共查询到20条相似文献,搜索用时 15 毫秒
1.
Suzuki T Kurahashi H Ichinose H 《Biochemical and biophysical research communications》2004,315(2):389-396
Neurotrophins are essential for the development and survival of catecholaminergic neurons. However, the critical pathway for expression of the tyrosine hydroxylase (TH) gene induced by neurotrophin is still unclear. Here we found that Ras/MEK pathway is required for NGF-induced expression of the TH gene in PC12D cells. Induction of TH mRNA by NGF was abolished by pretreatment of the cells with U0126, an inhibitor for MEK1/2, but not with inhibitors for p38 MAPK, PI3K, and PKA. U0126 inhibited TH promoter activity at the same concentration as it acted on ERK1/2 phosphorylation. A dominant-negative form of Ras suppressed the NGF-induced activation of the TH reporter gene, and transient transfection of cells with wild-type Ras and an active form of MEK1 increased the TH promoter activity. The reporter assay also demonstrated that the Ras/MEK pathway acted on both the AP-1-binding motif and the cAMP-responsive element in the TH promoter. 相似文献
2.
3.
Chocarro-Calvo A Zaballos MA Santisteban P García-Jiménez C 《Molecular endocrinology (Baltimore, Md.)》2012,26(3):471-480
Modulation of MAPK signaling duration by cAMP defines its physiological output by driving cells toward proliferation or differentiation. Understanding how the kinetics of MAPK signaling are integrated with other cellular signals is a key issue in development and cancer. Here we show that dopamine and cAMP-regulated neuronal phosphoprotein, 32 kDa (DARPP-32), a protein required for thyroid cell differentiation, determines whether MAPK/ERK activation is sustained or transient. Serum, a stimulus that activates MAPK signaling and does not independently increase DARPP-32 levels results in transient activation of the MAPK pathway. By contrast, TSH + (IGF-I) activate MAPK signaling but also independently increase DARPP-32 levels. Our results are consistent with a model in which maintenance of DARPP-32 expression by TSH + IGF-I leads to sustained MAPK signaling. Moreover, the sensitivity of MAPK/ERK signaling in thyroid cells is lost when de novo DARPP-32 expression is blocked by small interfering RNA. Because both DARPP-32 levels and function as inhibitor of protein phosphatase 1, a key inhibitor of MAPK kinase activity, are governed by cAMP/protein kinase A, the results may explain why in thyroid cells cAMP signaling downstream from TSH controls the duration of MAPK pathway activity. Thus, fine-tuning of DARPP-32 levels leads to changes in the kinetics or sensitivity of MAPK/ERK signaling. Given the implications of MAPK signaling in thyroid cancer and the loss of DARPP-32 in tumor and transformed thyroid cells, DARPP-32 may represent a key therapeutic target. 相似文献
4.
The Ras/Raf signaling pathway is required for progression of mouse embryos through the two-cell stage. 总被引:2,自引:0,他引:2 下载免费PDF全文
We have used microinjection of antisense oligonucleotides, monoclonal antibody, and the dominant negative Ras N-17 mutant to interfere with Ras expression and function in mouse oocytes and early embryos. Microinjection of either ras antisense oligonucleotides or anti-Ras monoclonal antibody Y13-259 did not affect normal progression of oocytes through meiosis and arrest at metaphase II. However, microinjection of fertilized eggs with constructs expressing Ras N-17 inhibited subsequent development through the two-cell stage. The inhibitory effect of Ras N-17 was overcome by simultaneous injection of a plasmid expressing an active raf oncogene, indicating that it resulted from interference with the Ras/Raf signaling pathway. In contrast to the inhibition of two-cell embryo development resulting from microinjection of pronuclear stage eggs, microinjection of late two-cell embryos with Ras N-17 expression constructs did not affect subsequent cleavages and development to morulae and blastocysts. It thus appears that the Ras/Raf signaling pathway, presumably activated by autocrine growth factor stimulation, is specifically required at the two-cell stage, which is the time of transition between maternal and embryonic gene expression in mouse embryos. 相似文献
5.
Smedberg JL Smith ER Capo-Chichi CD Frolov A Yang DH Godwin AK Xu XX 《The Journal of biological chemistry》2002,277(43):40911-40918
The formation of extraembryonic endoderm is one of the earliest steps in the differentiation of pluripotent cells of the inner cell mass during the early stages of embryonic development. The primitive endoderm cells and the derived parietal and visceral endoderm cells gain the capacity to produce collagen IV and laminin. The deposition of these components results in the formation of basement membrane and epithelium of the endoderm, with polarized cells covering the inner surface of the blastocoels. We used retinoic acid-induced endoderm differentiation of stem cell-like F9 embryonic carcinoma cells to study the role of the Ras pathway and its regulation in the formation of the visceral endoderm. Upon endoderm differentiation of F9 cells induced by retinoic acid, c-Fos expression, the downstream target of the Ras pathway, is suppressed by uncoupling Elk-1 phosphorylation/activation to MAPK activity. However, attachment to matrix gel greatly enhances the activation of MAPK in endoderm cells but not in undifferentiated F9 cells. Enhanced MAPK activation as a result of contact with basement membrane is able to compensate for reduced Elk-1 phosphorylation and c-Fos expression. We conclude that endoderm differentiation renders the activation of the Ras pathway basement membrane dependent, contributing to the epithelial organization of the visceral endoderm. 相似文献
6.
