首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Establishment of apical-basal polarity is crucial for epithelial sheets that form a compartment in the body, which function to maintain the environment in the compartment. Effects of impaired polarization are easily observed in three-dimensional (3-D) culture systems rather than in two-dimensional (2-D) culture systems. Although the mechanisms for establishing the polarity are not completely understood, signals from the extracellular matrix (ECM) are considered to be essential for determining the basal side and eventually generating polarity in the epithelial cells. To elucidate the common features and differences in polarity establishment among various epithelial cells, we analyzed the formation of epithelial apical-basal polarity using three cell lines of different origin: MDCK II cells (dog renal tubules), EpH4 cells (mouse mammary gland), and R2/7 cells (human colon) expressing wild-type α-catenin (R2/7 α-Cate cells). These cells showed clear apical-basal polarity in 2-D cultures. In 3-D cultures, however, each cell line displayed different responses to the same ECM. In MDCK II cells, spheroids with a single lumen formed in both Matrigel and collagen gel. In R2/7 α-Cate cells, spheroids showed similar apical-basal polarity as that seen in MDCK II cells, but had multiple lumens. In EpH4 cells, the spheroids displayed an apical-basal polarity that was opposite to that seen in the other two cell types in both ECM gels, at least during the culture period. On the other hand, the three cell lines showed the same apical-basal polarity both in 2-D cultures and in 3-D cultures using the hanging drop method. The three lines also had similar cellular responses to ECM secreted by the cells themselves. Therefore, appropriate culture conditions should be carefully determined in advance when using various epithelial cells to analyze cell polarity or 3-D morphogenesis.  相似文献   

3.
Newly developed fabrication technique of thermoresponsive surface using RAFT-mediated block copolymerization and photolithography achieved stripe-like micropatterning of poly(N-isopropylacrylamide) (PIPAAm) brush domains and poly(N-isopropylacrylamide)-b-poly(N-acryloylmorpholine) domains. Normal human dermal fibroblasts were aligned on the physicochemically patterned surfaces simply by one-pot cell seeding. Fluorescence images showed the well-controlled orientation of actin fibers and fibronectin in the confluent cell layers with associated extracellular matrix (ECM) on the surfaces. Furthermore, the aligned cells were harvested as a tissue-like cellular monolayer, called "cell sheet" only by reducing temperature below PIPAAm's lower critical solution temperature (LCST) to 20 °C. The cell sheet harvested from the micropatterned surface possessed a different shrinking rate between vertical and parallel sides of the cell alignment (approximately 3:1 of aspect ratio). This indicates that the cell sheet maintains the alignment of cells and related ECM proteins, promising to show the mechanical and biological aspects of cell sheets harvested from the functionalized thermoresponsive surfaces.  相似文献   

4.
Monolayer cell cultures were obtained from a human insulinoma (HIN) after collagenase digestion. HIN cells were initially plated on extracellular matrix (ECM) secreted by bovine corneal endothelial cells. Capsular integrity from cell clusters quickly interrupted and cell began to migrate as adhesive sheets onto ECM. After 2 months on ECM cell attachment and proliferation occurred on plastic allowing cloning of cells by limiting dilution. 9 clones were successfully cultured for 7 months with 20 subsequent passages. Immunoreactivity for insulin by indirect immunofluorescence typical secretory granules by electron microscopy and stable amounts of immunoreactive insulin in culture media suggest that HIN cells are beta cell related. One clone HIN D8 when challenged for half an hour with either 30 mM glucose, 1 mM isobutyl Methylxanthine 4 mM Tolbutamide, 10(-6) M glucagon responded respectively with a 1.5, 2, 3 and 1.5 fold increase in insulin output. Population doubling time of HIN D8 was 42 hrs. Establishment of such insulin secreting cell lines provides a valuable tool for diabetes research.  相似文献   

