100 was inactivated by antiserum to Chlorella sorokiniana NR. Anti-NR immunoglobulin G fragments purified from the anti-NR serum inhibited NO3 uptake by more than 90% but had no effect on NO2 uptake. The inhibitory effect was only partially reversible; uptake recovered to 50% of the control after thorough rinsing of roots. Preimmune serum immunoglobulin G fragments inhibited NO3 uptake 36% but the effect was completely reversible by rinsing. Intact NR antiserum had no effect on NO3 uptake. The results present the possibility that NO3 uptake and NO3 reduction in the PM of barley roots may be related.  相似文献   

3.
4.
Plasma-membrane (PM) vesicles isolated from 6-d-old corn roots by sucrose gradient centrifugation or two-phase partitioning showed an NADH-dependent nitrate reductase (NR) activity averaging at 40 nmol per milligram PM protein per hour. This membrane-associated NR activity could not be removed from two-phase-partitioned PM vesicles by salt washing, osmotic shock treatment, sonication, or freeze-thawing to reverse vesicle sidedness. Therefore, it could not be attributed to contamination of membrane vesicles by the soluble, cytosolic NR. Plasma-membrane vesicles reduced NO 3 - in the presence of the electron donors NADH or NADPH at an activity ratio of 2.2. The NADH- and NADPH-dependent NR activities of outside-out oriented PM vesicles differed in their sensitivity toward the detergent Brij 58, leading to a latency of 65% or 29% using NADH or NADPH as electron donor, respectively. The activities of NO 3 - reduction in the presence of saturating concentrations of NADH and NADPH were additive. Furthermore, both activities were characterized by a different pH dependence with a pH optimum of 7.5 for the NADH-dependent activity and of 6.8 for the NADPH-dependent activity. The membrane-associated NAD(P)H-dependent NR activities responded to different nitrogen nutrition of plants in a manner different from the soluble forms of the enzyme. The data confirm the existence of a corn PM NR and suggest that there may be two different NO 3 - -reducing enzymes located at the PM of corn roots.Abbreviations PM Plasma membrane - NR nitrate reductase This research was supported by grants from the National Research Council of Italy (bilateral project between Italy and Germany to Z.V. and U.L.), by the Ministero dell' Università e Ricera Scientifice e Tecnologica (MURST 40%) and by the Deutsche Forschungsgemeinschaft.  相似文献   

5.
6.
The effect of supplying either nitrate or ammonium on nitrate reductase activity (NRA) was investigated in Brassica napus seedlings. In roots, nitrate reductase activity (NRA) increased as a function of nitrate content in tissues and decreased when ammonium was the sole nitrogen source. Conversely, in the shoots (comprising the cotyledons and hypocotyl), NRA was shown to be independent of nitrate content. Moreover, when ammonium was supplied as the sole nitrogen source, NRA in the shoots was surprisingly higher than under nitrate supply and increased as a function of the tissue ammonium content. Under 15 mM of exogenous ammonium, the NRA was up to 2.5-fold higher than under nitrate supply after 6 d of culture. The NR mRNA accumulation under ammonium nutrition was 2-fold higher than under nitrate supply. The activation state of NR in shoots was especially high compared with roots: from nearly 80% under nitrate supply it reached 94% under ammonium. This high NR activation state under ammonium supply could be the consequence of the slight acidification observed in the shoot tissue. The effect of ammonium on NRA was only observed in cotyledons and when more than 3 mM ammonium was supplied. No such NRA increase was evident in the roots or in foliar discs. Addition of 1 mM nitrate under ammonium nutrition halved NRA and decreased the ammonium content in shoots. Thus, this unusual NRA was restricted to seedling cotyledons when nitrate was lacking in the nitrogen source.  相似文献   

7.
Rapid modulation of nitrate reductase in pea roots   总被引:10,自引:0,他引:10  
The regulatory properties of nitrate reductase (NR; EC 1.6.6.1) in root extracts from hydroponically grown pea (Pisum sativum L. cv. Kleine Rheinländerin) plants were examined and compared with known properties of NR from spinach and pea leaves. Nitrate-reductase activity (NRA) extracted from pea roots decreased slowly when plants were kept in the dark, or when illuminated plants were detopped, with a half-time of about 4 h (= slow modulation in vivo). In contrast, the half-time for the dark-inactivation of NR from pea leaves was only 10 min. However, when root tip segments were transferred from aerobic to anaerobic conditions or vice versa, changes in NRA were as rapid as in leaves (= rapid modulation in vivo). Nitrate-reductase activity was low when extracted from roots kept in solutions flushed with air or pure oxygen, and high in nitrogen. Okadaic acid, a specific inhibitor of type-1 and type-2A protein phosphatases, totally prevented the in vivo activation by anaerobiosis of NR, indicating that rapid activation of root NR involved protein dephosphorylation. Under aerobic conditions, the low NRA in roots was also rapidly increased by incubating the roots with either uncouplers or mannose. Under these conditions, and also under anaerobiosis, ATP levels in roots were much lower than in aerated control roots. Thus, whenever ATP levels in roots were artificially decreased, NRA increased rapidly. The highly active NR extracted from anaerobic roots could be partially inactivated in vitro by preincubation of desalted root extracts with MgATP (2 mM), with a half-time of about 20 min. It was reactivated by subsequently incubating the extracts with excess AMP (2 mM). Thus, pea root NR shares many of the previously described properties of NR from spinach leaves, suggesting that the root enzyme, like the leaf enzyme, can be rapidly modulated, probably by reversible protein phosphorylation/ dephosphorylation.  相似文献   

