首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Germline mutations in the tumor suppressor genes BRCA2 and TP53 significantly influence human cancer risk, and cancers from humans who inherit one mutant allele for BRCA2 or TP53 often display loss of the wildtype allele. In addition, BRCA2-associated cancers often exhibit mutations in TP53. To determine the relationship between germline heterozygous mutation (haploinsufficiency) and somatic loss of heterozygosity (LOH) for BRCA2 and TP53 in carcinogenesis, we analyzed zebrafish with heritable mutations in these two genes. Tumor-bearing zebrafish were examined by histology, and normal and neoplastic tissues were collected by laser-capture microdissection for LOH analyses. Zebrafish on a heterozygous tp53M214K background had a high incidence of malignant tumors. The brca2Q658X mutation status determined both the incidence of LOH and the malignant tumor phenotype. LOH for tp53 occurred in the majority of malignant tumors from brca2 wildtype and heterozygous mutant zebrafish, and most of these were malignant peripheral nerve sheath tumors. Malignant tumors in zebrafish with heterozygous mutations in both brca2 and tp53 frequently displayed LOH for both genes. In contrast, LOH for tp53 was uncommon in malignant tumors from brca2 homozygotes, and these tumors were primarily undifferentiated sarcomas. Thus, carcinogenesis in zebrafish with combined mutations in tp53 and brca2 typically requires biallelic mutation or loss of at least one of these genes, and the specific combination of inherited mutations influences the development of LOH and the tumor phenotype. These results provide insight into cancer development associated with heritable BRCA2 and TP53 mutations.  相似文献   

2.

Background

To investigate the dynamics of inter- and intratumoral molecular alterations during tumor progression in recurrent gliomas.

Methodology/Principal Findings

To address intertumoral heterogeneity we investigated non- microdissected tumor tissue of 106 gliomas representing 51 recurrent tumors. To address intratumoral heterogeneity a set of 16 gliomas representing 7 tumor pairs with at least one recurrence, and 4 single mixed gliomas were investigated by microdissection of distinct oligodendroglial and astrocytic tumor components. All tumors and tumor components were analyzed for allelic loss of 1p/19q (LOH 1p/19q), for TP53- mutations and for R132 mutations in the IDH1 gene. The investigation of non- microdissected tumor tissue revealed clonality in 75% (38/51). Aberrant molecular alterations upon recurrence were detected in 25% (13/51). 64% (9/14) of these were novel and associated with tumor progression. Loss of previously detected alterations was observed in 36% (5/14). One tumor pair (1/14; 7%) was significant for both. Intratumoral clonality was detected in 57% (4/7) of the microdissected tumor pairs and in 75% (3/4) of single microdissected tumors. 43% (3/7) of tumor pairs and one single tumor (25%) revealed intratumoral heterogeneity. While intratumoral heterogeneity affected both the TP53- mutational status and the LOH1p/19q status, all tumors with intratumoral heterogeneity shared the R132 IDH1- mutation as a common feature in both their microdissected components.

Conclusions/Significance

The majority of recurrent gliomas are of monoclonal origin. However, the detection of divertive tumor cell clones in morphological distinct tumor components sharing IDH1- mutations as early event may provide insight into the tumorigenesis of true mixed gliomas.  相似文献   

3.
4.
Neurofibromatosis type 1 (NF1) is an autosomal dominant disease that predisposes individuals to develop benign neurofibromas and malignant peripheral nerve sheath tumors (MPNSTs). Due to the lack of information on the molecular mechanism of NF1-associated tumor pathogenesis or biomarkers/therapeutic targets, an effective treatment for NF1 tumors has not been established. In this study, the novel NF1-associated protein, translationally controlled tumor protein (TCTP), was identified by integrated proteomics and found to be up-regulated via activated MAPK/PI3K-AKT signaling in response to growth factors in NF1-deficient Schwann cells. Immunohistochemical analysis of NF1-associated tumors revealed that the TCTP expression level correlated with tumorigenicity. In NF1-deficient MPNST cells, TCTP protein but not mRNA was down-regulated by NF1 GTPase-activating protein-related domain or MAPK/PI3K inhibitors, and this correlated with suppression of mammalian target of rapamycin (mTOR) signaling. mTOR inhibition by rapamycin also down-regulated TCTP protein expression, whereas knockdown or overexpression of TCTP suppressed or activated mTOR signaling, respectively, and affected cell viability. These results suggest that a positive feedback loop between TCTP and mTOR contributes to NF1-associated tumor formation. Last, the anti-tumor effect of artesunate, which binds to and degrades TCTP, was evaluated. Artesunate significantly suppressed the viability of MPNST cells but not normal Schwann cells, and the TCTP level inversely correlated with artesunate sensitivity. Moreover, combinational use of artesunate and rapamycin enhanced the cytotoxic effect on MPNST cells. These findings suggest that TCTP is functionally implicated in the progression of NF1-associated tumors and could serve as a biological target for their therapy.  相似文献   

