首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Evidence indicates that West Nile virus (WNV) employs Ca2+ influx for its replication. Moreover, calcium buffer proteins, such as calbindin D28k (CB-D28k), may play an important role mitigating cellular destruction due to disease processes, and more specifically, in some neurological diseases. We addressed the hypothesis that CB-D28k inhibits WNV replication in cell culture and infected rodents. WNV envelope immunoreactivity (ir) was not readily co-localized with CB-D28k ir in WNV-infected Vero 76 or motor neuron-like NSC34 cells that were either stably or transiently transfected with plasmids coding for CB-D28k gene. This was confirmed in cultured cells fixed on glass coverslips and by flow cytometry. Moreover, WNV infectious titers were reduced in CB-D28k-transfected cells. As in cell culture studies, WNV env ir was not co-localized with CB-D28k ir in the cortex of an infected WNV hamster, or in the hippocampus of an infected mouse. Motor neurons in the spinal cord typically do not express CB-D28k and are susceptible to WNV infection. Yet, CB-D28k was detected in the surviving motor neurons after the initial phase of WNV infection in hamsters. These data suggested that induction of CB-D28k elicit a neuroprotective response to WNV infection.  相似文献   

2.
West Nile virus (WNV) disease can be fatal for high-risk patients. Since WNV or its antigens have been identified in multiple anatomical locations of the central nervous system of persons or rodent models, one cannot know where to investigate the actual mechanism of mortality without careful studies in animal models. In this study, depressed respiratory functions measured by plethysmography correlated strongly with mortality. This respiratory distress, as well as reduced oxygen saturation, occurred beginning as early as 4 days before mortality. Affected medullary respiratory control cells may have contributed to the animals' respiratory insufficiency, because WNV antigen staining was present in neurons located in the ventrolateral medulla. Starvation or dehydration would be irrelevant in people, but could cause death in rodents due to lethargy or loss of appetite. Animal experiments were performed to exclude this possibility. Plasma ketones were increased in moribund infected hamsters, but late-stage starvation markers were not apparent. Moreover, daily subcutaneous administration of 5% dextrose in physiological saline solution did not improve survival or other disease signs. Therefore, infected hamsters did not die from starvation or dehydration. No cerebral edema was apparent in WNV- or sham-infected hamsters as determined by comparing wet-to-total weight ratios of brains, or by evaluating blood-brain-barrier permeability using Evans blue dye penetration into brains. Limited vasculitis was present in the right atrium of the heart of infected hamsters, but abnormal electrocardiograms for several days leading up to mortality did not occur. Since respiratory insufficiency was strongly correlated with mortality more than any other pathological parameter, it is the likely cause of death in rodents. These animal data and a poor prognosis for persons with respiratory insufficiency support the hypothesis that neurological lesions affecting respiratory function may be the primary cause of human WNV-induced death.  相似文献   

3.
Type I interferon (IFN) signaling coordinates an early antiviral program in infected and uninfected cells by inducing IFN-stimulated genes (ISGs) that modulate viral entry, replication, and assembly. However, the specific antiviral functions in vivo of most ISGs remain unknown. Here, we examined the contribution of the ISG viperin to the control of West Nile virus (WNV) in genetically deficient cells and mice. While modest increases in levels of WNV replication were observed for primary viperin(-/-) macrophages and dendritic cells, no appreciable differences were detected in deficient embryonic cortical neurons or fibroblasts. In comparison, viperin(-/-) adult mice infected with WNV via the subcutaneous or intracranial route showed increased lethality and/or enhanced viral replication in central nervous system (CNS) tissues. In the CNS, viperin expression was induced in both WNV-infected and adjacent uninfected cells, including activated leukocytes at the site of infection. Our experiments suggest that viperin restricts the infection of WNV in a tissue- and cell-type-specific manner and may be an important ISG for controlling viral infections that cause CNS disease.  相似文献   

4.