8.
Nitrate reductase activity in chicory roots following excision   总被引:2,自引:1,他引:1  
In young chicory plantlets (Cichorium intybus L. Witloof cv.Flash), nitrate assimilation takes place mainly in the roots.Nitrate reductase activity (NRA) was measured in roots deprivedof shoot control by excision and transferred into a sucrose-containingmedium. Such a treatment resulted in a drop of about 60% ofNRA within 3 h. The level of NR protein decreased after 12 hand the level of NR-mRNA after several days. This adaptationof nitrate assimilation to excision was affected by a phosphorylation-dephosphorylationmechanism as shown by increased sensitivity to magnesium ofin vitro NRA. Okadaic acid, a serinethreonine protein phosphatasesinhibitor, enhanced the decrease of NRA. Conversely, staurosporine,a serine-threonine protein kinases inhibitor, antagonized theinhibition of NRA. This suggests that excision caused a rapidinactivation of NRA in roots of chicory by modifying the phosphorylationbalance towards a phosphorylated NR form which could enter aninactive complex. Key words: Chicory, nitrate reductase, staurosporine  相似文献   

9.
Anin situ method, derived from anin vivo method, was used to determine nitrate reductase activity (NRA) in:i) excised barley and corn shoots and excised soybean leaves during a N-depletion experiment and; ii) roots and shoots of N-depleted barley and corn seedlings during induction of nitrate, reductase (NR). Nitrate reduction, calculated from thesein situ RNA measurements, was compared with estimates of each organ's nitrate reduction in light aerobic conditions from NO 3 consumption and a15N model (Gojonet al., 1986b). Thein situ RNA of roots strongly underestimated their15NO 3 reduction. In contrast, in barley and corn shoots and in the first trifoliolate leaves from 26-day-old, soybean, thein situ NRA assay gave a fair approximation of the true NO 3 reduction rate (relative differences ranging from −14 to +32%). In young soybean leaves (from 20-day-old plants), however, thein situ NRA strongly underestimated the actual NO 3 reduction. The physiological significance of thein situ NRA assay in shoots and roots, and its value for field studies are discussed from these results.  相似文献   

10.
Nitrate assimilation in the forage legume Lotus japonicus L.   总被引:4,自引:0,他引:4  
Nitrate assimilation in the model legume, Lotus japonicus, has been investigated using a variety of approaches. A gene encoding a nitrate-inducible nitrate reductase (NR) has been cloned and appears to be the only NR gene present in the genome. Most of the nitrate reductase activity (NRA) is found in the roots and the plant assimilates the bulk of its nitrogen in that tissue. We calculate that the observed rates of nitrate reduction are compatible with the growth requirement for reduced nitrogen. The NR mRNA, NRA and the nitrate content do not show a strong diurnal rhythm in the roots and assimilation continues during the dark period although export of assimilated N to the shoot is lower during this time. In shoots, the previous low NR activity may be further inactivated during the dark either by a phosphorylation mechanism or due to reduced nitrate flux coincident with a decreased delivery through the transpiration stream. From nitrate-sufficient conditions, the removal of nitrate from the external medium causes a rapid drop in hydraulic conductivity and a decline in nitrate and reduced-N export. Root nitrate content, NR and nitrate transporter (NRT2) mRNA decline over a period of 2 days to barely detectable levels. On resupply, a coordinated increase of NR and NRT2 mRNA, and NRA is seen within hours.  相似文献   