5.
6.
The aim of this study was to evaluate the behavior of human Dental Pulp Stem Cells (DPSCs), as well as human osteoblasts, when challenged on a Biocoral scaffold, which is a porous natural hydroxyapatite. For this purpose, human DPSCs were seeded onto a three-dimensional (3D) Biocoral scaffold or on flask surface (control). Either normal or rotative (3D) cultures were performed. Scanning electron microscopic analyses, at 8, 24 and 48 h of culture showed that cells did not adhere on the external surface, but moved into the cavities inside the Biocoral structure. After 7, 15 and 30 days of culture, morphological and molecular analyses suggested that the Biocoral scaffold leads DPSCs to hook into the cavities where these cells quickly start to secrete the extra cellular matrix (ECM) and differentiate into osteoblasts. Control human osteoblasts also moved into the internal cavities where they secreted the ECM. Histological sections revealed a diffuse bone formation inside the Biocoral samples seeded with DPSCs or human osteoblasts, where the original scaffold and the new secreted biomaterial were completely integrated and cells were found within the remaining cavities. In addition, RT-PCR analyses showed a significant increase of osteoblast-related gene expression and, above all, of those genes highly expressed in mineralized tissues, including osteocalcin, OPN and BSP. Furthermore, the effects on the interaction between osteogenesis and angiogenesis were observed and substantiated by ELISA assays. Taken together, our results provide clear evidence that DPSCs differentiated into osteoblasts, forming a biocomplex made of Biocoral, ECM and differentiated cells.  相似文献   

7.
Decellularized human extracellular matrices (ECMs) are an extremely appealing biomaterial for tissue engineering and regenerative medicine. In this study, we decellularized human adipose tissue, fabricated a thin ECM sheet and explored the potential of this human adipose-derived ECM sheet as a substrate to support the formation of tissues other than adipose tissue. Acellular ECM sheets were fabricated from human adipose tissue through successive physical and chemical treatments: homogenization, centrifugation, casting, freeze-drying and sodium dodecyl sulfate treatment. The ECM sheets exhibited good mechanical properties, despite their porous structure. They degraded quickly in the presence of collagenase and the degradation rate increased with the collagenase concentration in phosphate-buffered saline. Five different human cell types, covering a broad range of cells and applications (normal human dermal fibroblasts, human aortic smooth muscle cells, human chondrocytes, human umbilical vein endothelial cells and human adipose-derived stem cells), were seeded onto the ECM sheets. All the human cell types spread well, proliferated and were successfully integrated into the decellularized ECM sheet. Overall, the results suggest that recellularized ECM sheets are a promising substitute for defective or damaged human tissues.  相似文献   

8.
The fabrication of 3D tissues retaining the original functions of tissues/organs in vitro is crucial for optimal tissue engineering and regenerative medicine. The fabrication of 3D tissues also contributes to the establishment of in vitro tissue/organ models for drug screening. Our laboratory has developed a fabrication system for functional 3D tissues by stacking cell sheets of confluent cultured cells detached from a temperature-responsive culture dish. Here we describe the protocols for the fabrication of 3D tissues by cell sheet engineering. Three-dimensional cardiac tissues fabricated by stacking cardiac cell sheets pulsate spontaneously, synchronously and macroscopically. Via this protocol, it is also possible to fabricate other tissues, such as 3D tissue including capillary-like prevascular networks, from endothelial cells sandwiched between layered cell sheets. Cell sheet stacking technology promises to provide in vitro tissue/organ models and more effective therapies for curing tissue/organ failures.  相似文献   

9.
Mechanical interactions between cells and extracellular matrix (ECM) mediate epithelial cyst formation. This work relies on the combination of numerical modeling with live cell imaging, to piece together a novel nonintrusive method for determining three-dimensional (3D) mechanical forces caused by shape changes of a multicellular aggregate at the early stages of epithelial cyst formation. We analyzed the evolution of Madin-Darby canine kidney cells in 3D cultures using time-lapse microscopy, with type I collagen gel forming the ECM. The evolving 3D interface between the ECM and the cell aggregate was obtained from microscopy images, and the stress on the surface of a proliferating aggregate and in the surrounding ECM was calculated using the finite element method. The viscoelastic properties of the ECM (a needed input for the finite element method solver) were obtained through oscillatory shear flow experiments on a rheometer. For validation purpose, the forces exerted by an aggregate on a force-sensor array were measured and compared against the computational results.  相似文献   