Ren Y Cheng L Rong Z Li Z Li Y Li H Wang Z Chang Z 《Biochemical and biophysical research communications》2006,347(4):988-993
To study the mechanism of the inhibitory effects of Sef (similar expression to fgf genes) on Ras/mitogen-activated protein kinase (MAPK) signaling pathway, we observed cellular localization of this protein. Immunofluorescent staining results show that Sef locates in the vesicles of the cytoplasm without bFGF treatment but co-localizes with Ras on the plasma membrane (PM) in response to bFGF stimulation. The coimmunoprecipitation assay demonstrates that Sef interacts with Ras or RasG12V, respectively. We observed that Sef inhibited FGF induced, but not RasG12V mediated, signal transduction. We propose that Sef interacted with Ras in the inhibition of Ras/MAPK signaling pathway. 相似文献
7.
Wu C Ramirez A Cui B Ding J Delcroix JD Valletta JS Liu JJ Yang Y Chu S Mobley WC 《Traffic (Copenhagen, Denmark)》2007,8(11):1503-1520
Rap1 transduces nerve growth factor (NGF)/tyrosine receptor kinase A (TrkA) signaling in early endosomes, leading to sustained activation of the p44/p42 mitogen-activated protein kinases (MAPK1/2). However, the mechanisms by which NGF, TrkA and Rap1 are trafficked to early endosomes are poorly defined. We investigated trafficking and signaling of NGF, TrkA and Rap1 in PC12 cells and in cultured rat dorsal root ganglion (DRG) neurons. Herein, we show a role for both microtubule- and dynein-based transport in NGF signaling through MAPK1/2. NGF treatment resulted in trafficking of NGF, TrkA and Rap1 to early endosomes in the perinuclear region of PC12 cells where sustained activation of MAPK1/2 was observed. Disruption of microtubules with nocodazole in PC12 cells had no effect on the activation of TrkA and Ras. However, it disrupted intracellular trafficking of TrkA and Rap1. Moreover, NGF-induced activation of Rap1 and sustained activation of MAPK1/2 were markedly suppressed. Inhibition of dynein activity through overexpression of dynamitin (p50) blocked trafficking of Rap1 and the sustained phase of MAPK1/2 activation in PC12 cells. Remarkably, even in the continued presence of NGF, mature DRG neurons that overexpressed p50 became atrophic and most (>80%) developing DRG neurons died. Dynein- and microtubule-based transport is thus necessary for TrkA signaling to Rap1 and MAPK1/2. 相似文献
8.
9.
Miao H Wei BR Peehl DM Li Q Alexandrou T Schelling JR Rhim JS Sedor JR Burnett E Wang B 《Nature cell biology》2001,3(5):527-530
Interactions between Eph receptor tyrosine kinases (RTKs) and membrane-anchored ephrin ligands critically regulate axon pathfinding and development of the cardiovascular system, as well as migration of neural cells. Similar to other RTKs, ligand-activated Eph kinases recruit multiple signalling and adaptor proteins, several of which are involved in growth regulation. However, in contrast to other RTKs, activation of Eph receptors fails to promote cell proliferation or to transform rodent fibroblasts, indicating that Eph kinases may initiate signalling pathways that are distinct from those transmitted by other RTKs. Here we show that stimulation of endogenous EphA kinases with ephrin-A1 potently inhibits the Ras/MAPK cascade in a range of cell types, and attenuates activation of mitogen-activated protein kinase (MAPK) by receptors for platelet-derived growth factor (PDGF), epidermal growth factor (EGF) and vascular endothelial growth factor (VEGF). In prostatic epithelial cells and endothelial cells, but not fibroblasts, treatment with ephrin-A1 inhibits cell proliferation. Our results identify EphA kinases as negative regulators of the Ras/MAPK pathway that exert anti-mitogenic functions in a cell-type-specific manner. 相似文献
10.