5.
To gain insight into the role of the NF1 (Neurofibromatosis type 1) gene during neural development and in tumorigenesis, we have utilized the bacteriophage P1, Cre/loxP system to generate a conditional allele at the NF1 locus (NF1 flox) that permits temporal and spatial ablation of function through Cre-mediated recombination. We have been using these mice to assess the scope of NF1 requirement in distinct cell types. At the center of this approach is to identify the cells that give origin to the tumors most frequently found in NF1 patients: neurofibromas, neurofibrosarcomas, and astrocytomas. We have hypothesized that specific stem cells must lose NF1 by LOH to begin this process. I will discuss the consequences of NF1 loss in neurons, Schwann cells, and neural precursors. Distinct tumor phenotypes appear in each case. In malignant tumors, our mouse models indicate that the p53 pathway must also become mutated to cooperate with loss of NF1. Additionally, we have genetic evidence that the haploin-sufficient state is essential for tumor appearance. These data suggest that profilactic therapies preceding tumor appearance should be considered for NF1. Acknowledgements:  Funded by NINDS, NNFF, and DOD.  相似文献   

6.
To gain insight into the role of the NF1 (Neurofibromatosis type 1) gene during neural development and in tumorigenesis, we have utilized the bacteriophage P1, Cre/loxP system to generate a conditional allele at the NF1 locus (NF1 flox) that permits temporal and spatial ablation of function through Cre‐mediated recombination. We have been using these mice to assess the scope of NF1 requirement in distinct cell types. At the center of this approach is to identify the cells that give origin to the tumors most frequently found in NF1 patients: neurofibromas, neurofibrosarcomas, and astrocytomas. We have hypothesized that specific stem cells must lose NF1 by LOH to begin this process. I will discuss the consequences of NF1 loss in neurons, Schwann cells, and neural precursors. Distinct tumor phenotypes appear in each case. In malignant tumors, our mouse models indicate that the p53 pathway must also become mutated to cooperate with loss of NF1. Additionally, we have genetic evidence that the haploin‐sufficient state is essential for tumor appearance. These data suggest that profilactic therapies preceding tumor appearance should be considered for NF1. Acknowledgements: Funded by NINDS, NNFF, and DOD.  相似文献   

7.
For the rabphillin-3A-like (RPH3AL) gene, a putative tumor suppressor, the clinical significance of genetic alterations in breast cancers was evaluated. DNA and RNA were extracted from formalin-fixed, paraffin-embedded (FFPE) cancers and matching normal tissues. DNA samples were assessed for loss of heterozygosity (LOH) at the 17p13.3 locus of RPH3AL and the 17p13.1 locus of the tumor suppressor, TP53. RPH3AL was sequenced, and single nucleotide polymorphisms (SNPs) were genotyped. RNA samples were evaluated for expression of RPH3AL, and FFPE tissues were profiled for its phenotypic expression. Alterations in RPH3AL were correlated with clinicopathological features, LOH of TP53, and patient survival. Of 121 cancers, 80 had LOH at one of the RPH3AL locus. LOH of RHP3AL was associated with nodal metastasis, advanced stage, large tumor size, and poor survival. Although ~50% were positive for LOH at the RPH3AL and TP53 loci, 19 of 105 exhibited LOH only at the RPH3AL locus. Of these, 12 were non-Hispanic Caucasians (Whites), 15 had large tumors, and 12 were older (>50 years). Patients exhibiting LOH at both loci had shorter survival than those without LOH at these loci (log-rank, P = 0.014). LOH at the TP53 locus alone was not associated with survival. Analyses of RPH3AL identified missense point mutations in 19 of 125 cases, a SNP (C>A) in the 5’untranslated region at -25 (5’UTR-25) in 26 of 104, and a SNP (G>T) in the intronic region at 43 bp downstream to exon-6 (intron-6-43) in 79 of 118. Genotype C/A or A/A of the SNP at 5’UTR-25 and genotype T/T of a SNP at intron-6-43 were predominantly in Whites. Low levels of RNA and protein expression of RPH3AL were present in cancers relative to normal tissues. Thus, genetic alterations in RPH3AL are associated with aggressive behavior of breast cancers and with short survival of patients.  相似文献   

