首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Chronic obstructive pulmonary disease (COPD) is a major global health problem and is predicted to become the third most common cause of death by 2020. Apart from the important preventive steps of smoking cessation, there are no other specific treatments for COPD that are as effective in reversing the condition, and therefore there is a need to understand the pathophysiological mechanisms that could lead to new therapeutic strategies. The development of experimental models will help to dissect these mechanisms at the cellular and molecular level. COPD is a disease characterized by progressive airflow obstruction of the peripheral airways, associated with lung inflammation, emphysema and mucus hypersecretion. Different approaches to mimic COPD have been developed but are limited in comparison to models of allergic asthma. COPD models usually do not mimic the major features of human COPD and are commonly based on the induction of COPD-like lesions in the lungs and airways using noxious inhalants such as tobacco smoke, nitrogen dioxide, or sulfur dioxide. Depending on the duration and intensity of exposure, these noxious stimuli induce signs of chronic inflammation and airway remodelling. Emphysema can be achieved by combining such exposure with instillation of tissue-degrading enzymes. Other approaches are based on genetically-targeted mice which develop COPD-like lesions with emphysema, and such mice provide deep insights into pathophysiological mechanisms. Future approaches should aim to mimic irreversible airflow obstruction, associated with cough and sputum production, with the possibility of inducing exacerbations.  相似文献   

2.
Proteinases in chronic obstructive pulmonary disease   总被引:10,自引:0,他引:10  
Chronic obstructive pulmonary disease (COPD) is a major health problem worldwide, and we have little specific therapy to offer these patients. One potential strategy to limit loss of lung function in COPD would be to inhibit matrix-degrading proteinases. Several serine proteinases and matrix metalloproteinases are expressed in association with COPD in humans. Application of gene-targeted macrophage elastase and neutrophil elastase to a mouse model of cigarette-smoke-induced emphysema has uncovered roles for these proteinases in airspace enlargement, and has identified many interactions between these proteolytic systems.  相似文献   

3.
The mechanisms involved in the genesis of chronic obstructive pulmonary disease (COPD) are poorly defined. This area is complicated and difficult to model because COPD consists of four separate anatomic lesions (emphysema, small airway remodeling, pulmonary hypertension, and chronic bronchitis) and a functional lesion, acute exacerbation; moreover, the disease in humans develops over decades. This review discusses the various animal models that have been used to attempt to recreate human COPD and the advantages and disadvantages of each. None of the models reproduces the exact changes seen in humans, but cigarette smoke-induced disease appears to come the closest, and genetically modified animals also, in some instances, shed light on processes that appear to play a role.  相似文献   

4.
5.
6.
The genetic component was suggested to contribute to the development of chronic obstructive pulmonary disease (COPD), a major and growing public health burden. The present review aims to characterize the evidence that gene polymorphisms contribute to the aetiology of COPD and related traits, and explore the potential relationship between certain gene polymorphisms and COPD susceptibility, severity, lung function, phenotypes, or drug effects, even though limited results from related studies lacked consistency. Most of these studies were association studies, rather than confirmatory studies. More large‐sized and strictly controlled studies are needed to prove the relationship between gene polymorphisms and the reviewed traits. More importantly, prospective confirmatory studies beyond initial association studies will be necessary to evaluate true relationships between gene polymorphisms and COPD and help individualized treatment for patients with COPD.  相似文献   

7.
Chronic obstructive pulmonary disease (COPD) is a significant cause of global morbidity and mortality. Previous studies have shown that COPD aggregates in families, suggesting a genetic predisposition to airflow obstruction. Many candidate genes have been assessed, but the data are often conflicting. We review the genetic factors that predispose smokers to COPD and highlight the future role of genomic scans in identifying novel susceptibility genes.  相似文献   

8.
Plasma lipoprotein fractions have been assessed in 29 patients with chronic obstructive pulmonary disease (COPD), and compared with non-COPD subjects. Triglycerides were significantly lower in COPD females only, the other parameters being almost identical. Thus, the atherosclerosis index of plasma lipoproteins in COPD did not differ almost at all from that of non-COPD subjects, demonstrating that the low prevalence of angina and/or myocardial infarction in COPD patients is not only a consequence of reduced coronary atherosclerosis.  相似文献   