Objectives
To better understand the molecular mechanisms of regeneration and explore the potential signalling pathways as therapeutic targets for heart attacks.Results
After treatment with the MEK inhibitor AZD6244 upon cardiac injury, the core members in MAPK/ERK signalling—mek and erk—demonstrate elevated expression, and these proteins are deposited at the injury site in zebrafish. pERK is also induced in non-cardiomyocytes near the injury site. Furthermore, the induced expression of a dominant-negative form of MEK1 inhibits zebrafish cardiac regeneration, characterized by increased cardiac fibrosis (a hallmark of regenerative failure), reduced or delayed production of regenerative myocardium, and migration of FLI1+ endothelial cells, without direct inhibition of cardiomyocyte proliferation.Conclusion
Appropriate activation of MAPK/ERK signalling is essential for zebrafish cardiac regeneration.11.
In the development of Drosophila, the activation of the EGFr pathway elicits different cellular responses at different times and in different tissues. A variety of approaches have been used to identify the mechanisms that confer this response specificity. We have analysed the specification of bract cells in Drosophila legs. We observed that mechanosensory bristles induced bract fate in neighbouring epidermal cells, and that the RAS/MAPK pathway mediated this induction. We have identified Spitz and EGFr as the ligand and the receptor of this signalling, and by ubiquitous expression of constitutively activated forms of components of the pathway we have found that the acquisition of bract fate is temporally and spatially restricted. We have also studied the role of the poxn gene in the inhibition of bract induction in chemosensory bristles. 相似文献
12.
13.
Sprouty (Spry) inhibits signalling by receptor tyrosine kinases; however, the molecular mechanism underlying this function has not been defined. Here we show that after stimulation by growth factors Spry1 and Spry2 translocate to the plasma membrane and become phosphorylated on a conserved tyrosine. Next, they bind to the adaptor protein Grb2 and inhibit the recruitment of the Grb2-Sos complex either to the fibroblast growth factor receptor (FGFR) docking adaptor protein FRS2 or to Shp2. Membrane translocation of Spry is necessary for its phosphorylation, which is essential for its inhibitor activity. A tyrosine-phosphorylated octapeptide derived from mouse Spry2 inhibits Grb2 from binding FRS2, Shp2 or mouse Spry2 in vitro and blocks activation of the extracellular-signal-regulated kinase (ERK) in cells stimulated by growth factor. A non-phosphorylated Spry mutant cannot bind Grb2 and acts as a dominant negative, inducing prolonged activation of ERK in response to FGF and promoting the FGF-induced outgrowth of neurites in PC12 cells. Our findings suggest that Spry functions in a negative feedback mechanism in which its inhibitor activity is controlled rapidly and reversibly by post-translational mechanisms. 相似文献
14.
The extracellular signal-regulated kinase pathway is required for activation-induced cell death of T cells 总被引:8,自引:0,他引:8
van den Brink MR Kapeller R Pratt JC Chang JH Burakoff SJ 《The Journal of biological chemistry》1999,274(16):11178-11185
T cells can undergo activation-induced cell death (AICD) upon stimulation of the T cell receptor-CD3 complex. We found that the extracellular signal-regulated kinase (ERK) pathway is activated during AICD. Transient transfection of a dominant interfering mutant of mitogen-activated/extracellular signal-regulated receptor protein kinase kinase (MEK1) demonstrated that down-regulation of the ERK pathway inhibited FasL expression during AICD, whereas activation of the ERK pathway with a constitutively active MEK1 resulted in increased expression of FasL. We also found that pretreatment with the specific MEK1 inhibitor PD98059 prevented the induction of FasL expression during AICD and inhibited AICD. However, PD98059 had no effect on other apoptotic stimuli. We found only very weak ERK activity during Fas-mediated apoptosis (induced by Fas cross-linking). Furthermore, preincubation with the MEK1 inhibitor did not inhibit Fas-mediated apoptosis. Finally, we also demonstrated that pretreatment with the MEK1 inhibitor could delay and decrease the expression of the orphan nuclear steroid receptor Nur77, which has been shown to be essential for AICD. In conclusion, this study demonstrates that the ERK pathway is required for AICD of T cells and appears to regulate the induction of Nur77 and FasL expression during AICD. 相似文献
15.