8.
MicroRNAs (miRNAs) are a class of non-coding RNA, which have recently been shown to have a wide variety of regulatory functions in relation to gene expression. Since their identification nearly 20 years ago, miRNAs have been found to play an important role in cancer, including in neurofibromatosis type 1 (NF1)-associated tumours. NF1 is the most commonly inherited tumour predisposition syndrome and can lead to malignancy via the development of malignant peripheral nerve sheath tumours (MPNSTs). Although the mechanisms by which benign neurofibromas develop into MPNSTs still remain to be elucidated, it is becoming increasingly clear that miRNAs play a key role in this process and have the potential to be used as both diagnostic and prognostic markers of tumorigenesis.  相似文献   

9.
To determine early somatic changes in high-grade serous ovarian cancer (HGSOC), we performed whole genome sequencing on a rare collection of 16 low stage HGSOCs. The majority showed extensive structural alterations (one had an ultramutated profile), exhibited high levels of p53 immunoreactivity, and harboured a TP53 mutation, deletion or inactivation. BRCA1 and BRCA2 mutations were observed in two tumors, with nine showing evidence of a homologous recombination (HR) defect. Combined Analysis with The Cancer Genome Atlas (TCGA) indicated that low and late stage HGSOCs have similar mutation and copy number profiles. We also found evidence that deleterious TP53 mutations are the earliest events, followed by deletions or loss of heterozygosity (LOH) of chromosomes carrying TP53, BRCA1 or BRCA2. Inactivation of HR appears to be an early event, as 62.5% of tumours showed a LOH pattern suggestive of HR defects. Three tumours with the highest ploidy had little genome-wide LOH, yet one of these had a homozygous somatic frame-shift BRCA2 mutation, suggesting that some carcinomas begin as tetraploid then descend into diploidy accompanied by genome-wide LOH. Lastly, we found evidence that structural variants (SV) cluster in HGSOC, but are absent in one ultramutated tumor, providing insights into the pathogenesis of low stage HGSOC.  相似文献   