10.
Living in three dimensions   总被引:2,自引:0,他引:2  
Research focused on deciphering the biochemical mechanisms that regulate cell proliferation and function has largely depended on the use of tissue culture methods in which cells are grown on two-dimensional (2D) plastic or glass surfaces. However, the flat surface of the tissue culture plate represents a poor topological approximation of the more complex three-dimensional (3D) architecture of the extracellular matrix (ECM) and the basement membrane (BM), a structurally compact form of the ECM. Recent work has provided strong evidence that the highly porous nanotopography that results from the 3D associations of ECM and BM nanofibrils is essential for the reproduction of physiological patterns of cell adherence, cytoskeletal organization, migration, signal transduction, morphogenesis, and differentiation in cell culture. In vitro approximations of these nanostructured surfaces are therefore desirable for more physiologically mimetic model systems to study both normal and abnormal functions of cells, tissues, and organs. In addition, the development of 3D culture environments is imperative to achieve more accurate cell-based assays of drug sensitivity, high-throughput drug discovery assays, and in vivo and ex vivo growth of tissues for applications in regenerative medicine.  相似文献   

11.
Objectives:  Ninety percent of malignant ovarian cancers are epithelial and thought to arise from the ovarian surface epithelium (OSE). We hypothesized that biological characteristics of primary OSE cells would more closely resemble OSE in vivo if established as three-dimensional (3D) cultures.
Materials and methods:  OSE cells were cultured as multicellular spheroids (MCS) (i) in a rotary cell culture system (RCCS) and (ii) on polyHEMA-coated plastics. The MCSs were examined by electron microscopy and compared to OSE from primary tissues and cells grown in 2D. Annexin V FACS analysis was used to evaluate apoptosis and expression of extracellular matrix (ECM) proteins was analysed by immunohistochemical staining.
Results:  On polyHEMA-coated plates, OSE spheroids had defined internal architecture. RCCS MCSs had disorganized structure and higher proportion of apoptotic cells than polyHEMA MCSs and the same cells grown in 2D culture. In 2D, widespread expression of AE1/AE3, laminin and vimentin were undetectable by immunohistochemistry, whereas strong expression of these proteins was observed in the same cells grown in 3D culture and in OSE on primary tissues.
Conclusions:  Physiological and biological features of OSE cells grown in 3D culture more closely resemble characteristics of OSE cells in vivo than when grown by classical 2D approaches. It is likely that establishing in vitro 3D OSE models will lead to greater understanding of the mechanisms of neoplastic transformation in epithelial ovarian cancers.  相似文献   

12.
Mesenchymal stem cells established from bone marrow (FetMSC) and limb bud (M-FetMSC) of early human embryo, as well as spheroids derived these cells, were induced to undergo osteogenic and adipogenic differentiation. Differentiated cells exhibited the activity of metalloproteinase (MMP)-9, -2, and -1. Its activity was different in osteogenic and adipogenic cells, as well as in monolayer cultures (2D) and cell spheroids (3D). The direct correlation between the level of adipogenic differentiation and gelatinases MMP-9 and MMP-2 activities in both cell lines in 2D and 3D culture was shown. M-FetMSC cells in 2D culture 12 days in culture during showed low potential for adipogenesis and reduced activity of MMP-2 and MMP-9. The low level of adipogenic differentiation in 2D M-FetMSC culture was accompanied with increased MMP-1 activity and enhanced differentiation (3D culture) resulted in a significant increase of both MMP activities. MMP-1 activity varied oppositely. MMP-1 activity declined in 3D cultures with a higher level of adipogenic differentiation. The level of osteogenic differentiation was similar in both cell lines during 2D and 3D cultivation. MMP-1 and -9 activities in both cell lines were not associated with osteogenic differentiation. MMP-2 and MMP-2 activity in these cells remained unchanged. The results suggest MMP implication in FetMSC and М-FetMSC differentiation. The difference in MMP activities during the cell differentiation may be caused by variations in the microenvironment or ECM properties in 2D and 3D cultures.  相似文献   