Background  

West Nile virus (WNV) infection can cause severe meningitis and encephalitis in humans. Apoptosis was recently shown to contribute to the pathogenesis of WNV encephalitis. Here, we used WNV-infected glioma cells to study WNV-replication and WNV-induced apoptosis in human brain-derived cells.  相似文献   

5.
Regional differences in inflammation during viral infections of the CNS suggest viruses differentially induce patterns of chemoattractant expression, depending on their cellular targets. Previous studies have shown that expression of the chemokine CXCL10 by West Nile virus (WNV)-infected neurons is essential for the recruitment of CD8 T cells for the purpose of viral clearance within the CNS. In the current study we used mice deficient for the CXCL10 receptor, CXCR3, to evaluate its role in leukocyte-mediated viral clearance of WNV infection within various CNS compartments. WNV-infected CXCR3-deficient mice exhibited significantly enhanced mortality compared with wild-type controls. Immunologic and virologic analyses revealed that CXCR3 was dispensable for control of viral infection in the periphery and in most CNS compartments but, surprisingly, was required for CD8 T cell-mediated antiviral responses specifically within the cerebellum. WNV-specific, CXCR3-expressing T cells preferentially migrated into the cerebellum, and WNV-infected cerebellar granule cell neurons expressed higher levels of CXCL10 compared with similarly infected cortical neurons. These results indicate that WNV differentially induces CXCL10 within neuronal populations and suggest a novel model for nonredundancy in chemokine-mediated inflammation among CNS compartments.  相似文献   

6.
7.
The Vγ4(+) cells, a subpopulation of peripheral γδ T cells, are involved in West Nile virus (WNV) pathogenesis, but the underlying mechanism remains unclear. In this study, we found that WNV-infected Vγ4(+) cell-depleted mice had lower viremia and a reduced inflammatory response in the brain. The Vγ4(+) cells produced IL-17 during WNV infection, but blocking IL-17 signaling did not affect host susceptibility to WNV encephalitis. We also noted that there was an enhanced magnitude of protective splenic Vγ1(+) cell expansion in Vγ4(+) cell-depleted mice compared to that in controls during WNV infection. In addition, Vγ4(+) cells of WNV-infected mice had a higher potential for producing TGF-β. The γδ T cells of WNV-infected Vγ4(+) cell-depleted mice had a higher proliferation rate than those of WNV-infected controls upon ex vivo stimulation with anti-CD3, and this difference was diminished in the presence of TGF-β inhibitor. Finally, Vγ4(+) cells of infected mice contributed directly and indirectly to the higher level of IL-10, which is known to play a negative role in immunity against WNV infection. In summary, Vγ4(+) cells suppress Vγ1(+) cell expansion via TGF-β and increase IL-10 level during WNV infection, which together may lead to higher viremia and enhanced brain inflammation.  相似文献   

8.
West Nile virus (WNV) infection causes neurological disease at all levels of the neural axis, accompanied by neuroinflammation and neuronal loss, although the underlying mechanisms remain uncertain. Given the substantial activation of neuroinflammatory pathways observed in WNV infection, we hypothesized that WNV-mediated neuroinflammation and cell death occurred through WNV infection of both glia and neurons, which was driven in part by WNV capsid protein expression. Analysis of autopsied neural tissues from humans with WNV encephalomyelitis (WNVE) revealed WNV infection of both neurons and glia. Upregulation of proinflammatory genes, CXCL10, interleukin-1beta, and indolamine-2',3'-deoxygenase with concurrent suppression of the protective astrocyte-specific endoplasmic reticulum stress sensor gene, OASIS (for old astrocyte specifically induced substance), was evident in WNVE patients compared to non-WNVE controls. These findings were supported by increased ex vivo expression of these proinflammatory genes in glia infected by WNV-NY99. WNV infection caused endoplasmic reticulum stress gene induction and apoptosis in neurons but did not affect glial viability. WNV-infected astrocytic cells secreted cytotoxic factors, which caused neuronal apoptosis. The expression of the WNV-NY99 capsid protein in neurons and glia by a Sindbis virus-derived vector (SINrep5-WNVc) caused neuronal death and the release of neurotoxic factors by infected astrocytes, coupled with proinflammatory gene induction and suppression of OASIS. Striatal implantation of SINrep5-WNV(C) induced neuroinflammation in rats, together with the induction of CXCL10 and diminished OASIS expression, compared to controls. Moreover, magnetic resonance neuroimaging showed edema and tissue injury in the vicinity of the SINrep5-WNVc implantation site compared to controls, which was complemented by neurobehavioral abnormalities in the SINrep5-WNVc-implanted animals. These studies underscore the important interactions between the WNV capsid protein and neuroinflammation in the pathogenesis of WNV-induced neurological disorders.  相似文献   