10.
p53 loss of heterozygosity (p53LOH) is frequently observed in Li-Fraumeni syndrome (LFS) patients who carry a mutant (Mut) p53 germ-line mutation. Here, we focused on elucidating the link between p53LOH and tumor development in stem cells (SCs). Although adult mesenchymal stem cells (MSCs) robustly underwent p53LOH, p53LOH in induced embryonic pluripotent stem cells (iPSCs) was significantly attenuated. Only SCs that underwent p53LOH induced malignant tumors in mice. These results may explain why LFS patients develop normally, yet acquire tumors in adulthood. Surprisingly, an analysis of single-cell sub-clones of iPSCs, MSCs and ex vivo bone marrow (BM) progenitors revealed that p53LOH is a bi-directional process, which may result in either the loss of wild-type (WT) or Mut p53 allele. Interestingly, most BM progenitors underwent Mutp53LOH. Our results suggest that the bi-directional p53LOH process may function as a cell-fate checkpoint. The loss of Mutp53 may be regarded as a DNA repair event leading to genome stability. Indeed, gene expression analysis of the p53LOH process revealed upregulation of a specific chromatin remodeler and a burst of DNA repair genes. However, in the case of loss of WTp53, cells are endowed with uncontrolled growth that promotes cancer.Heterozygosity, caused by a mutation in a single allele of a tumor suppressor gene (TSG), is one of the first steps in malignant transformation.1 Often, TSGs undergo loss of the wild-type (WT) allele, designated as loss of heterozygosity (LOH).2, 3, 4 Patients with the rare cancer predisposition Li-Fraumeni syndrome (LFS), carrying germ-line heterozygous p53 mutations,5 apparently exhibit normal development yet later in adult life develop a wide spectrum of tumors; predominantly sarcomas,6, 7, 8 where 40–60% of tumors exhibit WT p53 loss of heterozygosity (p53LOH).8Giving that cancer development could be associated with stemness deregulation challenges, the notion that the occurrence of p53LOH in stem cells (SCs) may contribute to the emergence of cancer SCs. Genomic fidelity is a hallmark of SCs.9 The genome of embryonic stem cells (ESCs) is extremely stable, whereas adult stem cells (ASCs) exhibit a less stable genome.10 Genetic deregulation in ASCs was shown to be associated with tumor development.11, 12, 13 Mesenchymal stem cells (MSCs) that acquire mutations in oncogenes/TSGs such as p53 may function as tumor-initiating cells leading to de-novo sarcomagensis.14, 15, 16, 17 Furthermore, MSCs isolated from young mice, aged in culture acquired clinically relevant p53 mutations.18 In all, these findings suggest a link between p53 inactivation in SCs and tumorigenesis.Although induced pluripotent stem cells (iPSCs) seemed to represent ESCs,19, 20 several studies questioned the assumption that iPSCs are as genomically stable as ESCs.21, 22, 23, 24 p53 was found to have a major role in the generation of iPSCs both in attenuating reprogramming and controlling the quality of the reprogrammed cells.25, 26 An additional role of p53 during reprogramming may be an indirect effect on cell proliferation27 and on the restriction of mesenchymal–epithelial transition during the early phases of reprogramming.28 Importantly, Mutp53 cells exhibiting a fully reprogrammed iPSC phenotype in vitro, form malignant tumors in vivo, instead of the benign teratomas induced by the WTp53-iPSCs.25 As p53 is the guardian of the genome, it is important to investigate how p53LOH would affect genome stability and tumorigenicity of iPSCs.The availability of in vitro SC p53LOH models (iPSCs, MSCs) can help decipher the role of p53LOH in cancer initiation. Indeed, the incidence of p53LOH was found to be extremely different between these SCs. Surprisingly, we found that reprograming of heterozygous p53 (HZp53) fibroblasts, which frequently undergo p53LOH, gave rise to iPSC clones, most of which retained their HZp53 status and exhibited features of normal WTp53-iPSCs. However, p53LOH process is robust in MSCs. Interestingly, single-cell sub-cloning of iPSCs, MSCs and ex vivo bone marrow (BM) progenitors revealed that, in addition to the loss of the WTp53, loss of the Mutp53 allele also takes place. Of note, this bi-directional p53LOH occurred in an age-dependent manner linking LOH to aging and tumorigenesis. Surprisingly, most of the p53LOH events in BM progenitors preferred the loss of the Mutp53 allele. Taken together, our results of a bi-directional p53LOH process, accompanied by a burst of DNA repair pathways, may suggest that p53LOH can be regarded as a DNA repair event. In the case of a DNA repair-orientated productive LOH process, where the Mutp53 allele is lost, cells are rescued of tumorigenesis. However, when the WTp53 allele is lost, cells become prone to tumor initiation.  相似文献   

11.
12.
Lee JD  Kwon TJ  Kim UK  Lee WS 《PloS one》2012,7(1):e30418

Background

Mutations in the neurofibromatosis type 2 (NF2) tumor-suppressor gene have been identified in not only NF2-related tumors but also sporadic vestibular schwannomas (VS). This study investigated the genetic and epigenetic alterations in tumors and blood from 30 Korean patients with sporadic VS and correlated these alterations with tumor behavior.

Methodology/Principal Findings

NF2 gene mutations were detected using PCR and direct DNA sequencing and three highly polymorphic microsatellite DNA markers were used to assess the loss of heterozygosity (LOH) from chromosome 22. Aberrant hypermethylation of the CpG island of the NF2 gene was also analyzed. The tumor size, the clinical growth index, and the proliferative activity assessed using the Ki-67 labeling index were evaluated. We found 18 mutations in 16 cases of 30 schwannomas (53%). The mutations included eight frameshift mutations, seven nonsense mutations, one in-frame deletion, one splicing donor site, and one missense mutation. Nine patients (30%) showed allelic loss. No patient had aberrant hypermethylation of the NF2 gene and correlation between NF2 genetic alterations and tumor behavior was not observed in this study.