13.
Cell culture has been traditionally carried out on bi-dimensional (2D) substrates where cells adhere using ventral receptors to the biomaterial surface. However in vivo, most of the cells are completely surrounded by the extracellular matrix (ECM), resulting in a three-dimensional (3D) distribution of receptors. This may trigger differences in the outside-in signaling pathways and thus in cell behavior.This article shows that stimulating the dorsal receptors of cells already adhered to a 2D substrate by overlaying a film of a new material (a sandwich-like culture) triggers important changes with respect to standard 2D cultures. Furthermore, the simultaneous excitation of ventral and dorsal receptors shifts cell behavior closer to that found in 3D environments. Additionally, due to the nature of the system, a sandwich-like culture is a versatile tool that allows the study of different parameters in cell/material interactions, e.g., topography, stiffness and different protein coatings at both the ventral and dorsal sides. Finally, since sandwich-like cultures are based on 2D substrates, several analysis procedures already developed for standard 2D cultures can be used normally, overcoming more complex procedures needed for 3D systems.  相似文献   

14.
15.
Two major challenges in tissue engineering are mimicking the native cell-cell arrangements of tissues and maintaining viability of three-dimension (3D) tissues thicker than 300 μm. Cell printing and prevascularization of engineered tissues are promising approaches to meet these challenges. However, the printing technologies used in biofabrication must balance the competing parameters of resolution, speed, and volume, which limit the resolution of thicker 3D structures. We suggest that high-resolution conformal printing techniques can be used to print 2D patterns of vascular cells onto biopaper substrates which can then be stacked to form a thicker tissue construct. Towards this end we created 1 cm × 1 cm × 300 μm biopapers to be used as the transferable, stackable substrate for cell printing. 3.6% w/v poly-lactide-co-glycolide was dissolved in chloroform and poured into molds filled with NaCl crystals. The salt was removed with DI water and the scaffolds were dried and loaded with a Collagen Type I or Matrigel. SEM of the biopapers showed extensive porosity and gel loading throughout. Biological laser printing (BioLP) was used to deposit human umbilical vein endothelial cells (HUVEC) in a simple intersecting pattern to the surface of the biopapers. The cells differentiated and stretched to form networks preserving the printed pattern. In a separate experiment to demonstrate "stackability," individual biopapers were randomly seeded with HUVECs and cultured for 1 day. The mechanically stable and viable biopapers were then stacked and cultured for 4 days. Three-dimensional confocal microscopy showed cell infiltration and survival in the compound multilayer constructs. These results demonstrate the feasibility of stackable "biopapers" as a scaffold to build 3D vascularized tissues with a 2D cell-printing technique.  相似文献   

16.
《The Journal of cell biology》1993,123(4):1027-1035
Tenascin is a large extracellular matrix (ECM) glycoprotein found in restricted tissue locations in the adult organism. It is copiously synthesized in regenerative organs or regenerating tissues and by certain tumors. We have analyzed the expression of tenascin in human long term bone marrow cultures as well as in cryostat sections of native bone marrow and found it strongly expressed by the stromal cells of the microenvironment. Two different protein subunits of 280 and 220 kD were detected by immunoblotting. These two forms are derived most likely from two different mRNA splice variants of 6 and 8 kb detected by Northern blotting. The in vivo analysis of cryostat sections showed a codistribution with other ECM molecules such as fibronectin and collagen type III in the microenvironment surrounding the maturing hematopoietic cells. Using two independent cell adhesion assays tenascin could be shown to function as a cytoadhesive molecule for hematopoietic cells. These data suggest a direct involvement of tenascin in the retention of hematopoietic progenitor cells in the stroma.  相似文献   

17.
Growth of cells in tissue culture is generally performed on two-dimensional (2D) surfaces composed of polystyrene or glass. Recent work, however, has shown that such 2D cultures are incomplete and do not adequately represent the physical characteristics of native extracellular matrix (ECM)/basement membrane (BM), namely dimensionality, compliance, fibrillarity, and porosity. In the current study, a three-dimensional (3D) nanofibrillar surface composed of electrospun polyamide nanofibers was utilized to mimic the topology and physical structure of ECM/BM. Additional chemical cues were incorporated into the nanofibrillar matrix by coating the surfaces with fibronectin, collagen I, or laminin-1. Results from the current study show an enhanced response of primary mouse embryonic fibroblasts (MEFs) to culture on nanofibrillar surfaces with more dramatic changes in cell spreading and reorganization of the cytoskeleton than previously observed for established cell lines. In addition, the cells cultured on nanofibrillar and 2D surfaces exhibited differential responses to the specific ECM/BM coatings. The localization and activity of myosin II-B for MEFs cultured on nanofibers was also compared. A dynamic redistribution of myosin II-B was observed within membrane protrusions. This was previously described for cells associated with nanofibers composed of collagen I but not for cells attached to 2D surfaces coated with monomeric collagen. These results provide further evidence that nanofibrillar surfaces offer a significantly different environment for cells than 2D substrates.  相似文献   

