首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bionanoscience is an inter-disciplinary area of research that sits at the interface of chemistry, biology, materials science, engineering and medicine. During the past 10 years the suitability and applicability of using plant viruses as building blocks, synthons, scaffolds or templates in bionanoscience/technology have begun to be explored. This short review describes how the plant Cowpea mosaic virus can be functionalised on its outer surface to form electroactive nanoparticles, can be used to construct monolayers on solid surfaces and multilayer arrays by a bottom-up, layer-by-layer approach, and how it can template mineralization processes to give new routes to monodisperse nanoparticles. Potential applications of virus-derived nanoparticles include nanoelectronics, sensory devices, catalysis, photonics and medical applications from imaging to the targeting and delivery of therapeutic agents.  相似文献   

2.
The combination of the tools and principles of chemistry, together with the tools of modern molecular biology, allow us to create complex synthetic and natural molecules, and processes with novel biological, chemical and physical properties. This article illustrates the tremendous opportunity that lies at this interface of chemistry and biology by describing a number of examples, ranging from efforts to expand the genetic code of living organisms to the use of combinatorial methods to generate biologically active synthetic molecules.  相似文献   

3.
The combination of the tools and principles of chemistry, together with the tools of modern molecular biology, allow us to create complex synthetic and natural molecules, and processes with novel biological, chemical and physical properties. This article illustrates the tremendous opportunity that lies at this interface of chemistry and biology by describing a number of examples, ranging from efforts to expand the genetic code of living organisms to the use of combinatorial methods to generate biologically active synthetic molecules.  相似文献   

4.
The combination of the tools and principles of chemistry, together with the tools of modern molecular biology, allow us to create complex synthetic and natural molecules, and processes with novel biological, chemical and physical properties. This article illustrates the tremendous opportunity that lies at this interface of chemistry and biology by describing a number of examples, ranging from efforts to expand the genetic code of living organisms to the use of combinatorial methods to generate biologically active synthetic molecules.  相似文献   

5.
Although the development of chemically induced, self-assembled protein-based materials is rapidly expanding, methods for directing their assembly in solution are sparse, and problems of population heterogeneity remain. By exerting control over the assembly of advanced protein structures, new classes of ordered protein nanomaterials become feasible, affecting numerous applications ranging from therapeutics to nanostructural engineering. Focusing on a protein-based method for modulating the stability of a chemically induced dihydrofolate reductase (DHFR) dimer, we demonstrate the sensitivity of a methotrexate competition assay in determining the change in DHFR-DHFR binding cooperativity via interfacial mutations over a 1.3 kcal/mol range. This represents a change of more than 40% of the dimer complex binding energy conferred from protein-protein cooperativity (~3.1 kcal/mol). With the development of this investigative system and refinement of protein-based techniques for complex stability modulation, the directed assembly of protein nanomaterials into heterocomplexes and a concomitant decrease in population heterogeneity becomes a realizable goal.  相似文献   

6.
7.
Biomechanics and Modeling in Mechanobiology - Bone healing has been traditionally described as a four-phase process: inflammatory response, soft callus formation, hard callus development, and...  相似文献   

8.
Yuen CT  Davidson AR  Deber CM 《Biochemistry》2000,39(51):16155-16162
Analyses of transmembrane domains of proteins have revealed that aromatic residues tend to cluster at or near the lipid-water interface of the membrane. To assess protein-membrane interactions of such residues, a viable mutant library was generated of the major coat protein of bacteriophage M13 (a model single membrane-spanning protein) in which one or the other of its interfacial tyrosine residues (Tyr-21 and Tyr-24) is mutated. Using the interfacial tryptophan (Trp-26) as an intrinsic probe, blue shifts in fluorescence emission spectra and quenching constants indicated that mutants with a polar amino acid substitution (such as Y24D or Y24N) are less buried in a deoxycholate micelle environment than in the wild type protein. These polar mutants also exhibited alpha-helix to beta-structure transition temperatures in incremental-heating circular dichroism studies relatively lower than those of wild type and nonpolar mutants (such as Y21V, Y21I, and Y24A), indicating that specific side chains in the lipid-water interface influence local protein-micelle interactions. Mutant Y21F exhibited the highest transition temperature, suggesting that phenylalanine is ostensibly the most effective interfacial anchoring residue. Using phage viability as the assay in a combination of site-directed and saturation mutagenesis experiments, it was further observed that both Tyr residues could not simultaneously be "knocked out". The overall results support the notion that an interfacial Tyr is a primary recognition element for precise strand positioning in vivo, a function that apparently cannot be performed optimally by residues with simple aliphatic character.  相似文献   