11.
Nitrate reductase activity (NRA; NADH-nitrate reductase, E. C. 1.6.6.1) has been measured in extracts from leaves of spinach ( Spinacia oleracea L.) in response to rapid changes in illumination, or supply of CO2 or oxygen. Measured in buffers containing magnesium, NRA from leaves decreased in the dark and increased again upon illumination. It decreased also, when CO2 was removed in continuous light, and was reactivated when CO2 was added. Nitrate reductase (NR) from roots of pea ( Pisum sativum L.) was also rapidly modulated in vivo. It increased under anaerobiosis and decreased in air or pure oxygen. The half time for inactivation or reactivation in roots and leaves was 5 to 30 min.
When spinach leaves were harvested during a normal day/night cycle, extractable NRA was low during the night, and high during daytime. However, at any point of the diurnal cycle, NR could be brought to a similar maximum activity by preincubation of the desalted leaf extract with AMP and/or EDTA. Thus, the observed diurnal changes appeared to be mainly a consequence of enzyme modulation, not of protein turnover. In vivo, the reactivation of the inactivated enzyme from both leaves and roots was prevented by okadaic acid, and inhibitor of certain protein phosphatases. Artificial lowering of the ATP-levels in leaf or root tissues by anaerobiosis (dark), mannose or the uncoupler carbonyl cyanide m -chlorophenyl hydrazon (CCCP), always brought about full activation of NR.
By preincubating crude leaf or root extracts with MgATP, NR was inactivated in vitro. Partial purification from spinach leaves of two enzymes with molecular masses in the 67 kD and 100 kD range, respectively, is reported. Both participate in the ATP-dependent inactivation of NR.
Alltogether these data indicate that NR can be rapidly modulated by reversible protein phosphorylation/dephosphorylation, both in shoots and in roots.  相似文献   

12.
Anti-nitrate-reductase (NR) immunoglobulin-G (IgG) fragments inhibited nitrate uptake into Chlorella cells but had no affect on nitrite uptake. Intact anti-NR serum and preimmune IgG fragments had no affect on nitrate uptake. Membrane-associated NR was detected in plasma-membrane (PM) fractions isolated by aqueous two-phase partitioning. The PM-associated NR was not removed by sonicating PM vesicles in 500 mM NaCl and 1 mM ethylenediaminetetraacetic acid and represented up to 0.8% of the total Chlorella NR activity. The PM NR was solubilized by Triton X-100 and inactivated by Chlorella NR antiserum. Plasma-membrane NR was present in ammonium-grown Chlorella cells that completely lacked soluble NR activity. The subunit sizes of the PM and soluble NRs were 60 and 95 kDa, respectively, as determined by sodium-dodecyl-sulfate electrophoresis and western blotting.Abbreviations EDTA ethylenediaminetetraacetic acid - FAD flavine-adenine dinucleotide - IgG immunoglobulin G - NR nitrate reductase - PM plasma membrane - TX-100 Triton X-100  相似文献   

13.
Nitrate reductase (NR) activity was identified in the right-side-out and inside-out of high purity plasma membrane (PM) vesicles in maize (Zea mays L. ) roots which was obtained by aqueous two-phase partitioning. The inducement property of the NR activity in PM could be confirmed through culturing the meterial with or without nitrate component. Analysis from experimentation with external electron donor indicated that the maize root NR in PM could utilize not only NADH but also NADPH directly or indirectly as its electron donor. Treatment with Triton X-100 combining with trypsin and inhibitor demonstrated that NR protein was a trans-PM protein mainly facing the apoplastic side, being specially sensitive to trypsin. The possible function of the NR in PM is also discussed.  相似文献   

14.
15.
玉米根细胞质膜硝酸还原酶的研究   总被引:5,自引:0,他引:5  
以水双相分配分离法从玉米(Zea m aysL.)根细胞中提取的高纯度正面向外和内面向外的质膜囊泡为材料,鉴定出质膜上存在有硝酸还原酶(NR)。通过缺氮和加氮培养,证明质膜NR具有诱导性。外源电子供体实验表明,质膜NR除了能利用NADH 作为电子供体外, 也能直接或间接利用NADPH 作为电子供体。通过Triton X-100, 结合胰蛋白酶及其抑制剂实验证明了质膜NR是偏于膜外侧的跨膜蛋白,它对胰蛋白酶具有特异的敏感性。讨论了质膜NR的功能  相似文献   

16.
The relationship between the plasma membrane bound NAD(P)H-nitratereductase (NR) and a plasma membrane (PM)-bound peroxidase wasinvestigated using highly purified PM vesicles isolated fromcorn roots. The PM-bound NR activity was strongly enhanced byMnCl2 and SHAM, which stimulated peroxidase activity. Sinceboth activities, the NAD(P)H-dependent NR and the peroxidasecompete for NAD(P)H as electron donor, we propose a model inwhich a product of peroxidation is able to offer electrons tothe nitrate reductase in a more reactive form with respect toNAD(P)H.Our hypothesis was confirmed by experiments in which the effectsof inhibitors of peroxidative reactions, catalase, superoxidedismutase, and ascorbate on the PM-bound NR were studied. Resultsindicate that the putative electron donor for nitrate reductioncould be a radicalic species, possibly NAD. Furthermore, sincecytochrome c decreased the activity of the plasma membrane-boundNAD(P)Hdependent NR, cytochrome b557 might be the site of theenzyme accepting electrons from NAD. Our results indicate that the PM environment of the NR may beinvolved in the extent of the membrane associated nitrate reductionand that redox enzymes at the PM, the NAD(P)H-NR and a peroxidase-likeNADH-oxidase, can interact. Key words: Plasma membrane-bound nitrate reductase, peroxidase, Zea mays  相似文献   