9.
Chronic obstructive pulmonary disease (COPD) is a significant cause of global morbidity and mortality. Previous studies have shown that COPD aggregates in families, suggesting a genetic predisposition to airflow obstruction. Many candidate genes have been assessed, but the data are often conflicting. We review the genetic factors that predispose smokers to COPD and highlight the future role of genomic scans in identifying novel susceptibility genes.  相似文献   

10.
Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory lung disease associated with progressive airflow obstruction. Tobacco smoking is the main risk factor worldwide. In contrast to asthma, anti-inflammatory therapies are rather ineffective in improving chronic symptoms and reducing inflammation, lung function decline, and airway remodeling. Specific drugs that are directed against the remodeling and chronic inflammation, thereby preventing lung tissue damage and progressive lung function decline, must be developed. Experimental models and expression studies suggest that anti-vascular endothelial growth factor (VEGF) receptor strategies may be of use in patients with emphysema, whereas anti-HER1-directed strategies may be more useful in patients with pulmonary mucus hypersecretion, as seen in chronic bronchitis and asthma. Growth factors and cytokines including VEGF, fibroblast growth factors, transforming growth factor-β, tumor necrosis factor-α, CXCL1, CXCL8, and CCL2, and signal transduction proteins such as mitogen-activated protein kinase p38 and nuclear factor-⦊B, seem to be important pathogenetic molecules in COPD. Specific antagonists for these proteins may be effective for different inflammatory diseases. However, their efficacy for COPD therapy has not yet been demonstrated. Finally, other drugs such as retinoic acids may provide restoration of lung tissue structure. Such approaches, however, must await the first results of growth factor or cytokine antagonist therapy in chronic lung diseases.  相似文献   

11.
Chronic obstructive pulmonary disease (COPD) is a complex disease with both environmental and genetic determinants, the most important of which is cigarette smoking. There is marked heterogeneity in the development of COPD among persons with similar cigarette smoking histories, which is likely partially explained by genetic variation. Genomic approaches such as genomewide association studies and gene expression studies have been used to discover genes and molecular pathways involved in COPD pathogenesis; however, these “first generation” omics studies have limitations. Integrative genomic studies are emerging which can combine genomic datasets to further examine the molecular underpinnings of COPD. Future research in COPD genetics will likely use network-based approaches to integrate multiple genomic data types in order to model the complex molecular interactions involved in COPD pathogenesis. This article reviews the genomic research to date and offers a vision for the future of integrative genomic research in COPD.  相似文献   

12.
13.

Background

Chronic obstructive pulmonary disease (COPD) is a progressive and irreversible chronic inflammatory disease of the lung. The nature of the immune reaction in COPD raises the possibility that IL-17 and related cytokines may contribute to this disorder. This study analyzed the expression of IL-17A and IL-17F as well as the phenotype of cells producing them in bronchial biopsies from COPD patients.

Methods

Bronchoscopic biopsies of the airway were obtained from 16 COPD subjects (GOLD stage 1-4) and 15 control subjects. Paraffin sections were used for the investigation of IL-17A and IL-17F expression in the airways by immunohistochemistry, and frozen sections were used for the immunofluorescence double staining of IL-17A or IL-17F paired with CD4 or CD8. In order to confirm the expression of IL-17A and IL-17F at the mRNA level, a quantitative RT-PCR was performed on the total mRNA extracted from entire section or CD8 positive cells selected by laser capture microdissection.

Results

IL-17F immunoreactivity was significantly higher in the bronchial biopsies of COPD patients compared to control subjects (P < 0.0001). In the submucosa, the absolute number of both IL-17A and IL-17F positive cells was higher in COPD patients (P < 0.0001). After adjusting for the total number of cells in the submucosa, we still found that more cells were positive for both IL-17A (P < 0.0001) and IL-17F (P < 0.0001) in COPD patients compared to controls. The mRNA expression of IL-17A and IL-17F in airways of COPD patients was confirmed by RT-PCR. The expression of IL-17A and IL-17F was co-localized with not only CD4 but also CD8, which was further confirmed by RT-PCR on laser capture microdissection selected CD8 positive cells.