Thrombin-stimulated cell proliferation mediated through activation of Ras/Raf/MEK/MAPK pathway in canine cultured tracheal smooth muscle cells. 总被引:7,自引:0,他引:7
Chih-Chung Lin Ming-Hwang Shyr Chin-Sung Chien Chuan-Chwan Wang Chi-Tso Chiu Li-Der Hsiao Chuen-Mao Yang 《Cellular signalling》2002,14(3):265-275
The elevated level of thrombin has been detected in the airway fluids of asthmatic patients and shown to stimulate cell proliferation in tracheal smooth muscle cells (TSMCs). However, the implication of thrombin in the cell proliferation was not completely understood. In this study, thrombin stimulated [3H]thymidine incorporation and p42/p44 mitogen-activated protein kinase (MAPK) phosphorylation in a time- and concentration-dependent manner in TSMCs. Pretreatment of TSMCs with pertussis toxin (PTX) significantly inhibited [3H]thymidine incorporation and phosphorylation of MAPK induced by thrombin. These responses were attenuated by tyrosine kinase inhibitors genistein and herbimycin A, phosphatidyl inositide (PI)-phospholipase C (PLC) inhibitor U73122, protein kinase C inhibitor GF109203X, removal of Ca2+ by addition of BAPTA/AM plus EGTA, PI 3-kinase inhibitors wortmannin and LY294002, and inhibitor of MEK1/2 PD98059. Furthermore, overexpression of dominant negative mutants, H-Ras-15A and Raf-N4, significantly suppressed p42/p44 MAPK activation induced by thrombin and PDGF-BB, indicating that Ras and Raf may be required for activation of these kinases. These results conclude that the mitogenic effect of thrombin was mediated through the activation of Ras/Raf/MEK/MAPK pathway. Thrombin-mediated MAPK activation was modulated by PI-PLC, Ca2+, PKC, tyrosine kinase, and PI 3-kinase associated with cell proliferation in canine cultured TSMCs. 相似文献
16.
Epidermal growth factor induction of c-jun expression requires ATF1 and MEF2 sites in the c-jun promoter. We find that activation of the c-jun promoter through the ATF1 site requires phosphorylation of ATF1 at serine 63. A serine 63 to alanine mutation of ATF1 acts to block epidermal growth factor (EGF) induction of a transfected c-jun gene. ATF1 can be phosphorylated by mitogen- and stress-activated protein kinase 1 (MSK1), which is activated by EGF and ERK1/2. Kinase-dead MSK1 mutants blocked EGF induction of a transfected c-jun gene suggesting that MSK1 or a similar family member is required for induced c-jun expression. Use of the MEK1 inhibitor U0126 and dominant negative MEK1 further showed that MSK1 activation and c-jun induction require the ERK pathway. In contrast, a JNK inhibitor blocked EGF induction of c-jun expression but not ATF1 phosphorylation. These results show that the two MAPK pathways, ERK and JNK, are required for EGF-induced c-jun expression and that the ERK pathway acts through downstream phosphorylation of ATF1. 相似文献
17.
18.
Although tyrosine-azobenzenearsonate (ABA-Tyr) is not degraded by proteolytic enzymes, its presentation by accessory cells is inhibited by lysosomotropic agents such as chloroquine. Presentation of ABA-poly-L-glutamic, alanine, tyrosine (ABA-GAT) is similarly inhibited by chloroquine, but in contrast to ABA-Tyr it is also inhibited by leupeptin. Finally formaldehyde fixation of accessory cells after pulsing with ABA-Tyr but not before permits successful stimulation of ABA-specific hybridoma cells. These results suggest that a lysosomal pathway but not digestion is necessary for the association of ABA-Tyr and la molecules for presentation. 相似文献
19.
Heissig B Lund LR Akiyama H Ohki M Morita Y Rømer J Nakauchi H Okumura K Ogawa H Werb Z Danø K Hattori K 《Cell Stem Cell》2007,1(6):658-670
Hematopoietic stem cells within the bone marrow exist in a quiescent state. They can differentiate and proliferate in response to hematopoietic stress (e.g., myelosuppression), thereby ensuring a well-regulated supply of mature and immature hematopoietic cells within the circulation. However, little is known about how this stress response is coordinated. Here, we show that plasminogen (Plg), a classical fibrinolytic factor, is a key player in controlling this stress response. Deletion of Plg in mice prevented hematopoietic stem cells from entering the cell cycle and undergoing multilineage differentiation after myelosuppression, leading to the death of the mice. Activation of Plg by administration of tissue-type plasminogen activator promoted matrix metalloproteinase-mediated release of Kit ligand from stromal cells, thereby promoting hematopoietic progenitor cell proliferation and differentiation. Thus, activation of the fibrinolytic cascade is a critical step in regulating the hematopoietic stress response. 相似文献
20.
Phorbol 12-myristate 13-acetate (PMA)-induced differentiation of human erythroleukemic K562 cells is characterized by growth arrest, morphological change, and expression of megakaryocyte-specific proteins. We examined the possible involvement of cell cycle regulators with PMA-induced growth arrest and megakaryocytic differentiation of K562 cells. The concentrations of cyclin D1 and p21Waf1/Cip1 were dramatically increased, whereas those of cyclin B1 and cdc2 were decreased, by PMA treatment. The concentrations of most cyclin-dependent kinases (Cdk2, Cdk4, and Cdk6), however, were unchanged by PMA treatment. PD98059, a specific inhibitor of MEK1, partially prevented the increase in cyclin D1 caused by PMA and fully reversed the down-regulation of cyclin B1 protein seen in response to PMA treatment. Thus, it is demonstrated here that the PMA-mediated changes of cyclin D1 and B1 are the result of a persistent increase in extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) activity. 相似文献