Conclusions/Significance

The molecular genetic changes in sporadic VS identified here included mutations and allelic loss, but no aberrant hypermethylation of the NF2 gene was detected. In addition, no clear genotype/phenotype correlation was identified. Therefore, it is likely that other factors contribute to tumor formation and growth.  相似文献   

13.
Sister chromatid cohesion (SCC) is an important process in chromosome segregation. ESCO2 is essential for establishment of SCC and is often deleted/altered in human cancers. We demonstrate that esco2 haploinsufficiency results in reduced SCC and accelerates the timing of tumor onset in both zebrafish and mouse p53 heterozygous null models, but not in p53 homozygous mutant or wild-type animals. These data indicate that esco2 haploinsufficiency accelerates tumor onset in a loss of heterozygosity (LOH) sensitive background. Analysis of The Cancer Genome Atlas (TCGA) confirmed ESCO2 deficient tumors have elevated number of LOH events throughout the genome. Further, we demonstrated heterozygous loss of sgo1, important in maintaining SCC, also results in reduced SCC and accelerated tumor formation in a p53 heterozygous background. Surprisingly, while we did observe elevated levels of chromosome missegregation and micronuclei formation in esco2 heterozygous mutant animals, this chromosomal instability did not contribute to the accelerated tumor onset in a p53 heterozygous background. Interestingly, SCC also plays a role in homologous recombination, and we did observe elevated levels of mitotic recombination derived p53 LOH in tumors from esco2 haploinsufficient animals; as well as elevated levels of mitotic recombination throughout the genome of human ESCO2 deficient tumors. Together these data suggest that reduced SCC contributes to accelerated tumor penetrance through elevated mitotic recombination.  相似文献   

14.
Identifying genomic alterations driving breast cancer is complicated by tumor diversity and genetic heterogeneity. Relevant mouse models are powerful for untangling this problem because such heterogeneity can be controlled. Inbred Chaos3 mice exhibit high levels of genomic instability leading to mammary tumors that have tumor gene expression profiles closely resembling mature human mammary luminal cell signatures. We genomically characterized mammary adenocarcinomas from these mice to identify cancer-causing genomic events that overlap common alterations in human breast cancer. Chaos3 tumors underwent recurrent copy number alterations (CNAs), particularly deletion of the RAS inhibitor Neurofibromin 1 (Nf1) in nearly all cases. These overlap with human CNAs including NF1, which is deleted or mutated in 27.7% of all breast carcinomas. Chaos3 mammary tumor cells exhibit RAS hyperactivation and increased sensitivity to RAS pathway inhibitors. These results indicate that spontaneous NF1 loss can drive breast cancer. This should be informative for treatment of the significant fraction of patients whose tumors bear NF1 mutations.  相似文献   

15.
The diagnostic significance of molecular markers was assessed for the most common somatic aberrations at the K-ras, TP53, CDKN2A, and MADH4 loci, as well as less common mutations of BRCA1, BRCA2, and CHEK2, arising in preinvasive stages of sporadic adenocarcinoma of the pancreas. The study was performed on paired primary pancreatic adenocarcinoma and normal pancreatic tissue specimens obtained from 37 Russian patients. Surgical adenocarcinoma specimens were subjected to manual microdissection. Mutations of K-ras codon 12 were found in 24 tumor specimens (0.65), but not in normal pancreatic tissue specimens. Mutations of BRCA1 (185delAG, 300T > G, 4153delA, 4158A > G, 5382insC), BRCA2 (695insT, 6174delT), and CHEK2 (1100delC) were not found. The informativeness of allelic losses did not differ significantly among the three tumor suppressor loci and was 60% for TP53 (GDB186817) and CDKN2A (D9S974 + D9S162) and 65.7% for MADH4 (D18S363 + D18S474) (t = 0.48). The CDKN2A locus had the highest LOH frequency of 0.95. For TP53 and MADH4 the LOH frequency was 0.62 and 0.70, respectively. In 80% of adenocarcinomas, at least one locus was characterized with LOH. The overall informativeness of the combined data on K-ras mutations and loss of heterozygosity at 9p, 17p, and 18q was 85.7%. Only 9% of the tumors were characterized with microsatellite instability.  相似文献   