9.
10.
11.
Death-associated protein kinase-related apoptosis-inducing kinase-2 (Drak2), a member of the death-associated protein family of serine/threonine kinases, is specifically expressed in T and B cells. In the absence of Drak2, mice are resistant to experimental autoimmune encephalomyelitis due to a decrease in the number of cells infiltrating the CNS. In the present study, we investigated the role of Drak2 in West Nile virus (WNV)-induced encephalitis and found that Drak2(-/-) mice were also more resistant to lethal WNV infection than wild-type mice. Although Drak2(-/-) mice had an increase in the number of IFN-gamma-producing T cells in the spleen after infection, viral levels in the peripheral tissues were not significantly different between these two groups of mice. In contrast, there was a reduced viral load in the brains of Drak2(-/-) mice, which was accompanied by a decrease in the number of Drak2(-/-) CD4(+) and CD8(+) T cells in the brain following WNV infection. Moreover, we detected viral Ags in T cells isolated from the spleen or brain of WNV-infected mice. These results suggest that following a systemic infection, WNV might cross the blood brain barrier and enter the CNS by being carried by infected infiltrating T cells.  相似文献   

12.
13.
Monoclonal antibodies (MAbs) neutralizing West Nile Virus (WNV) have been shown to protect against infection in animal models and have been identified as a correlate of protection in WNV vaccine studies. In the present study, antibody repertoires from three convalescent WNV-infected patients were cloned into an scFv phage library, and 138 human MAbs binding to WNV were identified. One hundred twenty-one MAbs specifically bound to the viral envelope (E) protein and four MAbs to the premembrane (prM) protein. Enzyme-linked immunosorbent assay-based competitive-binding assays with representative E protein-specific MAbs demonstrated that 24/51 (47%) bound to domain II while only 4/51 (8%) targeted domain III. In vitro neutralizing activity was demonstrated for 12 MAbs, and two of these, CR4374 and CR4353, protected mice from lethal WNV challenge at 50% protective doses of 12.9 and 357 mug/kg of body weight, respectively. Our data analyzing three infected individuals suggest that the human anti-WNV repertoire after natural infection is dominated by nonneutralizing or weakly neutralizing MAbs binding to domain II of the E protein, while domain III-binding MAbs able to potently neutralize WNV in vitro and in vivo are rare.  相似文献   

14.
15.
Infection with West Nile virus (WNV) causes a severe infection of the central nervous system (CNS) with higher levels of morbidity and mortality in the elderly and the immunocompromised. Experiments with mice have begun to define how the innate and adaptive immune responses function to limit infection. Here, we demonstrate that the complement system, a major component of innate immunity, controls WNV infection in vitro primarily in an antibody-dependent manner by neutralizing virus particles in solution and lysing WNV-infected cells. More decisively, mice that genetically lack the third component of complement or complement receptor 1 (CR1) and CR2 developed increased CNS virus burdens and were vulnerable to lethal infection at a low dose of WNV. Both C3-deficient and CR1- and CR2-deficient mice also had significant deficits in their humoral responses after infection with markedly reduced levels of specific anti-WNV immunoglobulin M (IgM) and IgG. Overall, these results suggest that complement controls WNV infection, in part through its ability to induce a protective antibody response.  相似文献   

16.
The mosquito Culex pipiens pipiens is a documented vector of West Nile virus (WNV, Flaviviridae, Flavivirus). Our laboratory colony of C. p. pipiens, however, was repeatedly refractory to experimental transmission of WNV. Our goal was to identify if a cellular process was inhibiting virus infection of the midgut. We examined midguts of mosquitoes fed control and WNV-infected blood meals. Three days after feeding, epithelial cells from abdominal midguts of mosquitoes fed on WNV fluoresced under an FITC filter following Acridine Orange staining, indicating apoptosis in this region. Epithelial cells from experimental samples examined by TEM exhibited ultrastructural changes consistent with apoptosis, including shrinkage and detachment from neighbors, heterochromatin condensation, nuclear degranulation, and engulfment of apoptotic bodies by adjacent cells. Virions were present in cytoplasm and within cytoplasmic vacuoles of apoptotic cells. No apoptosis was detected by TEM in control samples. In parallel, we used Vero cell plaque assays to quantify infection after 7 and 10 day extrinsic incubation periods and found that none of the mosquitoes (0/55 and 0/10) which imbibed infective blood were infected. We propose that programmed cell death limits the number of WNV-infected epithelial cells and inhibits disseminated viral infections from the mosquito midgut.  相似文献   