Conclusion

These findings support the notion that Th17 cytokines could play important roles in the pathogenesis of COPD, raising the possibility of using this mechanism as the basis for novel therapeutic approaches.  相似文献   

14.

Background

Chronic bronchitis (CB) is one of the classic phenotypes of COPD. The aims of our study were to investigate genetic variants associated with COPD subjects with CB relative to smokers with normal spirometry, and to assess for genetic differences between subjects with CB and without CB within the COPD population.

Methods

We analyzed data from current and former smokers from three cohorts: the COPDGene Study; GenKOLS (Bergen, Norway); and the Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints (ECLIPSE). CB was defined as having a cough productive of phlegm on most days for at least 3 consecutive months per year for at least 2 consecutive years. CB COPD cases were defined as having both CB and at least moderate COPD based on spirometry. Our primary analysis used smokers with normal spirometry as controls; secondary analysis was performed using COPD subjects without CB as controls. Genotyping was performed on Illumina platforms; results were summarized using fixed-effect meta-analysis.

Results

For CB COPD relative to smoking controls, we identified a new genome-wide significant locus on chromosome 11p15.5 (rs34391416, OR = 1.93, P = 4.99 × 10-8) as well as significant associations of known COPD SNPs within FAM13A. In addition, a GWAS of CB relative to those without CB within COPD subjects showed suggestive evidence for association on 1q23.3 (rs114931935, OR = 1.88, P = 4.99 × 10-7).

Conclusions

We found genome-wide significant associations with CB COPD on 4q22.1 (FAM13A) and 11p15.5 (EFCAB4A, CHID1 and AP2A2), and a locus associated with CB within COPD subjects on 1q23.3 (RPL31P11 and ATF6). This study provides further evidence that genetic variants may contribute to phenotypic heterogeneity of COPD.

Trial registration

ClinicalTrials.gov NCT00608764, NCT00292552

Electronic supplementary material

The online version of this article (doi:10.1186/s12931-014-0113-2) contains supplementary material, which is available to authorized users.  相似文献   

15.
It has become increasingly recognized that skeletal muscle dysfunction is common in patients with chronic obstructive pulmonary disease (COPD). Muscle strength and endurance are decreased, whereas muscle fatigability is increased. There is a reduced proportion of type I fibers and an increase in type II fibers. Muscle atrophy occurs with a reduction in fiber cross-sectional area. Oxidative enzyme activity is decreased, and measurement of muscle bioenergetics during exercise reveals a reduced aerobic capacity. Deconditioning is probably very important mechanistically. Other mechanisms that may be of varying importance in individual patients include chronic hypercapnia and/or hypoxia, nutritional depletion, steroid usage, and oxidative stress. Potential therapies include exercise training, oxygen supplementation, nutritional repletion, and administration of anabolic hormones.  相似文献   

16.
17.
18.
19.
To characterize circadian rest-activity rhythm in COPD, 26 cases (66.9 ± 8.5y) and 15 controls (63.0 ± 10.7y) were assessed by actimetry. Rhythm fragmentation was measured by intradaily variability (IV), while synchronization to the 24-h light-dark cycle was measured by interdaily stability (IS). The average activity during the least active 5-h period (L5) and the average activity during the most active 10-h period (M10) were used to calculate the relative amplitude mean [RAm = (M10-L5)/(M10+L5)]. COPD patients presented higher IVm (0.242 ± 0.097 vs 0.182 ± 0.063) and L5 (36.849 ± 18.239 vs 19.888 ± 12.268) and lower RAm (0.696 ± 0.134 vs 0.833 ± 0.093) than controls. Future studies on the effects of chronotherapy measures in COPD are warranted.  相似文献   

20.
Asthma and chronic obstructive pulmonary disease (COPD) are both obstructive airway diseases that involve chronic inflammation of the respiratory tract, but the type of inflammation is markedly different between these diseases, with different patterns of inflammatory cells and mediators being involved. As described in this Review, these inflammatory profiles are largely determined by the involvement of different immune cells, which orchestrate the recruitment and activation of inflammatory cells that drive the distinct patterns of structural changes in these diseases. However, it is now becoming clear that the distinction between these diseases becomes blurred in patients with severe asthma, in asthmatic subjects who smoke and during acute exacerbations. This has important implications for the development of new therapies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号