9.
von Willebrand factor (VWF) functions in platelet aggregation, a form of cellular interaction. In vitro analysis of platelet aggregation, as measured by the platelet aggregometer, requires addition of a promoter such as the glycopeptide antibiotic ristocetin. Native multimeric VWF (Mr = 1-20 X 10(6)) can be reduced with sulfhydryl reagents to a monomeric state (Mr = 2 X 10(5)). In this study, the binding of bovine VWF and ristocetin to bovine platelets was investigated using fluorescence anisotropy of derivatized monomer protein and ristocetin and also by radioisotope methods using 125I-labeled monomer and native protein. Ristocetin bound to bovine platelets but not to VWF. VWF binding to formaldehyde-fixed platelets was dependent on the presence of a promoter such as ristocetin. The monomer and multimer VWF bound equally well in the presence of low ristocetin concentrations. Under these conditions, plots of VWF binding versus platelet concentration were sigmoidal, indicating positive cooperativity with respect to platelets. At higher (100 micrograms/ml) ristocetin concentrations, the binding curve was no longer sigmoidal. Ristocetin promoted the formation of small platelet aggregates, an effect that was amplified by the presence of VWF. In fact, all conditions which resulted in monomer or multimer VWF binding to platelets also caused formation of platelet aggregates observed by light microscopy. These combined results were consistent with VWF binding only to the interface between proximal platelets. High affinity binding could be provided by the presence of two cell surfaces and the resulting multiple binding interactions. Polycations, such as poly(L-lysine) and Polybrene, also promoted the formation of platelet aggregates and facilitated the binding of VWF to platelets. Physiological platelet activators such as thrombin, ADP, and collagen also facilitated VWF binding to native platelets and caused platelet aggregation. It appears possible that any process which causes the surface membranes of platelets to become spatially close will allow expression of VWF activity.  相似文献   

10.
11.
Two methods, the so-called "oil drop" and "Teflon plunger" methods, were designed to monitor lipase hydrolysis of natural long-chain triacylglycerols through the variation with time of the oil-water interfacial tension. The first part of this work is devoted to the development of these two techniques using pure, well-characterized porcine pancreatic lipase. They gave linear responses with enzyme concentrations ranging from 1 x 10(-3) to 30 units x ml-1. We then applied them to a study of the optimal pH conditions for human gastric lipase which were found to range around 5, as previously observed. In the presence of variable concentrations of sodium taurodeoxycholate, these two methods also showed that human gastric lipase is active in the 8-13 dyn cm-1 range of interfacial tension. It is concluded that these two methods, based upon variations with time of the oil-water interfacial tension, constitute reliable, sensitive and convenient means of investigating lipase kinetics.  相似文献   

12.
Nutrient dynamics at the interface between surface waters and groundwaters   总被引:18,自引:0,他引:18  
1. The surface water/groundwater (SW/GW) interface is a crucial control point for lateral nutrient fluxes between uplands and aquatic ecosystems and for upstream/downstream (longitudinal) processes in lotic ecosystems. 2. Hydrological and biogeochemical dynamics of the SW/GW ecotone are linked to the degree of channel constraint and the sediment characteristics of the floodplain and stream bed. 3. The availability of specific chemical forms of electron donors and electron acceptors affects the spatial distribution of biogeochemical processes at the SW/GW interface. Temporal change in discharge is also a major factor affecting the rate and extent of these processes. 4. The magnitude of SW/GW interactions in lotic ecosystems is predicted to be a major determinant of solute retention. Channel morphology, stream bed composition and discharge are predicted to be important controls on SW/GW interactions. 5. Interdisciplinary research involving hydrologists, geomorphologists, aquatic ecologists, microbial ecologists and landscape ecologists is needed to further our present understanding of this critical interface linking terrestrial and aquatic ecosystems.  相似文献   

13.
The peripheral synapses between motoneurons and skeletal muscle fibers, the neuromuscular junctions, are ideal to investigate the general principles of synaptogenesis that depend on the interaction of activity-dependent and activity-independent signals. Much has been learned from gene “knock out” mouse models that helped to identify major synaptic regulators. The “knock out” approach, however, may not distinguish between changes arising from the disruption of molecular signaling pathways and changes caused by the absence of synaptic transmission. To circumvent these problems, postsynaptic activity was modulated in mouse models by specifically targeting endplate receptors or the activity of synaptic regulators such as MuSK. Both regulators have multiple functions and acetylcholine receptors are not just signal transducers but regulate the localization and architecture of endplates. The results show that detailed analysis of mouse models will help to understand the complexity in mechanisms that regulate synaptic remodeling.  相似文献   

14.
The interaction between alkaline phosphatase (AP), a glycosylphosphatidylinositol (GPI)-anchored protein (AP-GPI), and phospholipids was monitored using Langmuir isotherms and PM-IRRAS spectroscopy. AP-GPI was injected under C16 phospholipid monolayers with either a neutral polar head (1,2-dipalmitoyl-sn-glycero-3-phosphocholine monohydrate (DPPC)) or an anionic polar head (1,2-dipalmitoyl-sn-glycero-3-phospho-L-serine (DPPS)). The increase in molecular area due to the injection of protein depended on the surface pressure and the type of phospholipid. At all surface pressures, it was highest in the case of DPPS monolayers. The surface elasticity coefficient E, determined from the pi-A diagrams, allowed to deduct that the AP-GPI-phospholipid mixtures presented a molecular arrangement less condensed than the corresponding pure phospholipid films. PM-IRRAS spectra suggested different protein-lipid interactions as a function of the nature of the lipids. AP-GPI modified the organization of the DPPS deuterated chains whereas AP-GPI affected only the polar group of DPPC at low surface pressure (8 mN/m). Different protein hydration layers between the DPPC and DPPS monolayers were suggested to explain these results. PM-IRRAS spectra of AP-GPI in the presence of lipids showed a shape similar to those collected for pure AP-GPI, indicating a similar orientation of AP-GPI in the presence or absence of phospholipids, where the active sites of the enzyme are turned outside of the membrane.  相似文献   