17.
It has been reported that brain-infiltrating T lymphocytes play critical roles in the clearance of West Nile virus (WNV) from the brains of mice. We characterized brain-infiltrating T lymphocytes by analyzing the TCR α- and β-chain repertoires, T cell clonality, and CDR3 sequences. CD3(+)CD8(+) T cells were localized in the WNV-infected brains. The expression of CD3, CD8, CD25, CD69, perforin, and granzymes positively correlated with viral RNA levels, and high levels of expression of IFN-γ, TNF-α, and IL-2 were detected in the brains, suggesting that Th1-like cytotoxic CD8(+) T cells are expanded in the brains in response to WNV infection. The brain-infiltrating T lymphocytes dominantly used TCR genes, VA1-1, VA2-1, VB5-2, and VB8-2, and exhibited a highly oligoclonal TCR repertoire. Interestingly, the brain-infiltrating T lymphocytes had different patterns of TCR repertoire usages among WNV-, Japanese encephalitis virus-, and tick-borne encephalitis virus-infected mice. Moreover, CD8(+) T cells isolated from the brains of WNV-infected mice produced IFN-γ and TNF-α after in vitro stimulation with peritoneal cells infected with WNV, but not with Japanese encephalitis virus. The results suggest that the infiltrating CD8(+) T cells were WNV-specific, but not cross-reactive among flaviviruses. T cells from the WNV-infected brains exhibited identical or similar CDR3 sequences in TCRα among tested mice, but somewhat diverse sequences in TCRβ. The results indicate that WNV-specific CD3(+)CD8(+) T cells expanding in the infected brains are highly oligoclonal, and they suggest that TCR α-chains play a dominant and critical role in Ag specificity of WNV-specific T cells.  相似文献   

18.
West Nile virus-induced bax-dependent apoptosis.   总被引:13,自引:0,他引:13  
The mechanism of cell death induced by West Nile virus (WNV), a causative agent of human febrile syndrome and encephalitis, was investigated. WNV-infected K562 and Neuro-2a cells manifested the typical features of apoptosis, including cell shrinkage, chromatin condensation and subdiploid DNA content by flow cytometry. DNA fragmentation into nucleosomal size and changes in outer cell membrane phospholipid composition were also observed in K562 cells. UV-inactivated virus failed to induce the above-mentioned characteristics, suggesting that viral replication may be required for the induction of apoptosis by WNV. Additionally, signals involved in WNV-induced apoptosis are associated with the up-regulation of bax gene expression.  相似文献   

19.
Injury to neurons after West Nile virus (WNV) infection is believed to occur because of viral and host immune-mediated effects. Previously, we demonstrated that CD8+ T cells are required for the resolution of WNV infection in the central nervous system (CNS). CD8+ T cells can control infection by producing antiviral cytokines (e.g., gamma interferon or tumor necrosis factor alpha) or by triggering death of infected cells through perforin- or Fas ligand-dependent pathways. Here, we directly evaluated the role of perforin in controlling infection of a lineage I New York isolate of WNV in mice. A genetic deficiency of perforin molecules resulted in higher viral burden in the CNS and increased mortality after WNV infection. In the few perforin-deficient mice that survived initial challenge, viral persistence was observed in the CNS for several weeks. CD8+ T cells required perforin to control WNV infection as adoptive transfer of WNV-primed wild-type but not perforin-deficient CD8+ T cells greatly reduced infection in the brain and spinal cord and enhanced survival of CD8-deficient mice. Analogous results were obtained when wild-type or perforin-deficient CD8+ T cells were added to congenic primary cortical neuron cultures. Taken together, our data suggest that despite the risk of immunopathogenesis, CD8+ T cells use a perforin-dependent mechanism to clear WNV from infected neurons.  相似文献   

20.
Infection and injury of neurons by West Nile encephalitis virus   总被引:6,自引:0,他引:6       下载免费PDF全文
West Nile virus (WNV) infects neurons and leads to encephalitis, paralysis, and death in humans, animals, and birds. We investigated the mechanism by which neuronal injury occurs after WNV infection. Neurons in the anterior horn of the spinal cords of paralyzed mice exhibited a high degree of WNV infection, leukocyte infiltration, and degeneration. Because it was difficult to distinguish whether neuronal injury was caused by viral infection or by the immune system response, a novel tissue culture model for WNV infection was established in neurons derived from embryonic stem (ES) cells. Undifferentiated ES cells were relatively resistant to WNV infection. After differentiation, ES cells expressed neural antigens, acquired a neuronal phenotype, and became permissive for WNV infection. Within 48 h of exposure to an exceedingly low multiplicity of infection (5 x 10(-4)), 50% of ES cell-derived neurons became infected, producing nearly 10(7) PFU of infectious virus per ml, and began to die by an apoptotic mechanism. The establishment of a tractable virus infection model in ES cell-derived neurons facilitates the study of the molecular basis of neurotropism and the mechanisms of viral and immune-mediated neuronal injury after infection by WNV or other neurotropic pathogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号