17.
Nitrate reductase activity (NRA) was found in primary roots, but not in foliage of red spruce (Picea rubens Sarg.) seedlings. Nitrate induced NRA:NH4+ did not induce and slightly depressed NRA in older seedlings. Induction required 8 hours and, once induced, NRA decreased slowly in the absence of exogenous NO3. Seedlings were grown in perlite with a complete nutrient solution containing NH4+ to limit NR induction. Established seedlings were stressed with nutrient solutions at pH 3, 4, or 5 supplemented with Cl salts of Al, Cd, Pb, or Zn each at two concentrations. NRA in primary root tips was measured at 2, 14, 28, and 42 days. NRA induction was greatest at pH 3, and remained high during the period of study. NRA induction at pH 4 was lower. Metal ions suppressed NRA at pH 3 and 5, but enhanced NRA at pH 4. It is concluded that acidity and soluble metals in the root environment of red spruce are unlikely to be important factors in nitrogen transformations in red spruce roots.  相似文献   

18.
硝酸盐对硝酸还原酶活性的诱导及硝酸还原酶基因的克隆   总被引:16,自引:0,他引:16  
硝酸盐在植物体内的积累过多已成为影响蔬菜品质并影响人类健康的重要因素。硝酸还原酶(NR)是硝酸盐代谢中的关键酶,提高其活性有利于硝酸盐的降解。为了解植物不同组织中NR的活性,用活体测定法检测了经50mmol/L的KNO3诱导不同时间后的油菜、豌豆和番茄幼苗根茎叶中NR活性,同时为了明确外源诱导剂浓度与植物体内NR活性的关系,检测了经不同浓度KNO3诱导2h后的矮脚黄、抗热605、小白菜和番茄叶片中的NRA。结果表明,不同植物组织NR活性有很大差异,叶中NR活性较高,根其次,茎最低;不同植物的NR活性随诱导时间呈不同的变化趋势,相同植物不同组织的NR活性变化趋势相似;不同植物叶片NRA为最高时KNO3浓度不同。用30mmol/L的KNO3诱导番茄苗2h后,从番茄根和叶中提取总RNA,用RT-PCR方法获得NR cDNA,全长2736bp,编码911个氨基酸。为进一步利用该基因提高植物对硝酸盐的降解能力打下基础。  相似文献   

19.
Studies were conducted with 9 to 12 day-old soybean (Glycine max [L.] Merr. cv. Williams) seedlings to determine the contribution of roots to whole plant NO(3) (-) reduction. Using an in vivo -NO(3) (-) nitrate reductase (NR) assay (no exogenous NO(3) (-) added to incubation medium) developed for roots, the roots accounted for approximately 30% of whole plant nitrate reductase activity (NRA) of plants grown on 15 mm NO(3) (-).Nitrogen analyses of xylem exudate showed that 53 to 66% of the total-N was as reduced-N, depending on the time of day of exudate collection. These observations supported enzyme data that suggested roots were contributing significantly to whole plant NO(3) (-) reduction. In short-term feeding studies using (15)N-NO(3) (-) significant and increasing atom percent (15)N excess was found in the reduced-N fraction of xylem exudate at 1.5 and 3 hours after feeding, respectively, which verified that roots were capable of reducing NO(3) (-).Estimated reduced-N accumulation by plants based on in vivo -NO(3) (-) NR assays of all plant parts substantially over-estimated actual reduced-N accumulation by the plants. Thus, the in vivo NR assay cannot be used to accurately estimate reduced-N accumulation but still serves as a useful assay for relative differences in treatment conditions.  相似文献   

20.
There is a diurnal variation of nitrate reductase activity (NRA) measured in vivo in barley roots (Hordeum vulgare cv. Midas). In intact plants receiving a 16-hour photoperiod, NRA increases when the light is switched on, reaches a maximum value after 7 to 8 hours, and thereafter declines. Shoot removal (detopping) at the start of the photoperiod prevents the rise in NRA; detopping after 5 hours light leads to a rapid fall in NRA. The inclusion of 10 millimolar malate in the external medium causes a rise in NRA in plants detopped at the beginning of the photoperiod and thus seems to substitute partially for the illuminated shoot. Oxalate, fumarate, and tartrate did not have this effect. Preincubation of the roots of intact plants with 10 millimolar malate for 3 hours, prior to detopping, causes an increase in the flux of amino acids into the xylem sap of detopped roots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号