15.
16.
Remodeling of the airway smooth muscle (ASM) cell has been proposed to play an important role in airway hyperresponsiveness. Using a functional assay, we have assessed remodeling of the cultured rat ASM cell and the role of heat shock protein (HSP) 27 in that process. To probe remodeling dynamics, we measured spontaneous motions of an individual Arg-Gly-Asp-coated microbead that was anchored to the cytoskeleton. We reasoned that the bead could not move unless the microstructure to which it is attached rearranged; if so, then its mean square displacement (MSD) would report ongoing internal reorganizations over time. Each bead displayed a random, superdiffusive motion; MSD increased with time as approximately t(1.7), whereas an exponent of unity would be expected for a simple passive diffusion. Increasing concentrations of cytochalasin-D or latrunculin-A caused marked increases in the MSD, whereas colchicine did not. Treatments with PDGF or IL-1beta, but not transforming growth factor-beta, caused decreases in the MSD, the extent of which rank-ordered with the relative potency of these agents in eliciting the phosphorylation of HSP27. The chemical stressors anisomycin and arsenite each increased the levels of HSP27 phosphorylation and, at the same time, decreased bead motions. In particular, arsenite prevented and even reversed the effects of cytochalasin-D on bead motions. Finally, ASM cells overexpressing phospho-mimicking human HSP27, but not wild-type or phosphorylation-deficient HSP27, exhibited decreases in bead motions that were comparable to the arsenite response. Taken together, these results show that phosphorylated HSP27 favors reduced bead motions that are probably due to stabilization of the actin cytoskeleton.  相似文献   

17.
18.
A study is made of the effect of the heating of plasma electrons in the field of a potential surface wave on the wave dispersion properties. The wave is assumed to propagate along the boundary between a metal and a finite-pressure plasma. Different mechanisms for electron energy losses are considered in the weak heating approximation. The spatial distribution of the plasma electron temperature under nonlocal heating conditions is derived on the basis of the electron energy balance equation. Expressions for the spatial damping rate and the nonlinear shift of the wavenumber are analyzed for different values of the plasma parameters. The results obtained are valid for both semiconductor and gaseous plasmas.  相似文献   

19.
A review of the techniques used in measuring the forces of deadhesion of cells that have been adhering on substrate surfaces is presented. Two categories of techniques are described, those that utilize fluid flowing against the adhered cells and counting the percentage of cells that detach (global tests) and the manipulation of single cells in various configurations which lend themselves to more specific force application and provide the basis for theoretical analysis of the receptor-ligand mechanics.  相似文献   

20.
RGS proteins are GTPase-activating proteins (GAPs) for G protein alpha-subunits. This GAP activity is mediated by the interaction of conserved residues on regulator of G protein signaling (RGS) proteins and Galpha-subunits. We mutated the important contact sites Glu-89, Asn-90, and Asn-130 in RGS16 to lysine, aspartate, and alanine, respectively. The interaction of RGS16 and its mutants with Galpha(t) and Galpha(i1) was studied. The GAP activities of RGS16N90D and RGS16N130A were strongly attenuated. RGS16E89K increased GTP hydrolysis of Galpha(i1) by a similar extent, but with an about 100-fold reduced affinity compared with non-mutated RGS16. As Glu-89 in RGS16 is interacting with Lys-210 in Galpha(i1), this lysine was changed to glutamate for compensation. Galpha(i1)K210E was insensitive to RGS16 but interacted with RGS16E89K. In rat uterine smooth muscle cells, wild type RGS16 abolished G(i)-mediated alpha(2)-adrenoreceptor signaling, whereas RGS16E89K was without effect. Both Galpha(i1) and Galpha(i1)K210E mimicked the effect of alpha(2)-adrenoreceptor stimulation. Galpha(i1)K210E was sensitive to RGS16E89K and 10-fold more potent than Galpha(i1). Analogous mutants of Galpha(q) (Galpha(q)K215E) and RGS4 (RGS4E87K) were created and studied in COS-7 cells. The activity of wild type Galpha(q) was counteracted by wild type RGS4 but not by RGS4E87K. The activity of Galpha(q)K215E was inhibited by RGS4E87K, whereas non-mutated RGS4 was ineffective. We conclude that mutation of a conserved lysine residue to glutamate in Galpha(i) and Galpha(q) family members renders these proteins insensitive to wild type RGS proteins. Nevertheless, they are sensitive to glutamate to lysine mutants of RGS proteins. Such mutant pairs will be helpful tools in analyzing Galpha-RGS specificities in living cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号