16.
Neurofibromatosis 1 (NF1) is a common genetic condition in which affected individuals are prone to the development of benign and malignant tumors. The NF1 tumor suppressor encodes a protein product, neurofibromin, which functions in part as a negative regulator of RAS. Loss of neurofibromin expression in NF1-associated tumors or Nf1-deficient mouse cells is associated with elevated RAS activity and increased cell proliferation. Despite this straightforward pathophysiologic association between neurofibromin, RAS, and tumorigenesis, recent insights from mouse and Drosophila modeling studies have suggested additional functions for neurofibromin and have implicated Nf1 heterozygosity in tumor formation. Lastly, Nf1 knockout mouse studies have also demonstrated important roles for cooperating genetic changes that accelerate tumorigenesis as well as modifier genes that impact on cancer susceptibility.  相似文献   

17.
Neurofibromatosis type 1 (NF1) is a complex neurocutaneous disorder with an increased susceptibility to develop both benign and malignant tumors but with a wide spectrum of inter and intrafamilial clinical variability. The establishment of genotype-phenotype associations in NF1 is potentially useful for targeted therapeutic intervention but has generally been unsuccessful, apart from small subsets of molecularly defined patients. The objective of this study was to evaluate the clinical phenotype associated with the specific types of NF1 mutation in a retrospectively recorded clinical dataset comprising 149 NF1 mutation-known individuals from unrelated families. Each patient was assessed for ten NF1-related clinical features, including the number of café-au-lait spots, cutaneous and subcutaneous neurofibromas and the presence/absence of intertriginous skin freckling, Lisch nodules, plexiform and spinal neurofibromas, optic gliomas, other neoplasms (in particular CNS gliomas, malignant peripheral nerve sheath tumors (MPNSTs), juvenile myelomonocytic leukemia, rhabdomyosarcoma, phaechromocytoma, gastrointestinal stromal tumors, juvenile xanthogranuloma, and lipoma) and evidence of learning difficulties. Gender and age at examination were also recorded. Patients were subcategorized according to their associated NF1 germ line mutations: frame shift deletions (52), splice-site mutations (23), nonsense mutations (36), missense mutations (32) and other types of mutation (6). A significant association was apparent between possession of a splice-site mutation and the presence of brain gliomas and MPNSTs (p?=?0.006). If confirmed, these findings are likely to be clinically important since up to a third of NF1 patients harbor splice-site mutations. A significant influence of gender was also observed on the number of subcutaneous neurofibromas (females, p?=?0.009) and preschool learning difficulties (females, p?=?0.022).  相似文献   

18.
19.
20.
Ovarian clear cell carcinoma (CCC) is generally associated with chemoresistance and poor clinical outcome, even with early diagnosis; whereas high-grade serous carcinomas (SCs) and endometrioid carcinomas (ECs) are commonly chemosensitive at advanced stages. Although an integrated genomic analysis of SC has been performed, conclusive views on copy number and expression profiles for CCC are still limited. In this study, we performed single nucleotide polymorphism analysis with 57 epithelial ovarian cancers (31 CCCs, 14 SCs, and 12 ECs) and microarray expression analysis with 55 cancers (25 CCCs, 16 SCs, and 14 ECs). We then evaluated PIK3CA mutations and ARID1A expression in CCCs. SNP array analysis classified 13% of CCCs into a cluster with high frequency and focal range of copy number alterations (CNAs), significantly lower than for SCs (93%, P < 0.01) and ECs (50%, P = 0.017). The ratio of whole-arm to all CNAs was higher in CCCs (46.9%) than SCs (21.7%; P < 0.0001). SCs with loss of heterozygosity (LOH) of BRCA1 (85%) also had LOH of NF1 and TP53, and LOH of BRCA2 (62%) coexisted with LOH of RB1 and TP53. Microarray analysis classified CCCs into three clusters. One cluster (CCC-2, n = 10) showed more favorable prognosis than the CCC-1 and CCC-3 clusters (P = 0.041). Coexistent alterations of PIK3CA and ARID1A were more common in CCC-1 and CCC-3 (7/11, 64%) than in CCC-2 (0/10, 0%; P < 0.01). Being in cluster CCC-2 was an independent favorable prognostic factor in CCC. In conclusion, CCC was characterized by a high ratio of whole-arm CNAs; whereas CNAs in SC were mainly focal, but preferentially caused LOH of well-known tumor suppressor genes. As such, expression profiles might be useful for sub-classification of CCC, and might provide useful information on prognosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号