18.
Three-dimensional (3D) and two-dimensional (2D) cultures of hepatocytes in various concentrations (0.3–0.7%) of agarose gel revealed that the hepatocytes under 3D cultures in 0.3% agarose gel possess long-term (>3 weeks) viability, significant self-assembly to form tissue like aggregates, low lactate dehydrogenase release and high albumin synthesis. These were in contrast to 2D culture of hepatocytes. Our results suggest that the 3D culture of hepatocytes in agarose gel favors aggregate formation of functionally active cells and would be useful for liver transplantation as well as to analyze hepatocytes biology.  相似文献   

19.
Chondroitin-sulfate containing proteoglycan (CSPG) of the extracellular matrix (ECM) was visualized in chick tissues and cell cultures with a monoclonal antibody, CS-56. Cultured cells of various origins contained dense punctate layers of CSPG on both the substrate and the cell surface, as determined by immunofluorescent and immunogold staining. Under culture conditions the CSPG-containing matrix was usually excluded from stable cell-to-substrate focal contacts. The substrate-attached CSPG exhibited remarkable chemical stability but could be successfully removed by pronase or chondroitinases ABC and AC. Incubation of living cells with CS-56 antibodies resulted in the clustering of surface CSPG into patches, indicating that the surface-bound CSPG is free to move laterally along the plasma membrane. The unique properties of the CSPG-containing ECM revealed by CS-56 antibodies and their relationships to specific types of cell contacts are discussed.  相似文献   

20.
We examined the localization of transforming growth factor (TGF)-beta in first-trimester and term human decidua and chorionic villi and explored the role of this factor on the proliferation and differentiation of cultured trophoblast cells. Two antibodies, 1D11.16.8, a mouse monoclonal neutralizing antibody capable of recognizing both TGF-beta 1 and TGF-beta 2 and CL-B1/29, a rabbit polyclonal antibody capable of recognizing TGF-beta 2, were used to immunolocalize TGF-beta in fixed, paraffin-embedded, or fixed, frozen sections of placenta and decidua, providing similar results. Intense labeling was observed in the extracellular matrix (ECM) of the first-trimester decidua and cytoplasm of term decidual cells. Syncytiotrophoblast cell cytoplasm as well as the ECM in the core of the chorionic villi of both first-trimester and term placentas exhibited a moderate degree of labeling. Strong cytoplasmic labeling was observed in the cytotrophoblastic shell of the term placenta. To examine the role of TGF-beta on trophoblast proliferation and differentiation, early passage cultures of first-trimester and primary cultures of term trophoblast cells were established and characterized on the basis of numerous immunocytochemical and functional markers. These cells expressed cytokeratin, placental alkaline phosphatase, urokinase-type plasminogen activator, and pregnancy-specific beta glycoprotein, but not factor VIII or 63D3; they also produced hCG and collagenase type IV. Exposure of first-trimester trophoblast cultures to TGF-beta 1 significantly inhibited proliferation in a dose-dependent manner. An antiproliferative effect was also noted in the presence of TGF-beta 2. These effects were abrogated in the presence of the neutralizing anti-TGF-beta antibody (1D11.16.8) in a concentration-dependent manner. In a 3-day culture, exogenous TGF-beta 1 stimulated formation of multinucleated cells by the first trimester as well as term trophoblast cells. Addition of neutralizing anti-TGF-beta antibody to first-trimester trophoblast cells stimulated proliferation beyond control levels in a 24-h culture and reduced formation of multinucleated cells in a 3-day culture, indicating the presence of endogenous TGF-beta activity. These results indicate that TGF-beta produced at the human fetal-maternal interface plays a major regulatory role in the proliferation and differentiation of the trophoblast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号